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ABSTRACT
Load balancing is a widely used technique that aims to enable large
network topologies, most commonly found in large data centers, to
handle the constantly varying load of service requests. Traditional
networks built on multi-vendor hardware and software present
significant difficulties in the efficient and flexible application of
load balancing techniques. Usually, solutions rely on high cost ded-
icated hardware and thus are used only for a subset of the tasks,
resulting to limited flexibility for network administrators. Soft-
ware Defined Networking (SDN) is a relatively new approach that
enables flexible network management solutions to a number of
problems, including that of efficient load-balancing. The key char-
acteristics of decoupled centralized network control combined with
programmability, allows the seamless integration of AI techniques
to network management. Toward this direction, this paper employs
deep reinforcement learning to effectively load balance requests
to services in a data center network, resulting to an approach that
is able to dynamically adapt to varying request loads, including
changes in the infrastructure’s capabilities. The proposed approach
is experimentally evaluated in order to support its feasibility, with
very promising results.
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• Computing methodologies → Reinforcement learning; •
Networks → Traffic engineering algorithms; Network simu-
lations.
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1 INTRODUCTION
Traditional network architectures are effectively distributed sys-
tems, in which control is spread among the nodes (i.e. routers,
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switches, etc.); hence each node has a very limited view and control
over the complete network, making solutions like load-balancing,
which require a global view of the network, very difficult to im-
plement. Often solutions resort to dedicated hardware that has a
very high cost and rather limited compatibility. In such a setting,
network management is a difficult task since changes need to be im-
plemented separately to each device, which in turn leads to higher
maintenance costs. In addition, traditional networks lack in flexibil-
ity and resource utilization, due to the fact that after the policies of
the network have been set it cannot dynamically allocate resources
responding to hardware or load changes. To overcome these ob-
stacles a new network architecture has emerged, most commonly
known as Software-Defined Networking (SDN). This new paradigm
decouples control from data devices (i.e. routers, switches) [8] and
centralizes it in the control plane, which can be seen as a single
logical point that has a complete view of the network and is respon-
sible for all the operational decision-making. The data-plane, that
consists only of data devices, is responsible for blindly executing
the commands sent by the control plane. Being software-based
means that this architecture can programmatically adapt to varying
requirements of the network and allocate resources dynamically
without the need of further human interference. In addition to its
flexibility, the SDN paradigm proved to yield lower maintenance
cost than traditional networks, because it does not require the
addition of new hardware in order to scale the network.

The term “Knowledge plane” was introduced in [3] by David
Clark, who argued that the Internet was in need of amechanism that
would enable it to use knowledge collected from what it was asked
to do by learning from it in order to take care of itself, going as far
as re-configuring its core. Unfortunately, very little effort has been
done towards this approach. The rise of SDN, offers the possibility
to use this principle in the Software-Defined Networking paradigm,
through an adaptation of the Knowledge plane that would comple-
ment the SDN infrastructure as proposed by A. Mestres et al. in [12].
In the current paper, following the principles proposed in that work,
we propose a Neural Network to take full control of the operational
decision-making in an SDN. The centralized control of the SDN, in
addition to network analytics run as an external program providing
a richer view of the system, enable the use of a Deep Reinforcement
Learning model, in order to gain knowledge on how the network
responds to different requirements and dynamically control the for-
mer through the control plane. The problem addressed in this work
is that of the maximum utilization of network resources through a
mechanism most commonly known as load balancing.

The rest of the paper is structured as follows. Section 2 offers the
necessary background by describing the basic principles of SDN,
KDN and Deep Learning. Section 3 presents the problem of load
balancing networks. Section 4 presents the Deep Neural Network
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used to achieve load balancing. The system architecture used to
conduct all experiments is briefly described in Section 5. Various
load balancing experiments conducted on a simulated SDNwith the
use of a Deep Q Learning model and compared against traditional
load balancing algorithms are described in Section 6. Finally, Section
7 concludes the paper and provides directions for future work.

2 BACKGROUND AND RELATEDWORK
The term Software-Defined Networking was introduced in an online
article by K. Greene [6] to refer to the work done in the context of a
new standard, namely OpenFlow [11], in Stanford University. This
new standard allowed access to flow tables, which are essentially a
set of rules that routers and switches abide to, in order to control
the network through software.

In the SDN architecture the control and data planes are decou-
pled, meaning that network devices assume only the role of for-
warding packets through the network based on the rules imposed
by the control plane. Thus, this architecture comprises of 3 distinct
planes [8]:

(1) the Management Plane, that consist of applications that send
instructions to the network such as firewalls, load balancers
etc.

(2) the Control Plane, i.e. the SDN controller that has complete
information on the state of the underlying network devices,
the links between these, as well as the flows that are set by
the management plane,

(3) the Data Plane, consisting of all the network devices (i.e.
routers, switches) responsible of forwarding the packets
throughout the system by executing instructions sent by
the controller.

The SDN controller is not a physical device but rather a soft-
ware application that resides in a dedicated server and has con-
trol over the network’s devices [5]. It is the core of a software
defined network, so any communication that occurs in the network
between applications and network devices must go through the
controller. In essence a controller manages the flow control to the
switches/routers/modems and the applications to deploy automated
intelligent networks. The controller communicates with the net-
work devices using a dedicated interface, most commonly one like
the OpenFlow protocol [11] that was released by the ONF (Open
Networking Foundation) in 2011 which allows the controller to
(re)configure the individual network devices and choose the most
efficient network path for an application.

The principle of Knowledge-Defined Networking was initially
presented by D. Clark et al. [3] as a construct that would have a
higher-level view over a network and be able to provide instruc-
tions as needed to all the other network elements. In addition to
the three distinct SDN planes, the KDN paradigm introduces the
Knowledge Plane (KP), which has the ability to integrate behavioral
models and reasoning processes oriented to decision making in
the SDN network [12]. The KP works by leveraging the amount of
information collected by the management and control planes and
uses it to learn how the underlying network behaves in various
situations. This enables it to make decisions based on Machine
Learning and, in some cases, automatically configure the network
to achieve optimal operation. Since SDN supports the concept of

automation, applying advanced operational methods based on Ma-
chine Learning and Artificial Intelligence is not a difficult task. The
centralized nature of SDN helps in applying such models, since
data-plane components are controlled by a single controller that
is aware of the current state of the network. The latter offers the
ability to an ML/AI model to decide on the network’s operational
parameters based on the requirements or even the limitations of the
current network state, i.e. the state of servers, devices and links in
terms of load, bandwidth, etc. This can eventually lead to self-driven
networks that require little to almost non continuous maintenance.

2.1 Q-Learning
Q-Learning is a reinforcement learning algorithm, often mentioned
as a method of asynchronous dynamic learning [18], whose goal is
to learn a policy based on which an agent “knows” which action
to take under given circumstances. This method enables an agent
to discover a solution in Markov Decision Process (MDP) [15],
which usually describes an environment for reinforcement learning,
without the need for the environment’s model (model-free), simply
by experiencing the outcomes of its actions. The MDP model is
described by the tuple (𝑆,𝐴, 𝑃, 𝑅,𝛾) and a policy 𝜋 , where 𝑆 is the set
of states, 𝐴 is the set of actions, 𝑃 𝛼

𝑠𝑠′ = P [𝑆𝑡+1 = 𝑠 ′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝛼]
is the state transition probability matrix, 𝑅 : 𝑆 𝑥 𝐴 → R is a reward
function and 𝛾 ∈ [0, 1) is called a discount factor. The MDP model
includes a policy that guides the choice of an action in a given state,
and is described as 𝜋 (𝛼 | 𝑠) = P[𝐴𝑡 = 𝛼 | 𝑆𝑡 = 𝑠]. The Q-Learning
process takes place with the help of rewards and penalties for each
action performed by the agent. By repeatedly trying all actions
in all states it is able to learn the best pairs of state-action. The
agent chooses an action at each state from a matrix of states-actions
(Q-table) that includes reward estimations for each action. These
estimations (Q-Values) are calculated by the Q-formula. After the
actions have been taken the agent is either rewarded or penalised
based on the outcome of the action and the states-actions matrix is
updated with new Q-Values as follows (Eq. 1):

𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) := 𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 )+𝛼 · [𝑟𝑡 + 𝛾 ·𝑚𝑎𝑥𝑄𝑡 (𝑠𝑡+1, 𝛼) −𝑄 (𝑠𝑡 , 𝑎𝑡 )]
(1)

where 𝛾 ∈ [0, 1) is the discount factor that determines the impor-
tance of future rewards, 𝛼 ∈ [0, 1) is the learning rate and 𝑟𝑡 is the
reward at time 𝑡 . This process is repeated until there is no further
improvement in the model’s learning. The goal of the training is to
make the policy (matrix with Q-Values) as accurate as possible, in
order to always select the best action for a given state.

The existence of a plethora of problems that cannot be described
by discrete states, or in which there are so many states that is inef-
ficient to create a Q-table of states-actions, led DeepMind [13] into
developing and presenting Deep Q-Network (DQN), an evolution
of the Q Learning algorithm, that successfully combined a Convolu-
tional Neural Network (CNN) and Q-Learning in order to create a
more powerful Deep Neural Network. Simply put, with the help of
a Neural Network the agent can make a prediction of the Q Value,
instead of creating a matrix with all the different Q values for each
pair of state-action, thus greatly limiting the amount of calculations
that need to be done for each state. The Neural Network estimates
the probable value of Q, by taking data that describe the current
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state as input and returning the estimated future rewards as output.
In addition it introduces a mechanism of learning from experience,
by implementing a “replay memory” that stores all of the agent’s
“experiences” and then randomly samples from that dataset to train.
In the field of networking, where it is expected that the NN will
need to take a lot of actions, the fact that it doesn’t have to calculate
the Q Table each time, drastically improves it’s performance and
the overall performance of the network in general.

2.2 Related Work
A number of research works considered the use of a Q-Learning
model, sometimes in addition to Neural Networks (NN), in order to
load balance the traffic in an SDN network. Ruelas in [17] proposed
the introduction of OpenFlow switches that would include a NN,
able to control the flows inside the SDN network. This work was
mostly aimed at data-centers with topologies like that of a fat-tree
(see Section 3.1), in order to benefit from the multiple paths be-
tween a source host and the destination. However, this proposal
presents difficulties in its implementation, since each switch and
router needs to host the NN in order to control the flows. This
goes against a fundamental principle of the SDN paradigm, that
of a single centralized point of control, by reintroducing the con-
trol function in data-plane devices. Work reported in [2] attempts
to solve the problem of load balancing between the links of the
network in order to minimize load on the paths, using a Back Prop-
agation Artificial Neural Network (BPANN). The ANN model is
used as an external module to the SDN that monitors the network
through the SDN controller. This way it is able to continuously
train on the data reported by the controller. After its initial training
the algorithm can successfully load balance the traffic in the links
of the network. Tennakoon, Karunarathna and Udugama presented
a simple Q-Learning algorithm [19] that is concentrated on large
Wireless SDNs. This algorithm is used to load balance networks
that involve mobile devices and remote stations, thus targeting a
rather limited problem. In addition, by enforcing a tabular QLearn-
ing algorithm, it is not able to detect unseen network states, that
require something like a Convolutional Neural Network (CNN) to
recognize the different patterns. Shih-Chun Lin et. Al. [10] pre-
sented a reinforcement learning algorithm that is Quality of Service
(QoS) aware. This means that for each request the algorithm will
choose the path that produces the highest QoS-aware reward, thus
minimizing the number of unsatisfied users in the long term.

In the current work, we present an agent that combines a Con-
volutional Neural Network (CNN) with a Q-Learning algorithm
in order to load balance the traffic between HTTP servers. This
solution differs from previous works in that it introduces a CNN
responsible for predicting the state of the network after each action.
This contributes to an increased performance since the Q-Learning
algorithm does not have to generate the state table each time, but
also enables the agent to be topology agnostic. Thus, it can deter-
mine, without prior knowledge, all aspects of the network and how
the latter behaves to varying loads, by simply collecting network
data. Even though it can be applied to any topology, it is best suited
for large network topologies that have significant traffic and pro-
vide multiple paths from source to a destination, such as those in
large Data Centers.

3 LOAD BALANCING IN DATA CENTERS
In computer systems such as data centers (DC), the load balancing
mechanism is responsible for distributing requests in order to en-
sure that all available resources are used with maximum utilization
[16]. More specifically this mechanism improves the distribution
of workload across multiple computing and network resources,
choosing both the best route in the DC network and the most ca-
pable server to respond, such that the total amount of answered
requests is maximised, the response time is minimised and over-
loading of any single resource is avoided. A load balancer can either
be a software or a hardware artifact. Typically, the advantage of
hardware-based balancers, is that with the right combination of
specialized software and specialized hardware higher performance
levels are achieved compared to the corresponding software-based
solutions. However, hardware load balancers are vendor specific, do
not offer interoperability with network devices from other vendors
and most of the time they require greater financial resources to
acquire and maintain.

Software-based load balancers can be divided into two main cat-
egories, static and dynamic [14]. Static algorithms are not affected
by the changes that occur in the network during its operation;
they instead base their decisions on a predetermined static policy.
Examples of static algorithms include:

• Random – It is the simplest approach to distribute traffic
across servers, since the balancer just selects randomly a
machine each time to send a request.

• Round Robin – It redirects requests to all servers in turn
and in the long run distributes evenly the traffic across the
available machines. This algorithm works best when the
servers are of roughly equal capacity.

• Weighted Round Robin –A variation of Round Robin, with the
difference that a weight assigned to each server is taken into
account. A higher value in the former, indicates a server of
higher capacity, thus one that can serve more requests. This
optimized version of round robin maintains the advantages
of the original and at the same time solves the problem of
unbalanced distribution in case of an asymmetric system.

Dynamic algorithms consider the current state of both the net-
work and the servers in order to optimize the decision, in accordance
to changes that may appear in the system. Some examples include:

• Dynamic Round Robin – The dynamic Round Robin works in
the same way as the weighted Round Robin, there is weight
attached to each server based on which, the balancer choose
where to send a request. However, in this case, the weights
are not defined by the administrator but automatically gen-
erated in real time. The balancer constantly monitors the
system and depending on its current state, it adjusts ratio
weights of servers, thus ratio weights are continually adapted
to the conditions.

• Least Response Time – This algorithm uses information from
a server’s health check, i.e. monitoring information, to deter-
mine which server should be selected to respond to a current
request. The balancer checks which server is responding
faster and redirects the request to this one, thus, the balancer
ensures that machines with the most connections that will
respond slowly, do not accept new requests.
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This paper concentrates on a solution that falls under the cate-
gory of dynamic load balancing algorithms and more specifically a
subset of these algorithms that involves predictive methods. These
methods try to predict the traffic and the state of machines and
network in order to maximize the availability of the network. To
accomplish this task, they require a plethora of information ac-
quired from the network and the more information available to
the balancer, the more accurate the predictions will be. Under this
we considered that the Software-Defined Networking (SDN) par-
adigm is ideal since the SDN controller, being the single point of
operational control over the SDN, can provide all the information
about the status of both the underlying network (i.e servers, routes,
switches) and the applications that run on top of it, hence servers
responding to requests. We explore the possibility of solving the
problem of load balancing an SDN by applying a Neural Network
that will extract knowledge from the data collected by the network’s
operation and eventually be able to instruct the SDN controller on
how to set the flows in the network, in order to evenly distribute
load to individual servers. To ensure that our Neural Network can
have access to a significant amount of data we decided to use the
fat tree network topology for our SDN.

3.1 Fat Tree Network Topology
Since load balancing has to take into account both server capacity
as well as the state of the underlying network, it is important to
discuss how connectivity is organised in Data Centers [1]. The fat
tree topology, is a special version of the Clos [4] network topolo-
gies based on a complete binary tree and designed by Charles E.
Leiserson in 1985 [9]. The main use of this network is to connect
the processors of a parallel, general-purpose, supercomputer, as it
allows to communicate large amounts of information concurrently,
in comparison with other types of networks. Nowadays, fat-tree
topology is largely used in Data Center Networks as it can provide
low hardware cost and high performance, therefore many big com-
panies such as Facebook, Amazon, Google, and Microsoft prefer it
for their gigantic data centers. The main entities of fat-tree topology
are switches with the same number of ports and equal bandwidth
(Figure 1). These switches are interconnected in such a way that
going up the tree the number of “wires” connecting a node with its
parent increases, thus there are multiple paths between switches,
and as a result both the bandwidth and the tolerance to losses and
errors increases.

Pod 1 Pod 2 Pod 3 Pod 4

Core

Aggregation

Edge

Figure 1: Simple k-ary Fat-Tree network topology with k=4

A fat-tree network is organized in 4 layers and k pods, where k
is the number of ports per switch. The upper, root layer is called the

core layer and it contains ( 𝑘2 )
2 switches. Next, there are aggregation

layers, edge layer and in the end, are the hosts, located on the leaves.
A fat-tree built with k-ports switches can support up to 3𝑘

4 hosts.
The pods of the fat-tree network consist of 𝑘

2 aggregation switches
and 𝑘

2 edge switches. Each switch of the lower layer is connected
to 𝑘

2 hosts and from the remaining 𝑘
2 ports, each is connected to

a port of a separate aggregation switch. An aggregation switch,
in turn, is connected to 𝑘

2 edge switches and 𝑘
2 core switches. So,

summarizing, with this connectivity in each pod, every aggregation
switch is connected with all edge switches and all the edge switches
with all aggregation switches, each pod is connected to 2𝑘

4 hosts and
with all core switches and eventually, each core switch is connected
to all pods.

4 LOAD BALANCING USING CNN AND
Q-LEARNING

The proposed load balancing approach relies on two different types
of monitoring data: network traffic on connections among switches
in the fat tree topology, and server utilization. Each set is repre-
sented by a different tensor.

More specifically, the tensor representing the network state, is
an NxN matrix, where N is the total number of switches in the
network. The matrix contains a value related to the bandwidth of
each link that connects two switches. This value is set to 0 if there
is no connection between the switches, or the link has already been
represented (i.e. s1 - s2 is the same as s2 - s1). Otherwise the value
will range between 0 and 1, where 1 represents a 100% availability
of the link’s bandwidth, whereas 0 means that the link has reached
its maximum capacity.

The second data input is a vector with values representing the
CPU and memory utilization for each server. These two tensors
combined make up for the complete state that our Q-Learning
model will use.

Table 1: Output of the model as a tuple of (Server, Duration).

Server

1 2 3

Duration

2 (1,2) (2,2) (3,2)
4 (1,4) (2,4) (3,4)
6 (1,6) (2,6) (3,6)
8 (1,8) (2,8) (3,8)

In essence, a load balancing algorithm must decide where to
direct each request received. Thus, the output of the model is an
index of a server from the load balancing server pool that will
respond to a certain number of subsequent responses as shown in
Table 1. It should be noted that the total number of the subsequent
responses is also set by the Q-Learning model, we will refer to this
number as “duration” in the following. The output is in a form
of a vector with a length of 𝐴 ∗ 𝐷 where 𝐴 is the total number
of servers and 𝐷 is the number of available durations to answer
continuous requests, which means that each position of the output
vector corresponds to a unique combination of server-duration
values.
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The Deep Neural Network proposed (Figure 2) consists of three
separate Neural Networks, two of which are used as input and
processing of the data collected from the network. The first one
is a Convolutional Neural Network (CNN) made up of two convo-
lutional layers (convolutional layer, ReLu activation function) and
one flat layer. The CNN is used to identify patterns in the network
state. The second one is a simple Neural Network (NN) that consists
of three hidden layers and is used to identify the CPU and memory
load of the servers in the network. The outputs of the first two
networks are directed to the third Neural Network, which has two
hidden fully connected layers and one output layer, and produces
the output vector. The Agent, State and Action in the proposed
solution are as follows:

• Agent - that plays the role of the SDN Controller.
• State - We define the state as a combination of the bandwidth
capacity of the links between the network devices and the
CPU and memory load of the servers.

• Action - A tuple (𝑆, 𝐷), where 𝑆 is the server that will handle
the request and 𝐷 is the number of subsequent requests this
server will handle.

Algorithm 1 was used to train the Deep Q Learning model.

Algorithm 1: Deep Q Learning training
1 Initialize Q(s,a) and weights with random normal

distribution and with Xavier initializer
2 With probability 𝜖 , select random action a, otherwise

𝑚𝑎𝑥 (𝑄𝑠, 𝑎)
3 Execute action a in the environment, obtain reward r and

next state s’
4 Store transition(s, a, r, s’,done) in the replay buffer (done is

true if the episode has ended)
5 Observe for the first 1000 timesteps
6 Sample a random mini-batch of transitions from the replay

buffer
7 For every transition in the mini-batch , calculate

𝑡𝑎𝑟𝑔𝑒𝑡𝑄 = 𝑟 + 𝛾 ∗𝑚𝑎𝑥 (𝑄𝑠, 𝑎) , if the episode has ended
𝑡𝑎𝑟𝑔𝑒𝑡𝑄 = 𝑟

8 Calculate 𝑐𝑜𝑠𝑡 = (𝑄𝑠, 𝑎 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑄)2
9 Update Q(s,a), minimizing the cost function

10 Repeat steps 2 to 8 until no further learning

The training parameters are described in Table 2. These values
were defined through experimentation and appear to maximize the
training of the model for this particular work. In addition to these
we opted to use the Xavier initializer for the initial Q-Values matrix
since it proved to be best suited for this solution.

The effectiveness of each action is measured by the average
number of transactions in the course of 1 minute that the network
was able to successfully serve by using the DQN load balancer.
Towards this the reward function employed is shown in Eq. 2:

𝑅 (𝑎𝑡 ) :=
1
60

·
𝑛=𝑡∑

𝑛=𝑡−60
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑛) (2)

where 𝑎𝑡 is the action taken at time 𝑡 and 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑛) is the
number of transactions observed at 𝑛-th point in time. The overall

effectiveness of the model is measured by a cost function (Eq. 3)
defined as:

𝑐𝑜𝑠𝑡 = [𝑄 (𝑠,𝑎) − (𝑟 (𝑠,𝑎) + 𝛾 ·𝑚𝑎𝑥 (𝑄 (𝑠 ′, 𝑎))]2 . (3)
This is basically the Mean Square Error function (MSE) where
𝑄 (𝑠,𝑎) is the prediction and the immediate and future rewards are
the target (Q-Target).

Table 2: Training Hyperparameters

Parameter Meaning Value

𝛾 Discount factor 0.9
𝜂 Learning rate 0.000002
initial 𝜀 Starting exploration probability 1.0
min 𝜀 Minimum exploration probability 0.05
𝜀 decay rate Exponential decay rate of 𝜀 0.00011875
dropout Dropout to reduce overfitting 0.4
replay memory Size of agent’s memory 5000
batch Batch size to train on 64
episode size Size of each training episode 600 (s)

5 EXPERIMENTAL SETUP
This section describes the environment that was setup for the exper-
iments. Due to limited resources there were some cutbacks in the
scale of the network but were compensated by developing solutions
that can easily be scaled to larger sizes.

5.1 Network Environment
To emulate the SDN we used Mininet, an open-source tool that is
popular among researchers in the field of SDN. Mininet allows to
create virtual networks deploying controllers, switches and hosts
[7]. All the virtual devices support the OpenFlow protocol commu-
nication, making Mininet the perfect emulator for SDN.

We opted to use the Floodlight SDN controller [20], which is
an open-source Openflow SDN controller. This decision was made
because it provides well-defined REST APIs that allow applications
to get and set the state of the controller, thus enabling our agent to
dynamically perform such tasks. The controller acts as a middle-
ware between theNeural Network (NN) and the underlying network
devices providing the NN with all the available data on the state
of the network after each action is taken. It is able to save flows
in memory and each time there is uncertainty for the action that
needs to be taken it will ask the NN for instructions.

All tests, experiments, and training were done on a fat tree topol-
ogy, since it is used extensively in large data centers and thus
simulates the actual conditions in which such a system should the-
oretically operate at its full potential. Figure 3 shows an abstract
view of the network architecture that was used for the experiments
of this paper.

We implemented this topology in the Mininet emulator, in such a
way that it is possible to easily adjust different topology parameters
such as network size or the capabilities of links and hosts so that it
could be used in different experiments without the need to rewrite
the topology.
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Figure 3: Network architecture for the proposed experiment.

5.2 Configuration
Since the maximum bandwidth of connections and processing
power of hosts are directly influenced by the machine on which

the Mininet is running we decided to limit the capabilities of our
network in order to have more reliable analytics. In particular we
limit the computational power of hosts to 20% of CPU. With the
exception of hosts that are members of the load balancer pool, their
power was set to 20%, 45% and 75% of CPU respectively, so that
there is no homogeneity among the members of the pool. The band-
width of links from edge layer to the aggregate layer was set to
500 Mbits with 10 ms delay. Links from aggregate switches to core
switches have a little more bandwidth, as they have more network
traffic, hence the boundaries were set to 1000 Mbits with 10ms delay
and 800 Mbits with 20ms delay.

6 EXPERIMENTAL RESULTS
The first set of our experiments involved the training of the DQN
model. The network was flooded with multiple requests and con-
current users and the model had no prior knowledge of the network
topology, the quantity of the servers or the capacity of each server.
By making decisions and taking a reward based on the overall well-
ness of the network’s state after said decision, the model was able
to train itself to select the best server to handle each request.

The second set involved experimentation with the trained model;
we sent multiple requests from multiple concurrent users for a long
period of time and observed how the load was distributed by the
model between the servers. Figure 4 shows the traffic from the
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Figure 4: Traffic distributed between servers by DQN

requests made by 25 concurrent users for a period of 10 minutes;
each line represents the load handled by each server for that period
of time. From the figure we can see that the load is successfully
distributed between the servers by the DQN model, based on their
respective capacity (Server 1 20%, Server 2 45%, Server 3 75%).
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Figure 5: Average request latency for 3 different load scenar-
ios (r: total number of requests, u: concurrent users)

6.1 Comparison with Traditional Load
Balancing Algorithms

In order to evaluate the efficiency of the DQN, we “stressed” the
servers by generating a large number of requests from multiple
concurrent users and compared the results with other methods.
We choose to compare DQN with Round Robin (RR) as one of the
most popular methods and the Weighted Round Robin (WRR) as
a more advanced method of load balancing. Experiments are di-
vided into two main categories, where the first involves a varying
number of requests over a specified time period and the second
a constant number of requests; we ran a total of 10 iterations per
experiment and extracted the average performance of each load bal-
ancing algorithm in order to have more accurate results to support

our proposal. The values in Table 3 are the results of the first set of
experiments where the network was flooded with requests from 30
concurrent users in a period of 4 minutes. In all metrics recorded
the DQN model achieved higher performance, since it was able to
distribute the requests between the servers in such a way that the
amount of requests served was approximately 40% higher than both
the other algorithms. Another notable aspect of this experiment is
the reduced average number of failed transactions were the DQN
model ensures a very high availability of the network.

Table 3: Average performance of load balancing algorithms

RR WRR DQN

Transactions 5158 5404 7170
Data transferred (MB) 73,75 85,28 106,26
Response time (s) 0,97 0,72 0,46
Transactions/s 21,34 22,46 29,91
Throughput (MB/s) 0,31 0,34 0,44
Concurrency 13,72 14,70 19,79
Failed transactions 33 17 4

For the second part of the experiments we specified a total num-
ber of requests that the network should handle and a number of
concurrent users. The evaluation results for 500 requests from 20
concurrent users are presented in Table 4. The DQN model was
able to complete serving the requests sent to the network in almost
half the time the other algorithms were able to.

Table 4: Average performance for 500 requests from 20 con-
current users

RR WRR DQN

Time to complete (s) 52,64 50,20 28,10
Requests/s 12,38 13,09 23,42
Time per request (s) 85,29 80,41 56,21
Transfer rate 190,12 200,98 216,15
Throughput (MB/s) 0,31 0,34 0,44
Concurrency 19,72 14,70 13,79
Failed tranctions 17,00 59,00 2

Figure 5 shows the average responsiveness of the network on
varying number of requests and concurrent users. This is calculated
by the time each request needs to go from host to server and back. It
is usually a way to measure the overall performance of the network
since it also involves the route a request follows inside it. DQN
“inferred” that in order to get a higher reward this time should be
minimized, resulting in much lower Round Trip Time (RTT) than
the other algorithms.

7 CONCLUSION
Current network architectures used in data centers are reaching
their limit in supporting the constantly increasing load of data and
traffic flowing through them. This led the networking community
in the introduction of many new technologies and architectures to
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tackle this problem, one of which is software defined networking,
commonly known as SDN. This proved to be a big step towards
better network management, but it might not be enough to with-
stand the future increase in data and traffic. The use of Artificial
Intelligence is able to provide this architecture with the required
power to become a better and more future proof solution. Some of
the advantages that we are able to see from our experiments with
a DQN model on the SDN paradigm are that:

• Since it belongs to a set of Artificial Intelligence algorithms
called “General Purpose Algorithms”, makes it perfect for
use with SDN because the same algorithm can be applied
to a large range of problems and challenges that appear
in data centers with the same efficiency and effectiveness
since the goal remains the same, i.e. better network traffic
management.

• It is environment driven and thus dynamic. It relies on a
continuous analysis on the state of the network to make
better decisions that will affect the network positively.

• It is very often that the efficiency of the network relies on
hidden or unpredictable factors where for example in some
cases part of the network is hidden from the core. Unlike
traditional algorithms that are not able to detect such oc-
currences, Neural Networks are able to make use of all the
available information derived from collected data, to detect
hidden patterns or issues, adapt in those situations and pro-
vide decisions that will overcome the problems.

Our load balancing method was based on decisions taken by the
trained NN model that used monitoring data collected from the
underlying network while traffic was flowing through it. The model
is able to accurately decide the most appropriate server to handle
requests coming from applications. The network shows an overall
better performance during tests that were made by stressing it
continuously sending multiple packets. The model seems to almost
always choose the fastest option to serve a packet and the load
is distributed evenly in accordance to the individual capacity of
the servers. Compared to traditional algorithms for load-balancing,
it was noticed that there was a big increase in the total number
of packets served by the network. It should be noted that that
this method can be optimized even more to produce much better
results that are almost impossible to be produced by the traditional
algorithms.

For instance, if the full set of capabilities that Software Defined
Networks offer is considered, such as information regarding the
client application, client preferences, etc, in conjunction with the
ability to manage multiple types of services the potential of the
approach is greatly enhanced. This can results to a network, which
depending on the needs of the client and the requirements of the
specific application, will be able to adapt how the data center deliv-
ers its services. This way we can achieve a fully automated SDN
that is capable of making important network and traffic decisions
autonomously, without human intervention, which combined with
newer approaches, such as intent based networking can prove to
bring significant improvements in the area.

The most significant limitation of the current approach lies in
its centralised nature, which in addition to the introduction of a
single point of control makes it prone to errors. Future research

towards this direction could provide a synchronization of additional
points of control in order to minimize such effects. Another impor-
tant research direction is that of detecting the addition or removal
of network devices making the solution suitable for dynamically
changing network topologies.
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