
1

Measuring Spatio-Temporal Efficiency: An R Implementation for Time-Evolving Units

Georgios Digkas
1
, Konstantinos Petridis

1,*
, Alexander Chatzigeorgiou

1
, Emmanouil

Stiakakis
1
, Ali Emrouznejad

2

1
Department of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece

2
Aston Business School, Aston University, Birmingham B4 7ET, United Kingdom

Email: mai153@uom.edu.gr, k.petridis@aston.ac.uk, achat@uom.gr, stiakakis@uom.gr, a.emrouznejad@aston.ac.uk

Abstract

Classical Data Envelopment Analysis (DEA) models have been applied to extract efficiency

when time series data are used. However, these models do not always yield realistic results,

especially when the purpose of the study is to identify the peers of the Decision Making Unit

(DMU) under investigation. This is due to the fact that apart from the spatial distance of

DMUs, which is the basic on which efficiency is extracted, the distance in time between

DMUs is also important in identifying the most suitable peer that could serve as a benchmark

for the DMU under investigation. Based on these two dimensions, i.e. the spatial and the

temporal, the concept of Spatio-Temporal efficiency is introduced and a Mixed Integer Linear

Programming (MILP) model is proposed to obtain its value. This model yields a unique past

peer for benchmarking purposes based on both dimensions. The implementation has been

performed in the R language, where the user can provide, through a graphical interface, the

data (inputs and outputs for successive versions of a DMU) for which the Spatio-Temporal

efficiency is measured. Applications to the real world and particularly from the discipline of

software engineering are provided to show the applicability of the model to temporally

arranged data. Profiling results of the code in the R language are also provided showing the

effectiveness of the implementation.

Keywords: DEA, LP, MILP, R platform, Spatio-Temporal efficiency, Computational

economics

*
Corresponding author, e-mail: k.petridis@uom.edu.gr, Tel: +30 2310 891 728

mailto:mai153@uom.edu.gr
mailto:stiakakis@uom.gr
mailto:k.petridis@uom.edu.gr

2

1. Introduction

Evolution occurs in all business, economic, and technological systems. They evolve as their

constituent parts, such as means of production, market mechanisms, processes etc., change

over time. Computer software can also be regarded as an evolving system since it gradually

undergoes maintenance in order to correct errors and accommodate changing and new

requirements. This evolution is clearly evident in software systems from the multitude of

releases that they offer over time. In order to study the evolution of a software (or any other

evolving) system which comprises a series of successive versions, the current version of the

system should be compared with temporally previous versions. What would be useful in this

case is to identify a previous, but near in time, version with similar functionality which could

be regarded as more efficient than the current version, in terms of its ability to maximize

output (e.g. certain software metrics) for a given input (e.g. software functionality). In such a

case and in the context of software, the previous version could serve as a benchmark for the

current version, meaning that its characteristics could be used as a guide to examine more

carefully the characteristics of the current software version. A similar reasoning applies to the

temporal analysis of system evolution in other domains, such as economies or businesses.

One of the most widely known methodologies in order to measure efficiency is Data

Envelopment Analysis (DEA). In DEA, the entity under study is called a Decision Making

Unit (DMU). For each DMU, a virtual input and a virtual output are formed (input and output

items respectively, multiplied by weights) and then the weights are determined, using linear

programming, so as to maximize the ratio of the virtual output over the virtual input. What is

actually measured in DEA is the relative efficiency of a DMU against the other DMUs. The

efficient units, i.e. the units with the maximum efficiency, form a surface named as “efficient

frontier” which envelops all the inefficient units. The efficient DMUs can be used as

benchmarks for the inefficient ones in order to improve their efficiency.

As already mentioned, the right choice, when time series data are examined, is to compare the

entity under study with preceding entities. In that way, the efficiency that should be measured

is not only determined according to the spatial distance of DMUs from the efficient frontier

(as usually occurs), but also according to their time distance (how close the DMUs are in

terms of time). Thus, efficiency is considered with regard to both the spatial and temporal

dimensions. In the context of this study, this is called Spatio-Temporal efficiency. The new

concept of Spatio-Temporal efficiency is graphically depicted in Figure 1. Each DMU is

arranged temporally and spatially, as well. In this hypothetical case, three DMUs are

3

considered; DMU(6) which is DMU under investigation and its peers, DMU(2) and DMU(3).

The horizontal axis represents the closeness ofa unit to other units (their spatial distance),

while the vertical axis represents the temporal difference of a unit from the other units. In this

example, 2 equals to 0.7 while 3 equals to 0.3. However, DMU(2) is temporally more

distant than DMU(3) (the temporal distance is 4) and DMU(3) which is temporally closer to

DMU(6) (with temporal distance equal to 3). As aim of the proposed approach is to find the

DMU which is closer to the DMU under investigation, values in the horizontal axis are

presented in a decreasing order; the largest the lambda value of a peer, the more resemblance

it bears with the inputs/outputs of the DMU under study. Based on this example, there is not a

rule of thumb to assist in making the decision on which unit, 2 or 3, should be selected as a

single peer because the DMU under investigation should be compared with a temporally and

spatially closer DMU. The previous illustrative example indicates the need for a unique peer

selection in terms of both the spatial and temporal dimensions. The resulting efficiency is the

Spatio-Temporal efficiency, which is analyzed more extensively in the next sections of the

paper. This type of efficiency cannot be addressed by conventional DEA methods or other

DEA techniques that deal with time series data.

Δ
T

im
e

Space0.7 0.40.6 0.5 0.3 0.2 0.1

1

2

3

4

5

6

DMU(6)

DMU(3)

DMU(2)

Figure 1: Units arranged over space and time

The rest of the paper is organized as follows: in Section 2, a literature review with relevant

works on DEA is presented, also identifying the gap in the literature. In Section 3, the R

implementation is analytically described, demonstrating all the stages of the proposed

methodology. The interface and the functional characteristics of the proposed R package are

demonstrated in Section 4, while a performance analysis is presented, with an application in a

4

real-life example from the discipline of software engineering, in Section 5. Finally,

conclusions are drawn in Section 6.

2. Literature review

A Spatio-Temporal DEA model has not yet been addressed in the literature. The nearest

concept to Spatio-Temporal DEA is that of dynamic and two-stage DEA models. Dynamic

models take into account time providing information for efficiency changes over time. The

first dynamic DEA model has been proposed by Färe and Grosskopf [1]. In the dynamic

context, Malmquist index is considered in order to measure efficiency changes over time [2];

applications to healthcare[3][4]and electricity generation companies [5] have been

demonstrated. Dynamic DEA models have also been used in software maintenance [6].

Moreover, the dynamic and two-stage DEA models have been used in various contexts, as for

instance to assess jet fighters based on their capabilities [7]. Later work extended

Technological Forecasting Data Envelopment Analysis (TFDEA) model in an application for

the assessment of jet fighters and commercial airplane development.

Recently, due to the openness and popularity of the R programming language a number of

mathematical and statistical approaches are offered in the form of R packages. Essentially R

packages are collections of functions, data, and compiled code that extends the capabilities of

the R language; they are accompanied with a documentation explaining the utilization of the

functions. Those packages are developed by individual programmers or communities. One of

the subjects those packages are often dealing with is modeling Operation Research (OR)

techniques. There is a wide variety of packages for solving optimization problems [8]. Due to

its ability, R language can easily install and built upon external packages. A wide variety of

mathematical programming models have been implemented in R platform through different

packages.

In his work, Konis [9] created the lpSolveAPI package for R; this package supports a Mixed

Integer Linear Programming (MILP) solver with the support of other OR models. Theuss

[10]created the R Optimization Infrastructure (ROI) package; ROI is a package that integrates

different Mixed Integer Programming(MIP) solvers into a single interface. Cantyand Ripley

[11] created the boot R package for bootstrapping techniques. In his work, Buttrey created the

lp Solve[12] package for R. This package contains functions for solving linear, integer, and

mixed integer problems. Henningsen [13] proposed the linprog package for R; the package is

built on the simplex algorithm to solve Linear Programming or Linear Optimization problems.

Turlach [14] proposed the quadprog package, which contains functions for solving Quadratic

5

Programming Problems. Gilbert[15]created the BB package, which contains functions that

implement the Barzilai-Borwein spectral methods for solving nonlinear problems. Rudy[16]

created the CLSOCP package that contains functions for solving Second Order Cone

Problems (SOCP). Karatzoglou [17] created the package kernlab; it contains methods for

solving Quadratic Programming problems using Interior Point Methods (IPM). Soetaert [18]

proposed the package limSolve, which contains functions for solving Linear and Quadratic

programming problems. Geyer [19] created the package rcdd; this is an R interface that uses

the GNU Multiple Precision (GMP) library to solve linear programming problems. Hayfield

and Racine (2008) [20] created the R package called np for estimating non linear production

function.

An overview of R packages that specifically aim at addressing the problem related to the

application of DEA are also presented. In their work, Bogetoft and Otto [21] presented the

Benchmarking package. Benchmarking provides methods for frontier analysis and contains

functions for different DEA technologies, such as fdh, vrs, drs, crs, irs, add/frh, and fdh+.

Another package that provides functions for frontier efficiency analysis in R is the FEAR

package by Wilson [22] [23]. Dong-hyun [24] proposed an R package called nonparaeff

which contains nonparametric DEA functions for measuring efficiency and productivity of

DMUs. Jaak [25] in his work, created the rDEA package that estimates DEA scores with or

without environmental variables and performs Returns To Scale (RTS) tests. Finally, Shott [26]

has proposed TFDEA package, an R package that has implemented the TFDEA algorithm

which provides functions for technology forecasting. An overview of R packages which can

be used as optimization solvers is presented in Table 1, contrasting each packages with the

supported mathematical programming models, while packages supporting DEA technologies

are summarized in Table 2.

Table 1: R packages used as optimization solvers

Mathematical

Programming

models

Solvers

Non-Linear

Programming

(NLP)

Linear

Programming

(LP)

Mixed Integer

Linear Programming

(MILP)

Semi –

Continuous

(SC)

Quadratic

Programming

(QP)

Special

Ordered

Sets

(SOS)

lpSolveAPI[9]     

ROI[10]    

boot[11]    

lpSolve[12]    

6

linprog[13]    

quadprog[14]    

BB[15]    

CLSOCP[16]    

kernlab[17]    

limSolve[18]    

rcdd[19]    

Table 2: R packages supporting DEA technologies

 DEA technologies

R Package FDH VRS DRS CRS IRS Add/FRH FDH+ SFA

Benchmarking[21]        

FEAR [22] [23]  

nonparaeff [24]     

rDEA[25]     

TFDEA[26]     

Classical DEA models cannot handle by default time series data and extract efficiency. This is

attributed to the fact that when using time series data, the construction of the reference set of a

DMU may contain temporally subsequent DMUs. Also, even in most of the dynamic DEA

models, a sequential modification is implemented to take the aforementioned shortfall in the

modeling into account; the analyses presented are extracting the efficiency based only on the

temporal dimension. In this paper, a DEA model is presented considering two aspects based

on the time series data that are to be handled; the first aspect is the spatial and the second is

the temporal. The formulation presented in this paper allows firstly constructing the reference

set of each DMU based on an iterative DEA model [28]. The information, taken from this

initial step, is then analyzed on a second stage and the Spatio-Temporal efficiency is

calculated. The implementation inthe R language is shown throughout the paper, while the R

package that models the Spatio-Temporal DEA (ST-DEA) approach is available and can be

downloaded from: http://se.uom.gr/index.php/projects/stdea/.To our knowledge, such an

application has not yet been proposed in the literature.

3. Spatio-Temporal DEA and its R implementation

In this section, the proposed model along with its implementation in the R language [27] is

http://se.uom.gr/index.php/projects/stdea/

7

presented. The R language is a GNU project for statistical computing and graphics
1
.The

proposed model consists of two stages; the first stage aims at solving the conventional DEA

iteratively providing a solution using a Linear Programming (LP) model. The second stage

filters the solution from the first stage through a MILP model in order to derive the Spatio-

Temporal frontier. The mathematical formulation and parts of the R-coding are shown in the

next sub-sections.

3.1 Iterative LP model

Conventional DEA models fail to capture the dimension of time in their formulation. When

time series data are fed in the model as inputs and outputs, a modified DEA approach is

needed. Assuming we have t Decision Making Units (DMUs) temporally arranged such

as: (1), (2), , (1), ()DMU DMU DMU t DMU t . The following LP model guarantees that in

the reference set of a DMU (for instance (8)DMU), a temporally subsequent DMU like

(9)DMU will not appear in its reference set. Due to the fact that DEA loses its discrimination

power when the inputs and the outputs are less than   max , 3n m n m     , where n is the

number of inputs and m the number of οutputs, a minimum number of DMUs (μ)is required in

order for the technique to work. In the following mathematical model, φ represents the

efficiency to be calculated and I the number of DMUs.

Stage 1

For ,..., I 

 Max  (1)

 s.t.

0,i ij io

i

x x j





    (2)

0, ri i r

i

y y r


 


     (3)

1i

i 




 (4)

0,

i i

free

 



 
 (5)

End For

1
 http://www.r-project.org/about.html

http://www.r-project.org/about.html

8

Mathematical formulation (1) – (5) is the iterative LP model and presents an output-oriented

DEA model, with Variable Returns to Scale (VRS) as derived by constraint (4). In this

formulation, there are 1,...,j I DMUs,
ijx inputs and

rjy outputs. The target is to

maximize  as shown in objective function (1). As it can be seen in the mathematical

formulation (1) – (5), the summation is performed with respect to i such that i  whereas

 is an index which iteratively takes values from  up to I . With this procedure, it can be

ensured that only temporally previous peers will appear in the reference set of a DMU.

Assuming that there are 10 DMUs, and 1n  input and 2m  outputs then the minimum

point from which the iterative LP model will begin is   max 1 2, 3 1 2 9      . Thus, the

iterative LP model is solved only for DMUs 9 and 10.

9

The iterative LP model starts the summation from the DMU that equals to the variable

minimumDMUs which corresponds to μ. The variable imported.data is used to store the

imported data, which R parses from any type of plain text files or spreadsheets; the most

common format for data import is a .csv file, although different types of source can be used

(.txt, .xls, .ods, etc.). Variables x and y are vectors representing inputs and outputs respectively.

Variables numberOfInputs and numberOfOutputs correspond to the number of inputs and

outputs which are defined as shown in Figure 2.

imported.data <- read.csv(...)

x <- with(imported.data, cbind(Inputs))

y <- with(imported.data, cbind(Outputs))

numberOfInputs <- ncol(x)

numberOfOutputs <-ncol(y)

Figure 2: The R commands that separate the imported data into Inputs and Outputs

Based on the code fragment shown in Figure 3, the iterative LP model is solved; the while

loop is initiated with the value that is assigned to stopDMU, and in the first iteration is equal to

the value of the variable minimumDMUs, whereas in the next iterations it serves as a counter. In

order to provide a correspondence between the fragments of code presented and the example

presented in Table 3, the initial value of variable stopDMUis 9 (based on the formula of

minimum DMUs for 1 input and 2 outputs). Variables TempX and TempY are sub-vectors of X

and Y and contains the rows 1 to stopDMU of those vectors. After this, the variables TempX

and TempY are assigned to DEA model as Input and Output correspondingly. Finally, stopDMU

variable is increased by one, and sub-vectors X, Y are calculated again.

while(stopDMU <= numberOfDMUs){

 tempX <- x[1:stopDMU,]

 tempY <- y[1:stopDMU,]

 e <- dea(tempX, tempY, RTS="vrs", ORIENTATION = orient)

 phiDEA[stopDMU - minimumDMUs +1, 1]<- stopDMU

 phiDEA[stopDMU - minimumDMUs +1, 2]<- eff(e)[stopDMU]

 l <- lambda(e)

 columnNames <-colnames(l)

 dataFrameLambdas <- data.frame(l)

Figure 3: While loop that calculate the lambdas values for each DMU

Inputs and outputs that correspond to stopDMU are assigned to variables tempX and tempY

correspondingly through the function dea(tempX, tempY, RTS="...", ORIENTATION =

10

“...”). The results of that iterative LP DEA model are stored in variable e. The model can be

solved for each orientation and each Returns To Scale (RTS) technology. In this example, an

output-oriented DEA model with Variable Returns to Scale (VRS) technology is shown for

illustrative reasons.

The procedure is graphically illustrated in Figure 4. As the model is solved using lpSolveAPI,

the resulting LP model must be introduced in a data frame form, stating the coefficients at the

right hand side of the constraints. In the first column of the data frame, variable  is stored,

whereas the reference set of each DMU is assigned to variable l as seen in Figure 4, starting

from stopDMU. The model is solved until the last DMU is reached. With this procedure, only

temporally past DMUs can appear as peers (lambdas) in the reference set as depicted in

Figure 4; the grey area indicates that DMU(t) is not taken into account in the calculations.

Figure 4demonstrates the example in Table 3 (1 input and 2 outputs), thus stopDMU is defined

as DMU(9) which has as reference set any combination from 91,  while DMU(10) has as

reference set any combination of 11 0,  .

φ λ1 λ2 λ3 λ9 λ10λ8

DMU(1)

DMU(2)

. . . .

DMU(9)

DMU(10)

stopDMU
.

 tempX <- x[1:stopDMU,]

 tempY <- y[1:stopDMU,]

 e <- dea(tempX, tempY, RTS="vrs", ORIENTATION = orient)

 phiDEA[stopDMU - minimumDMUs + 1, 1] <- stopDMU

 phiDEA[stopDMU - minimumDMUs + 1, 2] <- eff(e)[stopDMU]

 columnNames <- colnames(l)

l <- lambda(e)

Figure 4: Graphical representation of the iterative LP models solved for DMU(9) and DMU(10).

11

#Alpha matrix

for(i in1:length(columnNames)){

 alphaMatrix[stopDMU, as.integer(substr(columnNames[i], 2,

nchar(columnNames[i])))]<-

 dataFrameLambdas[nrow(dataFrameLambdas), i]

}

 stopDMU <- stopDMU +1

}

#Delta matrix

 for(i in minimumDMUs:numberOfDMUs){

for(j in1:numberOfDMUs){

if(alphaMatrix[i,j]>0){

 deltaMatrix[i,j]<-(i - j)

}

 }

}

Figure 5: The R code that defines the A and Δ matrices

In order to examine the Spatio-Temporal dimension of each DMU and to construct the

reference set taking into account both dimensions, two matrices are constructed. In the first

matrix, as indicated by the block of R code shown inFigure5, the lambda values of each DMU

are stored in the Αmatrix, whereas the distances in the temporal dimension is captured by Δ

matrix. Both matrices are explained next.

Matrix A reflects the spatial dimension as the lambda value (peer) of each DMU demonstrates

the level of similarity with the DMU under investigation. For instance, if DMU(10) has

DMU(5) and DMU(8) as peers with 5 0.543  and 8 0.457  respectively, then it can be

said that DMU(10) exhibits a greater spatial similarity in terms of inputs/outputs with DMU(5)

rather than DMU(8). However, DMU are also temporally arranged, DMU(5) is further away

in terms of time than DMU(8) which is closer to DMU(10). More specifically, DMU(5) has a

temporal distance of 5 time units to the DMU of interest, while DMU(8) has a distance of

only 2 time units. The temporal distance of each DMU is stored in theΔmatrix.

Figure 6shows the Α and Δ matrices with dimensions I I . As it can be observed, for each

DMU that has temporally precedent peers the non-zero lambda values at each row (DMU) of

theΑmatrix correspond to the temporal differences in Δ matrix. The peers that do not appear

in a DMU’s reference set (zero elements in Α matrix) correspond to a very large number (M<-

1E5) in Δ matrix in order to exclude selection.

Vectors  
T

MAX

 and  
T

MIN

 with dimensions 1I  , select the maximum lambda and

minimum temporal distance correspondingly and are used for normalization purposes of the

12

next stage objective function. Figure 7 shows the procedure and the corresponding R code, by

which vectors  
T

MAX

 and  
T

MIN

 are created.

Rows 1,...,minimumDMUs (minimumDMUs = μ) of matrix A are empty; from row

minimumDMUs + 1,...,numberOfDMUs, non-zero columns represent the optimal lambda

values(peers) of DMU under investigation. For example, assuming that DMU 6 peers are 2

and 3 with corresponding lambda values 0.3 and 0.7 correspondingly; A matrix would have in

positions Α[6,2] = 0.3 andΑ[6,3] = 0.7. Rows 1,...,minimumDMUs (minimumDMUs = μ), of

matrixΔ (similar to A matrix) are empty; rows minimumDMUs + 1,...,numberOfDMUs contain

either a very big positive number(M), or the temporal distance of DMU under study with its

peers. Following the previous example, the values of cells Δ[6,2]= 6 – 2 = and Δ[6,3] = 6 – 3=

3, representing the temporal distance of DMU 6 with its peers (2 and 3). The rest of cells of

DMU 6 of matrix Δ have M value (Δ[6,1]=Δ[6,4]=…=Δ[6,n]=M).

Figure 6: Construction of vectors MAX
 and MIN



13

From the A matrix, the maximum of each row (DMU) is selected while from the Δ matrix the

maximum non-M value is selected. This is formally represented in relations (6) and (7). In (7),

function ORD returns the order of the current DMU under investigation minus the order of its

peers, as shown in Figures 3 and 4.

 , max
MAX

l
l

a   (6)

() (), 0

, 0

l

l

l

ORD ORD l a

M a









  
 



 (7)

As the aim of the proposed mathematical formulation is to examine the Spatio-Temporal

efficiency of the temporally arranged DMUs, A and Δ matrices are introduced into the

following Multi-Objective Mixed Integer Linear Programming (MO-MILP) model since the

two objectives should be taken into consideration at the same time:

Stage 2

For ,..., I 

 For 1,...j J

1 1
max w wj j

sp l l t l lMAX MIN
l l

a 

 

  
 
       (8)

 s.t.

ˆ 0, r rl l

l

y y r


 


      (9)

ˆ 1  (10)

1l

l 




 (11)

w w 1, j j

sp t j   (12)

 0,1

ˆ

I

l

free






 (13)

 End For

End For

14

Objective function (8) consists of two terms: the first one uses the elements of A matrix (la)

multiplied by binary variables (l) and is normalized with vector
MAX
 , whereas the second

term uses the elements of Δ matrix (l
) multiplied by binary variables (l) and is normalized

with vector
MIN
 .The aim of the MO-MILP is to select the temporally closest and spatially

most similar unique peer to the DMU under investigation, weighting the two objectives with

w j
sp and w j

t ; this Weighted Sum Model (WSM) is subjected to constraints (9) – (13).

Constraint (9) is introduced to calculate the new Spatio-Temporal efficiency̂ ; it resembles

constraint (3) of the initial iterative LP model except for lambda values which have been

replaced with binary variables l . As the proposed model provides a unique peer, then

constraint (11) guarantees that only one peer will be selected. However, selecting only one

peer, as Spatio-Temporal reference set may cause ̂ to take values less than one. Thus

constraint (10) is introduced in order to exclude such cases. Finally, constraint (12) states that

the weights that are assigned to the temporal and spatial dimensions in the objective function

are complementary. In Figure 7, the mathematical formulation of the WSM model is

demonstrated in a table form as introduced to lpSolveAPI package. Reformulating objective

function (8), the coefficients of binary variables l are shown in (14). The coefficients of

constraints (9) – (14)are shown in Figure 8.

1 1
w wj j

sp l t l lMAX MIN
l

a 

 

 
 

 
      

 
 (14)

15

Figure 7:Formulation of MO-MILP model.

3.2 Extensions of Spatio-Temporal to find virtual outputs

Consideringthe Spatio-Temporal efficiency, DMUs are now projected on a new frontier. Thus,

in addition to determining the unique and most appropriate peer of each DMU, the proposed

model can also be extended in order to obtain virtual inputs and outputs on the new space and

time dependent frontier, with the addition of slack variables. Thus, in addition to determining

the unique and most appropriate peer of each DMU, the proposed model can also be extended

in order to obtain virtual inputs and outputs on the new Spatio-Temporal frontier, with the

addition of slack variables. These slack variables will be denoted as
rŝ . The following model

with objective function (15) and constraints (16 – 20) extends the previous MO-MILPmodel

(8 – 13) with the addition of a slack variable
rŝ .

For ,..., I 

 For 1,...j J

1 1
ˆmax w wj j

sp l l t l l rMAX MIN
l l r

a s 

 

   
 

          (15)

 s.t.

16

ˆ ˆ 0, r rl l r

l

y y s r


  



       (16)

ˆ 1  (17)

1l

l 




 (18)

w w 1, j j

sp t j   (19)

 0,1

ˆ

ˆ 0,

I

l

r

free

s r









 

 (20)

 End For

End For

In the objective function (15), the summation of slack variables that corresponds to the

outputs is weighted with  which is a relatively small positive number 3 510 10,     . Also,

constraint (9) changes with the addition of the slack variable and turns into constraint (16).

The projected outputs are calculated based on the following formula:

ˆˆ ˆST
r r ry y s    (21)

17

3.3 Architecture of the Spatio-Temporal DEA implementation

The proposed Spatio-Temporal DEA approach has been implemented in R, which is, as

already mentioned, an open-source language initially developed for statistical computing and

graphics[28]. The implementation is based on two packages; the first is the Benchmarking

package which has already been introduced and the second is the Rgtk2package [29]which is

required to build the Graphical User Interface (GUI). The dependencies among packages are

graphically depicted in Figure 9.

Benchmarking

stDeaAPI RGtk2

stDea

Figure 8: Package dependency of stDea

The core of the proposed functionality has been implemented in the stDeaAPI package

which has been structured as an API (Application Programming Interface), that is, as a set of

well-defined functions with explicit parameters. The rationale for developing an individual

stDeaAPI package is to allow R users to reuse this functionality either in R scripts or in the

context of other packages. The stDeaAPI is based on the Benchmarking package

utilizing functions like lambda(e) for the construction of A and Δ matrices, as described in

Section 3.1.

Package stDea is essentially a front-end offering access to the Spatio-Temporal DEA

functionality by means of a simple user interface. This package, whose functionality is

18

discussed in detail in the following subsection, relies on theRGtk2 package for the

construction of user screens and event handling.

The proposed R implementation is available: http://se.uom.gr/index.php/projects/stdea/ and

the corresponding source code can be downloaded from https://github.com/digeo/stDeaAPI.

3.4 Function of stDEA package

Assuming that the data are imported by a csv external (the package imports the data in the

following formats as well .txt, .xls), semi-column separated file then the command that is used

for importing data is the following:

imported.data <- read.csv(file= file.choose(), header =TRUE, sep =";")

For sake of illustration, the following toy example is considered (Table 3). In this example

there are 9 DMUs, one input (X1) and two outputs (O1 and O2).

Table 3: Inputs and outputs for toy example

DMU
Input

(X1)

Output1

(O1)

Output2

(O2)

DMU(1) 1 6 4

DMU(2) 1 13 7

DMU(3) 1 3 9

DMU(4) 1 4 11

DMU(5) 1 11 12

DMU(6) 1 15 4

DMU(7) 1 6 12

DMU(8) 1 16 9

DMU(9) 1 10 8

The data are declared as follows in R. As it can be seen, input X1 contains only ones, thus it is

modeled by the following vector:

X1<-rep(1, 9)

Outputs 1 and 2 are declared by the following commands:

O1<-c(6,13,3,4,11,15,6,16,10)

O2<-c(4,7,9,11,12,4,12,9,8)

http://se.uom.gr/index.php/projects/stdea/
https://github.com/digeo/stDeaAPI

19

Inputs and outputs are grouped as shown in the following commands; x indicates the inputs

(in this case only X1) while y the outputs (O1, and O2).

x <-with(imported.data, cbind(X1))

y <-with(imported.data, cbind(O1, O2))

The stDEA method is conducted with the following. The results are assigned to variable e.

e <-stDEA(x,y)

e <-stDEA(x, y, RTS ="vrs", ORIENTATION ="out", stp =0.01)

In stDEA function, RTS option stands for Returns To Scale and the following options are

available: fdh, vrs, drs, crs, irs, irs2, add, fdh+, fdh++, fdh0. The

ORIENTATION and for the ORIENTATION can choose either out or in.

The following options are available after running the stDEA function.

The first is $eff.DEA which returns the result of the LP model solved iteratively (1 – 5). An

example is presented below:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 3 3 4 5 6 7 8 9

1 3 3 4 5 6 8 9

9

7

max

 . .

 1

 10

8

 , , , , ,

6 13 3 4 11 15 6 16 10

, , , 0

 4 7 9 11 12 4

12 9

8

s t

free



        





  

        

     

        



        

       

       



 (22)

The result after solving LP model (22) can be derived with the following:

$eff.DEA

[1] 1.328571

The peers (j) after solving LP model (22) are the following:

 L1 L2 L3 L5 L6 L8

[9,] 0.3333333 0 0.00000000 0.5 0.1666667 0.0000000

As there is a restriction in the number of DMUs that are needed for the technique to maintain

the discrimination power, only one model is solved for 1 input and 2 outputs due to minimum

DMU formula   max , 3n m n m     .

20

The second information is derived after running stDEA function is spatio-temporal efficiency

($eff.stDEA). The results present the efficiency for different weights in temporal and spatial

dimension. It can be seen that the efficiency changes as per time and space as the single past

DMU that is selected, changes when temporal dimension is weighted in the range [0.83, 1].

The spatiotemporal efficiency for weights in the region [0, 0.82] in spatial dimension is 1.125

whereas the spatiotemporal efficiency for weight in the range [0.83, 1] is 1.1.

$eff.stDEA

 [1] 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [12] 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [19] 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [30] 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [37] 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [48] 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [55] 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [66] 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [73] 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125

 [84] 1.100 1.100 1.100 1.100 1.100 1.100 1.100

 [91] 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100

The DMUs that are selected for each weight in time or space is presented with the following

“triangle” plot (Figure 9). The reference set of DMU(9) presented in Figure 9, shows the

reference set. In MILP model (8) – (13), the peers (j) of each DMU are replace by binary

variables l for selection of each past peer, based on spatial or temporal dimension. Due to

constraint 1
l l
  , a single past peer is selected. From Figure 9, for DMU(9), it can be

seen that 8 1  for 0 0.82spW  (0.18 1tW ) while 5 1  for 0.82 1spW 

(0 0.18tW ).

21

Figure 9: Spatiotemporal reference set for DMU(9).

4. Profiling analysis

To assess the performance of the stDea package that has been developed, 104 successive

versions of the Eureka project
2
 have been selected. Eureka is an open-source REST

(Representational State Transfer) based service developed by Netflix for load balancing

middle-tier servers at Amazon Web Services (AWS) Cloud. Each version of this software

system is considered as a distinct DMU and the goal is to apply the Spatio-Temporal DEA

approach to find for each selected version the most appropriate past peer.

For the analysis of each temporal DMU, selected software metrics (i.e. measures that quantify

particular aspects of design quality in a software system) have been used as outputs. In

particular, we have used the Coupling Between Objects (CBO), Lack of Cohesion (LCOM),

and Weighted Methods per Class (WMC)[31]. These metrics quantify the coupling between

software modules, the cohesion of each module and the complexity of each module,

respectively. The evolution of these metrics for the examined software versions is shown in

Figure 10. As already explained, for the sake of simplicity, a constant input value of 1 has

been set to all DMUs.

2
Lang ML and DT. RGtk2: R bindings for Gtk 2.8.0 and above. 2014.

22

a

b

c

Figure 10:Metrics multiple for versions of Eureka project: a) CBO, b) LCOM, c) WMC

The results of the profiling are summarized in Table 6. To organize the results, we assume that

an interested research would like to assess the performance of the software system at distinct

time points, namely at the 20th, 40th, 60th, 80th and 104th version. (We note that when a

version of the system is treated as a DMU under investigation, only its past versions are

available. For example, for the 20th version only versions 1..20 are available).

The second and third columns list the number of LP and MILP problems solved and the fourth

column indicates the corresponding CPU time. The experiments have been conducted on a

desktop computer running on an Intel Core 2 Duo E8400 @ 3.00 GHz with 4 GB DDR2

RAM.

23

Table 4: Profiling information for each experiment set

Number of DMUs Number of

LP models

Number of MILP

models

Time elapsed

(CPU sec)

20 8 909 1.715

40 28 2929 6.709

60 48 4949 13.382

80 68 6969 21.679

104 76 9393 33.879

The last column of Table 6 corresponds to the average time elapsed for solving the LP and

MILP models. Extending the results, a generic formula for the number of LP and MILP

models solved is the following:

LP I   (23)

     
1 1

1 1 max ,3 1 1MILP I I n m n m
h h


   

               
    (24)

In (22), I stands for the number of DMUs to be analyzed (i.e. versions of the DMU under

study), while the number of LP models solved (# LP) equals to the number of DMUs minus

the minimum number of DMUs () that is needed for the DEA technique to provide robust

results. In (23), the number of MILP models solved (# MILP) is a function of the number of

DMUs (I),  , inputs (n), outputs (m) and the incremental step based on which weights

assigned to temporal and spatial dimension increase (h). The value of h is assumed in this

case to be equal to 0.01.

5. Conclusions

This study was an implementation of R language in the case of evolving systems, such as

computer software. It is a fact that, classical DEA models fail to assess the units’ efficiency in

terms of the temporal distance between units. This shortfall is attributed to the fact that in

classical DEA models, the construction of the reference set is not possible for units that are

temporally arranged since it is based only on the spatial distance of units from the efficient

frontier. In this context, different versions of a software product are assessed based on metrics

that characterize the efficiency of each version. In this paper, the Spatio-Temporal efficiency

24

is examined through a two phase DEA model. Firstly, an iterative DEA model is solved for all

the examined DMUs. The output of this phase is the reference set of a DMU containing only

past units. Based on that reference set, the two types of information are transferred into spatial

resemblance (λ values) and temporal difference (difference in time of the DMU under

investigation with the units that form its reference set). Using this information, a new DEA

MO-MILP model is formed, weighting spatial and temporal dimensions, which extracts the

Spatio-Temporal efficiency for different combinations of weights assigned to each dimension.

Based on this model, Spatio-Temporal projections are also provided based on the derived

Spatio-Temporal efficiency. The model selects only a unique past peer for each DMU under

investigation for any combination of weights.

The methodology has been modeled using R language, which is a platform that supports a

wide variety of functions. The R package, called stDEA, can provide information and

graphical illustration for each DMU and has no limitations concerning the number of DMUs,

as well as the number of inputs and outputs. The applicability of the proposed methodology is

demonstrated through a real life example from the discipline of software engineering. The

evolution of Eureka project has been analyzed with stDEA R package, taking into account 3

metrics from 104 versions of the software. Based on this real life example, a profiling analysis

of stDEA R package is also conducted, providing information on the number of problems

solved and the CPU time elapsed.

25

References

[1] Färe R, Grosskopf S. Dynamic Production Models. Intertemporal Prod. Front. Dyn. DEA,

Springer; 1996, p. 151–88.

[2] Emrouznejad A, Thanassoulis E. Measurement of productivity index with dynamic DEA.

Int J Oper Res 2010;8:247–60.

[3] Ouellette P, Vierstraete V. Technological change and efficiency in the presence of quasi-

fixed inputs: A DEA application to the hospital sector. Eur J Oper Res 2004;154:755–63.

doi:10.1016/S0377-2217(02)00712-9.

[4] Prior D. Efficiency and total quality management in health care organizations: A dynamic

frontier approach. Ann Oper Res 2006;145:281–99.

[5] Nemoto J, Goto M. Measurement of dynamic efficiency in production: an application of

data envelopment analysis to Japanese electric utilities. J Product Anal 2003;19:191–210.

[6] Banker RD, Slaughter SA. A field study of scale economies in software maintenance.

Manag Sci 1997;43:1709–25.

[7] Inman OL, Anderson TR, Harmon RR. Predicting U.S. jet fighter aircraft introductions

from 1944 to 1982: A dogfight between regression and TFDEA. Technol Forecast Soc

Change 2006;73:1178–87. doi:10.1016/j.techfore.2006.05.013.

[8] Borchers ST and HW. CRAN Task View: Optimization and Mathematical Programming

2014.

[9] Konis K, others. lpSolveAPI: R Interface for lp_solve Version 5.5. 2.0, R Package Version

5.5. 2.0-5. 2011.

[10] Hornik K, Meyer D, Theussl S. ROI: R Optimization Infrastructure. 2013.

[11] Canty A, Ripley B. boot: Bootstrap R (S-Plus) functions. R Package Version 2012;1.

[12] Berkelaar M, others. lpSolve: Interface to Lp solve v. 5.5 to solve linear or integer

programs. R Package Version 2007;5.

[13] Henningsen A. linprog: Linear Programming. Optim R Package Version 09-0 2010.

[14] Turlach BA, Weingessel A. quadprog: Functions to Solve Quadratic Programming

Problems. R Package Version 1.5-3. 2010.

[15] Varadhan R, Gilbert P. BB: An R package for solving a large system of nonlinear

equations and for optimizing a high-dimensional nonlinear objective function. J Stat

Softw 2009;32:1–26.

[16] Rudy J, Rudy MJ, Liu S, Matrix D. Package “CLSOCP” n.d.

[17] Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab–Kernel Methods. R Package

Version 06-2 URL HttpCRAN R-Proj Org 2005.

[18] Soetaert K, Van den Meersche K, van Oevelen D. limSolve: Solving linear inverse

models. R Package Version 2009;1.

[19] Geyer CJ, Meeden GD. R package rcdd (C Double Description for R), version 1.1.

Incorporates code from (4). http://http://www. stat. umn. edu/geyer/rcdd; 2008.

[20] Hayfield T, Racine JS. Nonparametric econometrics: The np package. J Stat Softw

2008;27:1–32.

[21] Bogetoft P, Otto L. Benchmarking with DEA, SFA, and R. New York: Springer; 2011.

[22] Wilson PW. FEAR: A software package for frontier efficiency analysis with R.

Socioecon Plann Sci 2008;42:247–54.

[23] Wilson PW. FEAR: A software package for frontier efficiency analysis with R.

Socioecon Plann Sci 2008;42:247–54.

[24] Oh D, Oh MD. Package “nonparaeff” 2013.

[25] Simm J, Besstremyannaya G, Simm MJ. Package “rDEA” 2014.

[26] Shott T, Lim D-J. TFDEA: Technology Forecasting using DEA. 2015.

[27] Team RC, others. R: A language and environment for statistical computing 2012.

26

[28] Petridis, K., Chatzigeorgiou, A., & Stiakakis, E. (2016). A spatiotemporal Data

Envelopment Analysis (ST DEA) approach: the need to assess evolving units. Annals of

Operations Research, 238(1-2), 475-496.

[29] The R Project for Statistical Computing n.d. http://www.r-project.org/ (accessed

February 26, 2015).

[30] Netflix/eureka. GitHub n.d. https://github.com/Netflix/eureka (accessed March 13,

2015).

[31] Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Trans

Softw Eng 1994;20:476–93. doi:10.1109/32.295895.

