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Abstract. Agent-based Computational Economics (ACE) is an area
that has gained significant attention, since it offers the possibility to
model economic phenomena in a more fine-grained manner than other
approaches. One such phenomenon is “bank panic” in which the term
“panic” implies the existence of emotional bias towards to the sudden
withdrawal of deposits from financial institutions (simultaneous bank
runs). However, research towards complex emotional agents in ACE has
not been extensively conducted. The paper employs a formal state-based
model enhanced with explicit emotional states, mood and personality
characteristics in order to describe the agents behavior. A NetLogo sim-
ulation of a multi-agent system in a limited economic environment is
attempted in order to study the effects of emotions, emotion contagion
and the role of various players in the genesis of a bank panic crisis. The
aim is to investigate further whether such agent models that are already
used in other areas, such as evacuation simulation, could also provide a
better insight on the evolution of such economic phenomena.

Keywords: Agent Based Simulation · Emotional agents · Agent-based
Computational Economics · Bank Runs

1 Introduction

Agent based Computational Economics (ACE) is a thriving area of research, of-
fering the potential to model economic phenomena. Existing conventional meth-
ods are based on mathematical models, which describe a set of definitions and
assumptions that lead to proofs of theorems. A number of economists consider
such models too restrictive to address real problems and thus moved towards
other computational alternatives [13]. ACE modelling has been applied to the
same problems, for instance how an economic system reaches an equilibrium.
ACE conveys a methodological novelty since the models consist of relatively
simple agents that collectively exhibit rich behaviour with the overall outcome
naturally emerging as a result of their interactions. Thus, agent-based modeling
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enables the development of macroeconomic models using a bottom up approach
[28].

ACE can be applied to a broad spectrum of micro or macro economic systems,
where agents can be represented as interactive goal-directed entities, i.e. BDI
agents. However, in many economics applications, BDI agents need to be infused
with emotions that may affect their reasoning and decision-making. Emotions
affect an agent’s goals, hence affecting their actions [18], that is common in the
real world. In addition, incorporating human aspects such as personality and
emotion leads to more believable simulations [17].

The paper aims to investigate further whether emotional agent models, used
in other areas such as evacuation simulation, could provide a better insight on
the evolution of economic phenomena. Our motivation was to demonstrate the
potential of ACE in an emotionally intensive economic phenomenon, namely a
bank panic. Thus, the main contribution of the paper is an agent model and
the corresponding simulation based on a formal method that supports emotions
including emotion contagion.

The rest of the paper is structured as follows. Section 2 presents an overview
of the related work in ACE, bank runs and emotional agents; Section 3 provides
a brief description of the emotions X-Machine model, which was used as the
basis to specify the behaviour of agents in the simulation environment. Section
4 describes the agent model used, including the emotional inputs and how they
affect agent behaviour, with Section 5 presenting the preliminary experimental
results. Finally, Section 6 concludes the paper.

2 Background and Related Work

2.1 Emotions

Emotions are meant to be short, short term states of mind the individual pas-
sively experiences instigated by events or objects [7]. Mood, on the other hand,
is used to describe a long standing emotional state. In psychological studies, the
emotions that influence the deliberation and practical reasoning of an agent are
considered as heuristics for preventing excessive deliberation [4]. Emotions af-
fect an agent’s goals, hence affecting their actions. Emotional effects on goals can
manifest via reordering existing goals, or by introducing completely new goals.
The goals’ success or failure can affect emotional states.

In addition to emotions and moods, personality is an important aspect which
affects perception and how quickly the emotional state changes. The final factor
that is of great importance to communication intensive socioeconomic environ-
ments is contagion, i.e. how an agent’s emotional state affect another agent’s
emotional state. All these integrated, make an individual’s behaviour completely
different from pure rational behaviour in the absence of emotions.

Agents can be potentially enhanced by infusing emotions in their function-
ality leading to Emotional-BDI agents, i.e. agents whose behaviour is guided
not only by beliefs, desires and intentions, but also by the influence of emotions



(such as fear, anxiety etc.) in reasoning and decision-making. The existing for-
mal systems for rational agents [20] do not allow a straightforward representation
of emotions. However, they have properties which can be inherited in order to
properly model Emotional-BDI agents [18].

2.2 Emotional agents in Socioeconomic scenarios

Several models for emotions in agent systems have been reported. ESCAPES
is a multi-agent simulation tool, that reproduces phenomena on evacuation sce-
narios, such as an escape scenario at the International Terminal of Los Angeles
International Airport [29].

Elsewhere, a Group Decision Support System was developed focused on the
negotiation process improvement through argumentation, by using the affecting
characteristics of the involved parties [25]. The system uses both personality
and emotional inputs in order to select the best arguments to reach a decision.
The results revealed that aggressive agents achieve more preferred solutions than
negotiator agents.

In [1], another agent based model of the financial domain was introduced;
leveraged investors (banks) that used a Value-at-Risk constraint. This constraint
was established on historical market data (e.g asset prices) to predict the port-
folio risk. The model took under consideration pro-cyclical leverage (low risk
results in high leverage). It was shown that it resulted in endogenous irregular
oscillations. This means that when the stock prices were increased the market
collapsed. When the leverage was regulated to correct the risk (using a counter-
cyclical leverage policy) prices reached a plateau which stabilized the system.

2.3 Bank runs

A bank run is defined as the situation “where depositors withdraw their deposits
from banks because of fear of the safety of their deposits” [12]. The term “bank
panic” is often associated with the existence of emotional bias towards a sudden
simultaneous withdrawal of deposits from different financial institutions (simul-
taneous bank runs). Bank runs often appeared in the course of time, such as
the Great Depression in the US. The 2007 global financial crisis, has also been
characterized by bank runs internationally (e.g., Countrywide Bank, IndyMac
Bank, Northern Rock Bank, etc.). To avoid bank runs, several actions have been
taken, such as increasing deposit insurance in bank of the US and UK [12].

There have been several approaches in simulating bank run scenarios with
ACE. The frequency of occurrence in bank runs has been studied in [27], where
panic is spread among agents that focus on the neighborhood influence. The as-
sumption is that different equilibria are likely to be established in different neigh-
bourhoods. The model included synchronization effects which generate bank runs
and is based on three important interacting factors which influence the patient
agents’ strategies (withdraw or wait), the proportion of patient agents (those
that wait), the activation threshold and the interaction neighborhood of agents
[6]. A similar approach with regards to focusing on neighborhood influence is



taken in [26], which showed that the number of bank run incidents decreases
with the size of the banks, i.e. number of clients. The work reported in [8]
focuses on rumors spreading. The model described is predicated on dynamic
rumor-based bank runs with endogenous information acquisition by incorporat-
ing bank liquidity uncertainties into a asynchronous awareness framework. The
liquidity event triggers a rumor spread and therefore the bank can be exposed
to a bank withdrawal. In such a case, depositors can withdraw or deposit at
any time for a tiny low transaction cost, or wait so as to totally withdraw, then
redeposit if the bank survives. The risk of collapse of a financial system has been
studied in [19], which is calculated through an agent based model that suits the
microeconomic framework for this economic analysis. In the model, there are
heterogeneous agents that interact through two key channels: direct and infor-
mational contagion. Results showed that when bank runs are associated with
contagion, then an increase in interconnectedness worsens the outcomes. In [11],
the probability of bank runs is reported. Even when the economy is thriving,
they proposed that agents’ behaviour is influenced by non-favorable news and
that can cause a bank run. Agents are modelled as rational or irrational with a
wide range of learning models. Irrational thinking increases the chances of the
system to collapse. An agent-based model for banking analysis is developed in
[3]. The model includes agents types (savers, loans, and banks) which inhabit a
world divided into different regions. Results showed that banks which are more
vulnerable to credit shocks are also more likely to be under capitalized and even-
tually have to rely on the European Union’s Emergency Liquidity Assistance.

Finally, agents behaviour in simulations can be predicted more accurately if
artificial neural networks are utilised [11]. Taking into consideration the multi
factorial facets of bank runs, the results demonstrate that if the agents are aware
of the whole picture of market then bank run incidents only occur when the
economy is at an extremely poor state. There exist a plethora of studies related
to economic analysis of bank runs but they fall outside the context of this paper
[12, 16, 5, 2].

The novelty of the current work is attributed to three factors: (a) our model is
not based on a standard definition of a neighbourhood, e.g. lattice, but it adopts
a more dynamic notion of neighborhood, one that depends on the spatial char-
acteristics of the simulation platform, (b) our agents do not attempt to liquidify
all their assets from the bank but instead their intention is to have enough cash
to make them feel secure, i.e. we consider retail depositors agents relying on the
assumption that deposit insurance is guaranteed by the government supervision
of banks and (c) agents follow relatively complex behaviours and can be easily
extended.

3 Modelling Agents using X-Machines & Emotions

3.1 A formal model of agents

X-Machines [9] are finite state machines that offer an elegant way to compact
states Q by allowing processing of a globally available memory structure M . In



addition, transitions F between states are each labeled by a function φ (where
φ ∈ Φ) that is triggered by inputs Σ and not just input values as in simple
automata, i.e. F : Q×Φ → 2Q. Functions φ also take into account the memory
values, i.e. φ : Σ×M → Γ×M , they generate an output and change the memory
values. These characteristics give X-Machines some important advantages for
formal agent modeling: (a) models have less states Q, (b) states, beliefs, goals
etc. are nicely represented as Q and M ,(c) behaviors map well to transition
functions φ and (d) the formal model facilitate transformation to executable
code but also is supported by a well established theory for complete testing. The
formal definition of X-Machines can be found at [9].

In Figure 1 we show a partial X-Machine model of a rational (emotionless)
agent. In this model, three states are depicted (“at the bank”, “at store” and “at
home”), four functions-behaviors (“withdraw some cash”, “withdraw all cash”,
“go to store” and “go home”) and a partial memory structure containing in-
formation that will trigger any behavior. For instance, in this particular case,
“withdraw some cash” is triggered, which will allow the agent to get the appro-
priate amount of cash in order to go to the store.

Fig. 1. A partial X-Machine model of a rational agent

3.2 A formal model of emotions

In order to facilitate a simulation of emotional agents, we adopt the formal model
of emotions that was presented in [15], extended with a contagion mechanism
[23], albeit with minor modifications. In the following, we briefly outline the
approach reported in the previously mentioned work for completeness.

The representation of emotions follows the dimensional approach [21, 22], i.e.
emotions are represented in a two dimensional space [15]. Thus, emotion is a tuple
(ve, ae), where ve ∈ [−1, 1] is the valence measure, that is how “pleasurable”
it is to experience an emotional state and ae ∈ [−1, 1] the arousal measure,
representing the likelihood to take some action in the specific state. The tuple
defines the emotional state E of the agent and will be referred to as the emotional
state vector of the agent.



Emotional states are subject to change due to percepts, emotion contagion
(i.e. external stimuli) and mood. Thus, there are three stages in computing the
overall emotional change in each execution cycle. They all share a similar mech-
anism for computing the resulting emotional state. The main characteristics of
the mechanism is that the emotional state vector shifts closer to the input vector
associated with either external stimuli or mood, and the rate of change is regu-
lated by personality traits of the agent. The latter allows to represent population
diversity in the simulation, i.e. model the fact that some agents might be more
receptive to percepts than others.

The emotional effect of a percept is represented by a vector (vprc, aprc), i.e.
each agent percept is associated with an input emotion vector. Given an emo-
tional state (ve, ae) the resulting vector (v′e, a

′
e) is given in Equation 1.

(v′e, a
′
e) =

(
ve +

f2
p ·∆v

1 + e−fp·(|∆v|−1)
, ae +

f2
p ·∆a

1 + e−fp·(|∆a|−1)

)
(1)

where ∆v = vprc − ve and ∆a = aprc − ae. The personality factor fp ∈ (0, 1]
determines how quickly the emotion vector converges to an emotional percept.

The contagion model described in [23] is inspired by the ASCRIBE model
[10], although simpler, and adapted to the vector representation of emotions.
Emotional contagion is treated as a form of perception: agents perceive the
emotions of other agents in their proximity. Thus, emotion contagion involves
computing an overall emotion vector (vcnt, acnt) based on the emotions of neigh-
boring agents. In order to define the neighbourhood of each agent, it is assumed
that agents inhabit a two dimensional world. However, extending the definitions
to a three dimensional world is straightforward.

In order to model the spatial characteristics of such a perception, each agent
has an influence-crowd (ICi) that consists of all other agents within a radius
dinf , i.e. ICi = {Agentj : d(Posi, Posj) ≤ dinf}.

Contagion strength wij (Eq. 2) determines the strength by which an agent j
(j ∈ ICi), influences agent i and depends on the expressiveness of agent j, exprj ,
a measure of how much the agent manifests its emotions, and the channel, that
models that closer agents have a larger effect to the emotions of the agent i.

wij = exprj ·
(
1− d(Posi, Posj)

dinf

)
︸ ︷︷ ︸

channelij

(2)

The overall contagion strength wi of agent i by all agents in its influence is:

wi =
∑

j∈ICi

wij (3)

To form the emotional percept due to contagion (vcnt, acnt), each emotion
contagion vector coordinate is defined as the sum of the corresponding emotion
vector coordinates of agents in the influence crowd multiplied by the normalised
contagion strength (wij/wi):



(vcnt, acnt) =

( ∑
j∈ICi

(wij/wi) · vj ,
∑

j∈ICi

(wij/wi) · aj
)

(4)

The vector (vcnt, acnt) is treated in a similar manner as other percepts (Eq.
1), however, the change now depends on the on the openness (opni) of the agent
i, i.e. how perceptive the agent is to other agents’ emotions, and is given in
Equation 5.

(v′′e , a
′′
e ) =

(
v′e +

opn2
i ·∆vcnt

1 + e−opni·(|∆vcnt|−1)
, a′e +

opn2
i ·∆acnt

1 + e−opni·(|∆acnt|−1)

)
(5)

where ∆vcnt = vcnt − v′e and ∆acnt = acnt − a′e, where (v′e, a
′
e) is the emotion

vector computed after the change due to perception (Eq 1).
Finally, the emotional state of agent is affected by its mood. Mood describes

the long term emotional state of the agent, i.e that state in which the agent
will eventually settle given that no external stimuli are present. Thus, mood
provides the mechanism to model that the effects of a single emotion percept
are reduced over time. Change due to mood is given by Eq. 6, where mood is
the vector (vm, va), ∆vme = vm − v′′e and ∆ame = am − a′′e , (v

′′
e , a

′′
e ) the emotion

vector computed in Equation 5 and d is a discount factor that depends on the
simulation model. The vector (vfe , a

f
e ) is the new emotional state of the agent.

(vfe , a
f
e ) =

(
v′′e +

d · f3
p ·∆vme

1 + e−fp·(|∆vme|−1)
, a′′e +

d · f3
p ·∆ame

1 + e−fp·(|∆ame|−1)

)
(6)

3.3 A formal model of emotional agents

The emotional model described above is embedded in an X-Machine model re-
sulting in Emotional X-Machines eX . The additional component in this model
is an emotional structure formalisation E that consists of emotional states eQ,
moods M, personality traits P and a contagion type mechanism C. In addi-
tion, there exist emotions revision functions eφ that given an emotional state,
a mood, a contagion model, a personality trait and a memory tuple, it returns
a new emotional state. Finally, inputs go through a revision function ρσ which
given an input transforms it into an emotional percept taking into account the
current emotional state, the mood and the personality. The formal definition
of Emotional X-Machines can be found at [14]. It should be noted that transi-
tions functions of the original state machine (behaviors) take into account the
emotional structure E.

The enhanced model (Emotional X-Machines) allows the description of the
behavior of emotional agents which are developed on top of rational agents
(simple X-Machines), offering a natural decoupling of the two types. For instance,
consider again the partial model of Figure 1 now extended with the emotional
structure as depicted in Figure 2. Under certain emotional state (e.g. panic due



to rumors of financial crisis), the behavior which should be triggered is now
“withdraw all cash” and not “withdraw some cash” as it was in the original
case.

Fig. 2. A partial Emotional X-Machine model of an emotional agent

Emotional X-Machines have been used in a number of simulations involving
evacuation scenarios [24]. In this work we focus on economic phenomena, as
described in Section 4.

4 Modelling Bank Runs

Emotion X-Machines allow for a much richer bank depositor model, than those
that have been explored in the literature. The model presented takes advan-
tage of spatial characteristics of agent simulation platforms, since agents are
expected to move in a two dimensional space, i.e. the world they inhabit and
interact with. This presents the significant advantage of having agents interact-
ing with a variable neighborhood, i.e. the underlying agent interaction links vary
with respect to where the agent is located. More specifically, being at different
locations during a single 24 hours simulation day, an agent interacts with “co-
workers” sharing the same workplace, with a different set of agents in its home
neighborhood, or with other agents located in a shopping area. Although the
first two sets are invariant during the simulation, since they are fixed at initial-
isation, the third set allows the agent to form ephemeral links with agents that
happen to visit the store at the same time. By interaction in this case, we refer
to emotion contagion, i.e. the emotional change due the other agents included
in an agent’s influence crowd ICi, which is computed dynamically in each time
point.



4.1 Environment Setup

Agent movement also allows the opportunity to model the affect of influencers
in the simulated world, for instance media that spread rumors regarding the
imminent bank failure.

By allowing influencers to “move”, they interact for short periods with differ-
ent sets of agents, thus providing a varying perceptual input to the latter. This,
we believe, leads to a better modelling of the impact that influencers have to
the general population. For instance, in order to be affected by public media an
agent could follow some of their broadcasts; since this is not expected to happen
continuously during the course of a day, a model should be able to accommodate
such an interaction. Additionally, not all agents follow the same media, thus one
could model the impact of a highly influential news channels by increasing its
number of influencers.

The current model has a very fine grain representation of time, with 15 min
corresponding to a single simulation step. Under this assumption, agents stay at
their working place for 8 hours a day and commute to work for 45 mins (please
see Section 4.2). Such a fine grain simulation, facilitates experimentation with
the evolution of phenomena that occur rather rapidly.

The model simulates a limited part of the economic environment: we con-
sider only retail banks, a market (shops), workplaces, houses, influencers and
individual depositors. In this model we are only interested in cash flow and we
do not model transactions that occur with electronic forms of money (i.e. credit
cards). This restriction of the model was due to the fact that we are concerned
about bank panic, i.e. a significant amount of banks failing, a problem that can
manifest when depositors withdraw cash for safe keeping at their home. The
model has entities that represent:

– Banks: Each bank has an initial amount of retail depositor savings (see be-
low) and maintains a 10% fractional reserve in cash. Each retail depositor
maintains an account in one of the available banks. Each bank maintains
a number of ATMs that “spread” its presence in the environment. It can
serve a limited number of customers in each step, thus queues can be formed
outside banks (a phenomenon common in bank runs).

– Shops stand for the marketplace. Shops provide goods to individuals (for the
obvious exchange of cash) and at the end of each day deposit their profits to
the banks, thus contributing to maintaining adequate cash levels of banks.

– Influencers: are agents that move randomly in the experiment world, and
”spread rumors” regarding bank solvency. They act as perceptual input to
bank depositors, i.e. the latter perceive their presence and form the corre-
sponding emotional percept (see Section 4.2).

4.2 Agent Parameters Setup

The main actors are the Retail Depositors and we are going to refer to the
latter as the agents hereafter. The latter have a number of parameters, stored
as memory values in the corresponding X-Machine:



– savings in one of the banks, that is initially set to three times the agent’s
salary,

– the current amount of cash in their Wallet (Wi),
– a desired level of cash the agent “feels” safe to have, i.e. its Cash-Level (Cli),

– a ratio of Wallet/Cash-Level (r
w/cl
i ) that determines when the agent needs

to withdraw money from the bank.

Obviously the ratio r
w/cl
i determines the amount of cash that exist off the system,

i.e. cash held outside banks. We define the 10% of their salary as the Original
Cash Level (OCi) and initially Cli = Wi = OCi.

Agents follow a daily cycle, that consists of an 8-hour working day, after
which they return home. When their goods level is low, they visit the market,

and when the level of cash in their wallet drops below the threshold r
w/cl
i · Cli

(Wi < r
w/cl
i · Cli), they visit the bank to withdraw money. Agents do not move

between locations instantly, but commute so that each transportation requires
are least three time steps (45 mins): this allows agent to perceive the status of the
environment, as for instance whether a queue is formed in front of a bank, etc.
The behavioural model outlined above, was encoded as an emotions X-Machine,
with states and transitions depicted in Figure 3.

Fig. 3. The Agent state transition X-Machine Model

Following the description of Section 3, a subset of the agent percepts is
mapped to emotions, i.e. they produce a change to the emotional state of the
agent. In the current model, three percepts belong to this subset:

– Perception of an influencer in the agent’s proximity, which is mapped to the
emotional percept Eifl = (−0.5, 0.7). In the model ifluencers spread negative
rumors regarding the solvency of banks and thus cause a negative affect on



the agent’s valence (value -0.5) and at the same time urge agents to withdraw
money from the failing banks (arousal value 0.7).

– Perception of any queues in a bank, mapped to EbankQ = (−0.5, 0.8). Such
a perception confirms the negative valence of the emotion attributed to the
influencer and further alerts the agent to take some action w.r.t. money
withdraw (arousal 0.8).

– Finally, perception of agent’s bank failure is mapped to the emotion EbankF =
(−1, 1), i.e. the minimum valence and the maximum arousal value, i.e. what
could be described as panic.

The above emotional percepts lead to changes to the emotional state of the
agent, which affect in the current model, memory values of the X-machine. In
particular, the two dimensions of the emotion state vector affect the Cash-Level-

Cli) and a ratio Wallet/Cash-Level (r
w/cl
i ) of the agent.

Equation 7 shows how the cash level changes with respect to the arousal of
the agent. Since arousal measures the incentive of the agent to take action, i.e.
withdraw money from the bank, an increase in the arousal coordinate of the
emotion vector leads to an increased cash level. As shown in Equation 7, we
define the latter to be at most 5 times the original OCi, i.e. at most 50% of their
monthly salary.

Cli(ae) =

{
OCi : ae ≤ 0
(1 + 5 · ae) ·OCi : ae > 0

(7)

Valence controls the Wallet/Cash-Level ratio of agents. The rationale behind
this choice is that in unpleasant economic situations, agents feel safer if they
have more cash in their disposal. Thus, Equation 8 provides the ratio change
with respect to value (obviously lower valence leads to a higher ratio).

r
w/cl
i = −0.25 · ve + 0.75 (8)

As a final note, the model includes a consumption rate that decreases the
level of goods in all agents in every simulation step. The section that follows
(Sec. 5) presents the results of our experiments.

5 Experimental Results

We implemented the model3 using NetLogo [30]. According to our experience,
NetLogo can successfully deal with such simulations, even at large scale. We
divided the experiments into two phases: (a) experiments in order to calibrate
the model, and (b) experiments to show the effect that influencers have on the
population. The calibration phase is required to setup appropriate parameters
in a state where an equilibrium is achieved, far from any potential bank failures.
These parameters are then used in the second phase.

The number of agents is set to 250, the number of banks to 5, with 10 ATMs
and 15 workplaces in total. The salary is set to 600 monetary units for all agents.

3 The code can by found at https://github.com/isakellariou/NetLogoBankRun



The original cash level for each agent was set to 10% of the salary. As mentioned,
each agent has three times its salary as savings in one of the banks minus its
cash level.

The personality characteristics of the agents are as follows. The personality
factor fp (Eq. 1), ranges between 0.5 and 0.75, while expressiveness expri (Eq.
2) and openness opni (Eq. 5) have a minimum value of 0.2 with the maximum
being 0.4. Agents receive randomly a value within the range mentioned above
for each parameter.

5.1 Calibration

In the first set of experiments related to calibration, we expect that the system is
in equilibrium, i.e. no bank run event occurs. We set the maximum time period
for the experiment to 25 days. The number of influencers is set to 0, meaning
that no “bad news” on bank solvency is spread within the simulation world.
We test the environment for two cases. The first concerns experiments with no
contagion, and as shown in Fig 4, the system is in equilibrium, i.e. bank reserves
are well over the amount of cash desired by the agents. The fluctuations observed
are attributed to the fact that agents withdraw money from the bank to cover
the needs in market goods by paying in cash, which at the end of each simulation
day are deposited by the shops back to the bank. Almost identical results occur
for the case of agents interacting under the contagion model described in Section
3. Values reported in Figure 4 are the average values over a set of 10 experiments.

Fig. 4. Experimental Results during calibration (No Contagion and No Influencers).



5.2 The Effect of Influencers

Having a set of initial conditions that form an equilibrium, the next set of exper-
iments involves increasing the number of influencers in the simulation world. We
consider this number to reflect how strong rumors regarding bank failure are,
thus we vary the number of influencers from 5 to 15. Table 1 summarizes the
results over a set of 12 runs for each combination of influencers and contagion
model, with the column “Failure Rate”, reporting the number of experiments
over those 12 runs where all banks failed, i.e. the manifestation of the “bank
panic”. For each set of runs, the column “Simulation Step” reports the time
point when the last bank failed with the associated standard deviation. Results,
as expected, confirm the belief that stronger bank failure rumors increase likeli-
hood that banks will fail.

Table 1. Bank Failures w.r.t. the number of influencers

No Contagion Mechanism with Emotion Contagion

Influencers Failure Rate Sim. Step StdDev Failure Rate Sim. Step StdDev

5 25 % 1388.33 414.31 0 % - -
6 33.3 % 1370.25 679.02 16.7 % 1271.00 170
7 75 % 1088.22 314.50 33.3 % 1136.50 158.86
8 91.7 % 816.64 171.33 50 % 762.83 406.25
9 100 % 581.33 58.38 66.7 % 848.50 376.51
10 100 % 423.50 174.53 83.3 % 782.50 491.01
11 100 % 393.75 37.01 100 % 421.83 37.71
12 100 % 293.67 63.88 100 % 434.08 98.05
13 100 % 309.25 117.43 100 % 343.33 147.51
14 100 % 221.92 39.37 100 % 301.67 51.53
15 100 % 243.83 44.64 100 % 269.67 160.23

It is interesting to note that in simulations using the contagion model, the
number of total failures (all banks fail) is less compared to no contagion mecha-
nism simulations, and at a much slower rate. Although this appears counter in-
tuitive, it can be explained by the fact that, interaction with neighboring agents
reduces the effect to the population, at least in the early stages of spreading
rumors, i.e. the effects of influencers are reduced due to interaction among in-
dividuals. Recall that according to the emotions model (Section 3), emotions
induced by influencers and contagion are both treated as percepts, however with
a different factor (personality factor vs. openness).

Figure 5 presents the behaviour of agents under emotion contagion, when
the number of influencers is 15. Again values reported are averaged over all
experimental runs. Note that the desired level of cash increases rather rapidly
and thus this leads eventually to banks failing. The steep rise of the desired cash
level at the final steps of the simulation is attributed to the fact that once agents



Fig. 5. Experimental Results with the Emotion Contagion Model and 15 Influencers.

learn that their bank has failed, they simply panic, spreading this emotion to
other members of the population.

Similar results can be observed in Figure 6, although the time it takes for
the banks to fail is much larger.

Fig. 6. Experimental Results with the Emotion Contagion Model and 10 Influencers.

It is also interesting to see the time relation between successive banks failures
in the world, since not all banks fail at the same time. Figure 7 shows, the average
time point of each bank failure in the corresponding set of experiments, i.e. the
time point when the first bank fails, the second, etc. As it can be easily observed,



experiments with no contagion (labeled as No-Cont) fail earlier compared to
those with contagion (labeled Contagion) for both cases of 10 and 15 influencers,
due to the same reasons reported earlier in the section. Another interesting point
to note is that when one bank fails, then others follow in a rather short time
period, again due to the fact that agents not being able to withdraw money are
pushed to a panic state, and this has an effect through the contagion mechanism
to all other agents.

Fig. 7. Bank failures vs. Simulation Time.

Although the present experimental evaluation of the bank run phenomenon
is preliminary, it is noticed that a relation exists between strong rumors of bank
failures incidents and actual bank panic. However, to reach a safe conclusion,
a more thorough experimental evaluation is required, one that might take into
account more parameters of the system, as for example no-retail depositors and
interbank links. However, given the expressive power of X-Machines, modelling
more agents, other influencers, global broadcasting models, is not expected to
present significant difficulties.

6 Conclusions

Incorporating human aspects such as personality and emotion can be an impor-
tant research direction for ACE, since it allows modelling of emotionally intensive
economic phenomena and can lead to more engaging and believable simulations.
The present work attempts, for the first time to the best of our knowledge, to
use a formal emotional agent model towards a simulation of bank panic, a phe-
nomenon that is often associated with the emotional state of involved stakehold-
ers. In that direction, the paper presents an emotions X-Machine model, together



with an implementation in a well known simulation platform. The experimental
results confirm that a relation exists between public opinion influencers (e.g.
public media) and the manifestation of such phenomena.

There are a number of research directions towards which this work can be
extended. These include a more in-depth analysis of the current experimental
model and adding different types of stakeholders in the domain, such as gov-
ernment officials. Finally, it is interesting to build a more complete model of
the banking system and include a wider range of economic activities, such as
inter-bank links and strategic investors. In all cases, we believe the introduction
of formal emotional agent modelling could provide ACE with a set of tools that
can increase its potential.
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