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Abstract—Network slicing is seen as a key enabler for meeting
the diverse network service requirements, which stem from
the transition to 5G. Furthermore, network slicing provides
inherent support for multi-tenancy, enabling network providers
to slice their infrastructure and resell it to a large number
of tenants. Most existing work on slicing has been focused
on certain mechanisms (e.g., slice embedding) and architecture
specifications. As such, the performance and scalability with
network slice instantiation has not been studied in depth. These
aspects are even more critical in the case of slice deployments
across multiple Points-of-Presence (PoP), since the various slice
components should be stitched together for the end-to-end slice
instantiation.

In this paper, we present the design and prototype implementa-
tion of a network slicing architecture, based on which we perform
a feasibility study of network slicing using multiple experimental
infrastructures. Our prototype implementation supports all the
required functionality for slice instantiation, such as resource
discovery, slice embedding, resource provisioning, link setup,
and inter-PoP slice segment stitching. Our experimental results
corroborate the feasibility of multi-PoP network slicing. We
further gain useful insights on slice instantiation performance
and scalability.

I. INTRODUCTION

Network slicing has been recently promoted as a key enabler

for leasing service-tailored bundles of computer, network, and

storage resources, which are often termed as verticals [1],

[2]. This essentially fosters the integration of existing and

novel network services into the infrastructure, as well as the

co-existence of multiple services with significantly different

requirements in terms of bandwidth, delay, resilience and/or

security. Network Function Virtualization (NFV) [3], [4] and

Software-Defined Networking (SDN) [5], [6] comprise some

of the main enablers for network slicing.

Network slicing is usually not limited to the provisioning

of isolated resource bundles, but it also encompasses resource

management and orchestration primitives on per-slice-basis.

As such, tenants are enabled to exercise fine-grained control

and management on their leased slices, with minimal provider

interventions. This level of control can be attained, e.g.,

by deploying a dedicated Virtualized Infrastructure Manager

(VIM) per slice, as advocated by the NECOS project [2],

[7]. Alternatively, independent slice control could be enabled

through a shim layer on top of a shared VIM. Since the latter

introduces high complexity, we assume a VIM-on-demand

slicing model in the rest of this paper [8].

In practice, the concurrent deployment and operation of

network slices on top of shared infrastructures poses the need

for diverse functionality spread across different layers of the

network slicing architecture. For example, network slicing

requires mechanisms to advertise, discover, select and allocate

resources for slice creation. In the case of slices spanning

multiple Points-of-Presence (PoP) or different administrative

domains, additional mechanisms are required for stitching

together the different slice segments in order to instantiate

the slice. While the efficiency of certain slicing mechanisms,

e.g., slice embedding [9], is well understood, the feasibility of

a multi-PoP slice deployment has not been studied so far, to

the best of our knowledge. Existing prototype implementations

mainly pertain to network (function) virtualization [10], [11],

and are typically limited to single-PoP deployments.

Along these lines, we conduct a feasibility study of multi-

PoP network slice deployment to assess the timescales at

which slices can be provisioned and further identify potential

scalability bottlenecks. This study is carried out on top of

geographically dispersed experimental infrastructures, which

essentially offer a realistic setup for the slice provisioning

performance evaluation. Our feasibility study is carried out

using a prototype implementation of a network slicing archi-

tecture, which addresses the main needs of the network slice

deployment, i.e., resource discovery, slice embedding, resource

provisioning, tunnel setup, and inter-PoP slice segment stitch-

ing. Additional support for service deployment and resource

monitoring provides the necessary means for quantifying the

network slicing gains on certain applications or services.

In the following, Section II provides an overview of the

NECOS network slicing architecture, on which our feasibility

study relies upon. Section III discusses a proof-of-concept

implementation for network slice instantiation with detailed

descriptions of the individual steps taken for multi-PoP slice

deployment. In Section IV, we present our experimental re-

sults, and finally in Section V, we highlight our conclusions

and give future work directions.
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Fig. 2: Slice workflow overview

Builder; deploying on-demand VIMs and monitoring services

for the slice-segment; and for any end-of-life operations, e.g.,

slice-segment decommission.

The Slice Resource Orchestrator (SRO) manages the life-

cycle of all the (stitched) slice-segments and orchestrates

the service elements across the end-to-end slice, i.e., it per-

forms the placement and embedding of VMs into the re-

source domains. These actions are performed according to

the monitoring information provided by the Infrastructure

and Monitoring Abstraction (IMA) component. The IMA is

a uniform abstraction layer introduced in order to hide the

specific technological implementation of the VIM / WAN

Infrastructure Manager (WIM) and monitoring subsystems in

each slice-segment. A uniform northbound interface offered

by IMA, allows the SRO to perform his specific functions in

an abstracted way: a technology specific, pluggable adaptation

layer to different VIMs/ WIMs and monitoring systems is in

place at the southbound of the IMA to implement the required

abstraction.

Finally, the Slice Database is the main component for

storing the information related to the different end-to-end

slices.

III. PROTOTYPE IMPLEMENTATION

In this section, we present our prototype realizing slice

deployment in consistency to the NECOS approach. In com-

parison to the NECOS architecture, we focus on a multi-PoP

rather than on a multi-provider environment. As we show in

Fig. 2, our implementation supports a simplistic Marketplace

operation: the Slice Broker acts as a Broker Agent as well,

being responsible to report on the resource availability in the

different PoPs. Along these lines, we replaced the above two

entities with a new component called PoP Resource Discovery.

The slice embedding operation over multiple Infrastructure and

WAN providers is complex enough to deserve an independent

study (i.e., our relevant initial work can be found at [12]).

For the same reason, the PoP Resource Allocation and PoP

Network Controller components implement the functionalities

of the DC Slice Controllers and WAN Slice Controllers,

respectively.

We start by discussing the prototype with the functional

description of the required steps for the slice deployment and

then give an overview of the deployment workflow along with

basic implementation details of the involved components.

The slice deployment operation involves the following steps:

• Slice Requirements Specification: The Tenant defines

the slice requirements that include: (i) general slice

parameters, including geographic constraints, cost model

to use, monitoring options and slice time-frame (e.g., du-

ration); (ii) a service graph consisting of service elements

and links with particular demands for physical and/or

virtual resources (e.g., VIM type and configuration); (iii)

slice stitching requirements, such as bandwidth demands

and resource reservation or tunneling protocol to use.

• Slice Embedding: In this slice deployment step, our

facility involves the Marketplace to take initial decisions

for the slice and dynamically discover physical resources

that match the expressed demands. Practically, it defines

the number of slice-segments and how to distribute the

service elements in them, collects the resource offers from

different Infrastructure and WAN Providers, and decides

which of them to accept.

• Physical Resource Allocation: This step involves the

allocation and booting up of physical servers and network

devices in the different slice-segments. It follows the

deployment of the required Operating Systems and VIMs.

It completes with the booting up of all physical resources.

We emulate the edge routers with diverse communication

capabilities with physical machines supporting tunnelling

protocols and bandwidth throttling.

• Slice Stitching: The facility stitches the slice-segments

together by establishing the WAN connection between

them and the required intra-domain network configura-

tions. Furthermore, it employs the VLAN or VXLAN

protocols for the slice isolation. At the end of this step,

all slice servers are accessible between each other with

private IP addresses.

• Service Deployment: This step involves the service

deployment, which includes the transferring of the VM

images to the particular servers, the creation of the

VMs, and their booting up. The service activation usually

completes with additional configuration processes for the

service to operate.

• Monitoring Activation: The last step covers the de-

ployment and configuration of the requested monitoring

capabilities from the Tenant. It is related to the activa-

tion of the requested Key Performance Indicators (KPIs)

from the Tenant, but also the deployment of a partic-

ular monitoring tool, e.g., Lattice [13] or Prometheus

(https://prometheus.io).

We now present an overview of the slice deployment work-

flow (i.e., as shown in Fig. 2) and the basic implementation

details of the prototype components. The Tenant realizes the

Slice Requirements Specification through a GUI, which

produces the Service Definition schema elaborated in [12].
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The Slice Specifications Processor, the Slice Builder and the

PoP Resource Discovery components jointly implement the

Slice Embedding step. The PoP Resource Allocation allocates

on-demand the physical machines and deploys the requested

VIM. The last two components act as wrappers of the novel

FED4FIRE [14] and GENI [15] testbed tools (i.e., jfed CLI

and geni-lib), in a similar approach to the work reported in

[16]. Furthermore, the same components access a similar test-

bed control abstraction handling our own UOM test-bed. After

the allocation of physical machines deployed at the different

PoPs (i.e., slice-segments), the Slice Builder communicates

with the Slice Resource Orchestrator (SRO), which in turn

realizes the Service Deployment and Monitoring Activation

through Ansible scripts. Lastly, the SRO oversees the Slice

Operation; however, this is not part of the current work.

The PoP Resource Allocation, PoP Resource Discovery and

PoP Network Controller have been implemented in Python,

while the other NECOS components as Node-RED nodes1.

All of them exchange information descriptors specified as

JSON messages, in accordance to the NECOS information

model [12].

IV. EXPERIMENTAL EVALUATION

A. Evaluation Environment

In this section, we validate experimentally the aforemen-

tioned slice deployment steps, namely the Slice Embedding

(SEmb), Physical Resource Allocation (PRA), Slice Stitching

(SS), Service Deployment (SDepl) and Monitoring Activation

(MAct) processes, through our prototype implementation of

the NECOS architecture. We consider a distributed content

service example that spans geographically over Europe and

USA. We assume that a Tenant requests a slice consisting of

the following service functions: (i) a cluster of Web servers;

(ii) a service load balancer (SLB); and (iii) benchmarking

tools (BT). We further consider that the Tenant specifies

each service function to be allocated in a particular geo-

graphic location, and thus, the service functions are mapped

to two different DC slice segments, as depicted in Fig. 3.

In particular, the left DC slice segment contains resources

from the FED4FIRE testbeds federation, whilst the right DC

1https://nodered.org/

slice segment consists of physical resources located at our

own UOM test-bed. To emulate the WAN slice segment that

stitches the aforementioned DC slice segments, we deploy an

additional physical machine at each side to serve as an edge

router.

To proceed with the slice deployment, we defined the

service and slice requirements as a generic YAML slice-

information input that includes the three slice segments. In

more detail, the DC slice segment at the UOM test-bed consists

of six physical nodes hosting: (i) a service load balancer which

distributes (i.e., in a round robin fashion) the Web traffic

of a number of clients to the Web servers located at the

left-side DC slice segment; and (ii) the benchmarking tools

emulating the clients’ behavior. The DC slice segment with

the Web servers’ cluster is physically located at the USA

(i.e., the CloudLab Utah test-bed) and is accessed through the

FED4FIRE facility. The number of physical machines in this

segment constitutes the parameter Nodes of our experiment

which ranges in [5 . . . 30]. We choose two classes of Nodes’

hardware type, i.e., the pc3000 class with 3.0 GHz processor, 2
GB DDR2 RAM and 300 GB storage, and the d430 class with

two 2.4 GHz 8−core processors, 64 GB DDR4 RAM and 2.2
TB storage (a detailed description of hardware specifications

can be found at https://wiki.emulab.net/wiki/UtahHardware).

The first class could serve as edge cloud and the latter as

core cloud nodes. In this particular DC slice segment we

consider the deployment of a Web server per physical node,

we define the virtualization technology (i.e., Click-OS), and

we specify service resource flavor (i.e., CPU, RAM utilization

and storage usage) for each Web server. Furthermore, we

designate the traffic disturbed policy (i.e., equally, randomly)

that the service follows. The third slice segment (WAN), is

responsible of configuring the inter/intra connectivity of the

DC slice segments. We boot an extra physical machine in

each DC slice side, that operates as an edge router, and we

apply a GRE tunnel between them to resolve their connectivity.

To secure intra connectivity we configure each physical node

route table so that to be feasible to communicate with the edge

router of the other side. For inter connectivity we assume a

star topology where each physical node is connected to the

edge router (central node) and through the edge router to the

remote DC slice segment (physical remote nodes).

For the Monitoring Activation step of slice deployment,

we regard the configuration of the CollectD open-source

monitoring tool. For the allocated physical resources, we

enable the following KPIs: i) CPU and RAM usage; and ii)

incoming/outgoing traffic. The tool collects the KPIs metrics

every 20 sec (interval time). Our experimental results follow.

B. Experimental Results

Our results report the slice deployment time when either

core or edge cloud nodes are employed at the DC slice segment

accommodating the Web servers’ cluster. Fig. 4 provides

both a general view of the total time required for the slice

instatiation, as well as detailed information for the time that

each of the Slice Embedding, Physical Resource Allocation,
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Fig. 4: Slice deployment time

Slice Stitching, Service Deployment and Monitoring Activation

steps requires. Time is expressed as a function of the number

of the physical Nodes deployed at the CloudLab Utah test-bed.

We repeat each experiment five times.

Fig. 4(a) and 4(b) indicate that the less time consuming

steps are the Slice Embedding, the Slice Stitching and the

Monitoring Activation. The first of them is found to be almost

stable at around 30 sec in case of core cloud nodes, and at

around 35−40 sec when edge cloud nodes are used. The exact

values of time along with the standard deviations are further

reported for clarity reasons in Table I. The Slice Stitching

step ranges from almost 20 − 120 sec and 25 − 130 sec, for

core and edge cloud nodes, respectively. This step as well

as the monitoring one linearly increase with the number of

nodes. The Monitoring Activation starts at 16 sec and goes

up to almost 100 sec in Fig. 4(a), whilst it ranges from 21
sec to 133 sec in Fig. 4(b). These results show a slight time

deterioration when edge cloud nodes are used in the DC slice

segment. Especially the Slice Embedding step indicates almost

none scalability limitation, at least of our experimental setup.

On the other hand, the Physical Resource Allocation and

the Service Deployment steps are the most time consum-
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Fig. 5: Slice stitching time

ing. Resource allocation involves the servers’ boot-up time,

which entails the prolongation of the general deployment

time. However, in case of the core cloud nodes, the resource

allocation requires as much as 74% of deployment time when

Nodes = 5, which significantly decreases at 30% when

Nodes = 30. The corresponding percentages range from

69−37% in case of edge cloud nodes. This decrease is due to

the fact that the time remains almost stable with the increase of

the nodes. Opposed to this observation, the requirements of the

Service Deployment step in time increase with the number of

nodes. As a result, service deployment time occupies 14−40%
and 16− 38% (in respect to the number of nodes) of the total

slice deployment time when core and edge cloud nodes are

employed, respectively.

In Fig. 5(a) and 5(b) we further elaborate on the Slice

Stitching time requirements. As described in the experimen-

tal environment section, the WAN slice segment configures

connectivity both inside the DC slice segments, and between

the two geographically remote segments as well. In this

figures, the light (dark) grey area indicates the intra(inter)-

domain network configuration. It is expected that the time

requirements of the first would have been heavier compared



TABLE I: Standard deviation of deployment time for core and edge cloud nodes

Step SD (σ) in sec
Core cloud nodes Edge cloud nodes

5 10 15 20 25 30 5 10 15 20 25 30

MAct
Time 16.07 31.83 43.25 57.48 82.44 102.34 21.57 44.91 69.43 86.74 111.19 133.74
SD 1.51 2.87 0.06 0.11 5.92 1.02 1.9 2.43 2.22 2.37 1.98 5.84

SDepl
Time 80.56 158.19 235.86 312.97 391.61 469.95 89.41 178.49 262.38 346.66 420.19 508.21
SD 0.24 0.93 1.19 1.65 1.33 0.76 3.18 4.92 10.77 11.12 3.01 7.81

Intra-domain SS
Time 12.01 24.06 31.04 41.22 62.32 78.59 15.24 29.91 45.04 62.72 74.99 90.85
SD 1.54 3.18 0.09 0.04 6.06 0.97 2.63 0.66 0.35 2.36 1.17 2.44

Inter-domain SS
Time 8.84 13.28 10.67 13.05 30.15 39.64 9.07 17.07 23.23 28.72 34.96 41.03
SD 2.75 4.54 0.14 0.43 8.34 0.24 2.81 0.59 0.72 0.85 0.22 0.55

PRA
Time 426.91 434.49 428.50 419.09 442.61 453.93 379.73 406.53 488.59 512.8 508.44 497.95
SD 5.04 10.88 0.52 28.84 4.44 17.18 26.83 35.22 29.65 10.99 1.36 30.13

SEmd
Time 31.31 37.79 30.02 32.83 29.17 32.56 34.36 30.33 32.4 36.19 39.54 45.44
SD 3.06 10.08 2.28 3.90 1.51 1.96 5.05 4.54 4.66 10.36 8.44 19.66

to the latter independently of the type of cloud nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the feasibility of multi-PoP slice

deployment, motivated by the increasing interest in network

slicing, as a means to provide inherent support for multi-

service and multi-tenancy. We relied on a prototype imple-

mentation which provides support for slice and service deploy-

ment, based on the slice instantiation workflow exemplified in

the NECOS architecture. Our results and micro-benchmarks

across a diverse range of network slice sizes corroborate that

slice instantiation delay scales linearly with the slice size. The

dominant factor is physical resource allocation, which involves

the booting of servers. In contrast to resource allocation (which

is out of our control in the remote experimental infrastruc-

tures), both slice embedding and stitching incur low delays,

and certainly do not introduce any scalability limitation, at

least at the scale of our experimental setup.

In principle, there is room for optimizations (especially

within the slice provider’s domain) in order to reduce the

slice instantiation delay. For example, slice instantiation tasks,

executed across servers (e.g., virtual machine setup and con-

figuration) and switches, can run in parallel to substantially

speed up slice provisioning. We further plan to incorporate

most sophisticated slice embedding mechanisms (e.g., [9]) and

investigate the scalability of multi-domain slice instantiation

with near-optimal slice embeddings.
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