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ABSTRACT
This paper presents a new simplex-type algorithm for Linear Programming with the
following twomain characteristics: (i) the algorithm computes basic solutionswhich are
neither primal or dual feasible, nor monotonically improving and (ii) the sequence of
these basic solutions is connected with a sequence of monotonically improving interior
points to construct a feasible direction at each iteration. We compare the proposed
algorithm with the state-of-the-art commercial CPLEX and Gurobi Primal-Simplex
optimizers on a collection of 93 well known benchmarks. The results are promising,
showing that the new algorithm competes versus the state-of-the-art solvers in the total
number of iterations required to converge.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Linear programming, Simplex-type, Interior point method, Exterior point,
Non-monotonic, Infeasible, Mathematical programming, Optimization

INTRODUCTION
Linear Programming (LP) constitutes one of the most fundamental classes of mathematical
programming models which is widely used in many scientific areas since many real world
problems can be formulated as Linear Programs (LPs) (Triantafyllidis & Papageorgiou,
2018; Gkioulekas & Papageorgiou, 2019; Yang et al., 2016; Amin & Emrouznejad, 2011;
Janssens & Ramaekers, 2011; Fernndez & Borrajo, 2012; Burdett et al., 2017). LP is an
important tool nowadays in many applications, spanning across a broad spectrum of
fields (Bertsimas & Tsitsiklis, 1997). Many algorithms have been invented for the solution
of LPs. The majority of these algorithms can be divided into two main categories: (i)
simplex-type or pivoting algorithms and (ii) Interior Point Methods (IPMs).

The Primal Simplex Algorithm (PSA) (Dantzig, 1949) had been the most efficient
method for solving LPs until the 80’s. PSA ranked as one of the top 10 algorithms of
the 20th century (Dongarra & Sullivan, 2000). It performs well in practice, particularly
on LPs of small or medium size. Nevertheless, PSA is not polynomial. Its worst-case
complexity is exponential (Klee & Minty, 1972). Simplex algorithm visits in a sequential
manner adjacent vertices of the feasible region using pivot operations, so that the new
vertex has better objective value (monotonic algorithm) compared to the previous one. It
is well known that the behavior of this algorithmic family can be improved by modifying:
(i) the initial solution and (ii) the pivoting rule. The selection of appropriate pivoting
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rules affects the number of iterations required for solving LPs. Different pivoting strategies
yield different basis sequences in simplex-type algorithms. The flexibility of the entering
and leaving variable selection allows to develop various pivoting schemes. A complete
presentation can be found in Terlaky & Zhang (1993).

The first polynomial time algorithm for linear programming was the Russian (ellipsoid)
algorithm, developed by Khachiyan (1979). However, the ellipsoid algorithm is impractical
for LP. Karmarkar (1984) then invented the first Interior Point Method (IPM); it uses
a sequence of interior points and converges to the optimal solution in a few number of
iterations. The most important advantage of IPMs compared to PSA is that the number
of iterations is not proportional or related in any manner to the number of vertices. Most
of the IPMs are infeasible in nature (Mehrotra, 1992; Mehrotra, 1993) and it is broadly
accepted that an infeasible primal-dual IPM is the most efficient algorithm of this family.
The development of IPMs has revolutionized the field of mathematical programming and
efficient IPMs outperform the PSA on large-scale LPs.

Despite this fact, LPs have continued to receive great scientific analysis lately. More
and effective pivoting schemes appeared in the literature (Terlaky, 1985; Murty & Fathi,
1984; Arsham, 2007; Pan, 2008; Jurik, 2008; Yeh & Corley, 2009; Elhallaoui et al., 2011; Li,
2013). Additionally, the papers (Basu, Loera & Junod, 2014; Gleixner, Steffy & Wolter, 2016;
Omer et al., 2015) proposed a framework for an improved Primal Simplex algorithm that
guarantees an improvement in the objective value after each iteration. Also, during the last
decades researchers proposed more efficient implementations of simplex-type algorithms.

The Exterior Point Simplex Algorithm (EPSA) was originally developed by Paparrizos
(1991) for the assignment problem. EPSA can avoid the boundary of the polyhedron of
the feasible region and constructs two paths to converge to the optimal solution. One
path is exterior to the feasible region while the other one is feasible. Later on, Paparrizos
(1993) generalized EPSA to LP. The key idea behind EPSA is that when using pivots based
on feasible directions to select the pair of entering and leaving variables, the algorithm
can converge faster to the optimal solution. Paparrizos, Samaras & Tsiplidis (2001) have
demonstrated that the geometry of EPSA reveals that this algorithm is faster than PSA. This
result was partially verified by preliminary computational results (Paparrizos, Samaras &
Stephanides, 2003a; Paparrizos, Samaras & Triantafyllidis, 2008). A well established way to
improve EPSA is to transform its exterior path into a dual feasible simplex path. Such an
algorithm is called Primal-Dual Exterior Point Simplex Algorithm (PDEPSA) (Paparrizos,
1996). This algorithm requires an initial dual feasible basic solution. Since such a solution
is not always readily available, a modified big-M method is applied. Variations of using
a Two-Phase approach for the EPSA were presented in Triantafyllidis & Samaras (2014).
The main advantage of PDEPSA is its promising computational performance.

An important improvement of the PDEPSA is to traverse across the interior of the
feasible region, in an attempt to avoid degenerate vertices of vertex-following algorithms.
This algorithm is called Primal-Dual Interior Point Simplex Algorithm (PDIPSA) (Samaras,
2001). PDIPSA can be seen as a separate procedure to move from any interior point to
an optimal basic solution. It can be combined with IPMs in order to develop a hybrid
algorithm consisting of two stages (Glavelis, Ploskas & Samaras, 2018). At first stage, an
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IPM is applied and at the second stage PDIPSA is applied to compute an optimal basic
solution. Themain advantage of this hybrid algorithm is that it exploits the strengths of both
IPM and PDIPSA. The computational results are very encouraging. A complete review of
Exterior Point algorithms can be found in Paparrizos, Samaras & Sifaleras (2015). A review
paper summarizing the advantages and disadvantages of pivots, ellipsoid and IPMs was
presented by Illes & Terlaky (2002). Several methods have been developed which provide a
combination of IPMs with pivoting algorithms (Bixby et al., 1992; Bixby & Saltzman, 1994;
Andersen & Ye, 1996; Pan, 2013).

All the above mentioned algorithms are monotonic in nature. A monotonic linear
optimization algorithm starts with a (feasible or infeasible) vertex, moves between (adjacent
or not) vertices, improving the value of the objective function until an optimal solution
is found. In this paper a non-monotonic infeasible simplex-type algorithm for general
LP is presented. The proposed method does not maintain monotonicity on the basic
solutions, but only on the interior point which is used to construct the feasible direction
at each iteration. This new algorithm is comprised of three different parts: (i) interior
Exterior Primal Simplex Algorithm (iEPSA), (ii) Exterior Point Simplex Algorithm (EPSA)
and (iii) Primal-Dual Interior Point Simplex Algorithm (PDIPSA). The first one (iEPSA)
interconnects a primal interior point with a primal (infeasible) exterior one. Using these
two points, a feasible direction is constructed and while iterating in a non-monotonic
way the algorithm stops at either a primal or a dual feasible solution. On the other hand
iEPSA improves strictly from iteration to iteration the objective value at the interior point.
The exterior point reaches optimality independently of the monotonicity of the interior
point. In conclusion, we have non-monotonic movement outside the feasible region and
monotonic movement in the interior of the feasible region.

In order to gain insight into the practical behavior of the proposed algorithm, we have
performed some computational experiments on a set of benchmark problems (netlib,
Kennington, Mészáros). The computational results demonstrate that the proposed non-
monotonic algorithm requires less iterations than both the Primal-Simplex algorithm
implemented in CPLEX and Gurobi commercial solvers.

This paper is organized as follows: In ‘Materials & Methods’ a brief reference to some
basic notation for the linear problem and the algorithms described in this paper is given.
Subsection iEPSA presents the proposed algorithm, an illustrative example and its pseudo-
code. In the ‘Proof of Correctness’ subsection, mathematical proofs for the correctness
of the algorithm are given. In order to gain an insight into the practical behavior of the
proposed algorithm, we performed a computational study. These results are presented in
the ‘Results’ section, followed by the ‘Conclusions’ section.
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MATERIALS & METHODS
In this section we give some necessary notation and definitions on LPs. Consider the
following linear program in the standard form:

min cTx
subject to Ax = b,

x ≥ 0
(1)

where A∈ Rm×n, (c,x)∈ Rn, b∈ Rm and T denotes transposition. We assume that A has
full rank, rank(A)=m, 1≤m≤ n. If x satisfies Ax = b, x ≥ 0, then x is a feasible solution.
The dual problem associated with the Eq. (1) is presented in Eq. (2):

max bT y
subject to AT y+ s= c,

s≥ 0
(2)

where y ∈ Rm and s ∈ Rn. Using a basic partition (B,N ) of A as A= [ABAN ] and the
corresponding partitioning of xT = [xBxN ], cT = [cBcN ], Eq. (1) is written as:

min Z = cTB xB+ c
T
N xN

subject to ABxB+AN xN = b
xB,xN ≥ 0

(3)

In Eq. (3), AB is an m×m non-singular sub-matrix of A, called basic matrix or basis,
whereas AN is an m× (n−m) sub-matrix of A called non-basic matrix. The columns of A
which belong to subset B are called basic and those which belong toN are called non-basic.
The solution xB = (AB)−1b, xN = 0 is called a basic solution. The solution of Eq. (2) is
computed by the relation s= c−AT y , where yT = (cB)T (AB)−1 are the dual variables and
s are the dual slack variables. The basis AB is dual feasible iff s≥ 0. The ith row of the
coefficient matrix A is denoted by Ai. and the jth column by A.j . Notation xB[i] refers to
the ith basic variable (ith element of vector xB). In solving LPs by pivoting methods, a
huge amount of computational effort is consumed on the inversion of the basis AB. The
basis is maintained in some factorized form. We use the LU-factorization available in
MATLAB to compute the inverse of the basis in all three algorithms, iEPSA, EPSA and
PDIPSA.

The iEPSA method
A common characteristic of the majority of simplex-type algorithms is that they can
be described as a process that uses simplex paths which lead to optimal solution. One
advantage of the Exterior Point algorithms is that they use two paths to reach the optimal
basis. One is feasible and the other infeasible (exterior). The relaxation of the feasibility
constraints seems to be efficient in practice. Another potential advantage of EPSA is
that should the initial direction be feasible (it spans the feasible region), the method can
be applied directly on the original problem, without having to first compute an initial
feasible basic solution thus completely avoiding Phase I. This is because EPSA never loses
contact with the feasible region if the initial direction crosses it. On the other hand, one
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of the main disadvantages of the EPSA is the difficulty of constructing a good moving
direction.

This drawback can be avoided if the exterior path is replaced with a dual feasible
simplex path. It has been shown that by replacing the exterior path of an EPSA with a dual
feasible simplex path results in an algorithm free from the computational disadvantages
of EPSA (Paparrizos, Samaras & Stephanides, 2003b). A more effective version is the
PDIPSA (Samaras, 2001). This algorithm can circumvent the problems of stalling and
cycling more effectively and as a result improves the performance of the primal-dual
exterior point algorithms. The advantage of PDIPSA emanates from the fact that it uses an
interior point.

The iEPSA method is initialized with a pair of initial points: an infeasible basic solution
and an interior point. The initial interior point (xinterior ) can be computed by applying an
IPM in Eq. (1) with cT = 0. Next, it constructs a feasible direction (d = xinterior−xcurrent )
and computes the pair of entering/leaving variables and a new (better) interior point.
The above computations continue, swapping infeasible basic solutions on the exterior
of the feasible region in a non-monotonic way, and in the interior by using better
interior points (monotonic movement) in order to construct the search directions. The
proposed method prioritizes monotonic pivots; however, should there be no monotonic
eligible steps, the method moves to the least-worse non-monotonic infeasible basic
solution.

If iEPSA finds a primal feasible basic solution, then the EPSA is applied to monotonically
converge to the optimal solution. If at any given iteration iEPSA moves to a dual feasible
partition then PDIPSA is applied.With the last interior point and the dual feasible partition
from iEPSA, PDIPSA can also monotonically find the optimal solution.

Step-by-step description of iEPSA and pseudocode
The algorithm consists of two phases. In the first phase, the algorithm generates a sequence
of points (x iinterior ,x

i
exterior ), i= 0,1,2,...,T , where x iinterior is a point in the relative interior

of the feasible region for i= 0,...,T , and x iexterior is a basic solution to LP, that is infeasible
to both the primal and the dual problem for i= 0,...,T −1. The first phase ends with a
pair (xTinterior ,x

T
exterior ), where the exterior point is either feasible to the primal or the dual

problem. If the first phase ands with a basic feasible solution to the primal, then the second
phase runs an algorithm called Exterior Point Simplex Algorithm (EPSA) from previous
literature (Paparrizos, 1993), to obtain the optimal basic feasible solution. If the first phase
ends with a dual feasible solution, the second phase runs an algorithm called Primal-Dual
Interior Point Simplex Algorithm (PDIPSA), also from previous literature (Samaras, 2001).
We show that the first phase method always ends with a basic solution that is feasible to
either the primal or the dual problem. Thus, using the prior results on EPSA and PDIPSA,
the overall algorithm is shown to correctly solve LP.

The main idea behind the first phase is the following: the algorithm is ini-
tialized with any basic (infeasible) solution x0exterior and an interior point x0interior ,
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found by a standard Interior Point Solver (in this case MOSEK IPM). At ev-
ery iteration, i = 0,1,2,... one computes the intersection of the line passing
1 Data: Eq. (1), Infeasible Basic Partition [BN ], Interior Point xinterior
2 Result: Primal or Dual feasible basic partition [BN ]

3 (Initialization) Compute:
4 (AB)−1,xB,wT ,(sN )T

5 xcurrent =
[
xB
xN

]
6 d = xinterior −xcurrent
7 P =

{
j ∈N : sj < 0

}
, Q=

{
j ∈N : sj ≥ 0

}
8 (sP )T = (cP )T −wTAP , (sQ)T = (cQ)T −wTAQ

9 (General loop)
10 while xB(6≥ 0) do

11 αα= xcurrent +αd : α= xB[ra ]
−dB[ra ]

=min
{

xB[i]
−dB[i]

: dB[i]< 0
}
,∀i= 1,...,m

12 ββ = xcurrent +βd : β =
xB[rb ]
−dB[rb ]

=max
{

xB[i]
−dB[i]

: xB[i]< 0
}
,∀i= 1,...,m

13 if α=+∞ then
14 STOP-Eq. 1 is unbounded.

else
15 Find xmiddle =

αα+ββ
2

16 if cT xmiddle < cT xinterior then
17 x interior = xmiddle

else
18 if cT xmiddle = cT xinterior then

19 α=min
{
(xinterior )[i]

c[i]
: −c[i]< 0

}
20 x interior = xinterior + α

2 (−c
T )

else

21 d = xinterior −xmiddle

22 α=min
{
(xinterior )[i]
−(d)[i]

: (d)[i]< 0
}

23 x interior = xinterior + α
2 d

end if
end if

24 Compute:

25 xB[rb]= xk
26 HrP = ((AB)−1)rb.AP
27 HrQ = ((AB)−1)rb.AQ,

28 θ1=
−sp
Hrp
=min

{
−sj
Hrj
:Hrj < 0,j ∈ P

}
29 θ2=

−sq
Hrq
=min

{
−sj
Hrj
:Hrj < 0,j ∈Q

}
30 (Pivot-Update)
31 Find t1,t2 : P(t1)= p , Q(t2)= q.
32 if θ1 ≤ θ2 then
33 l = p.

else
34 l = q

end if
35 Find t : N (t )= l . Set N (t )= k , B(rb)= l . Update:

36 (AB)−1, xB,wT ,(sN )T ,(sP )T ,(sQ)T , P,Q, xcurrent =
[
xB
xN

]
, d = x interior −xcurrent

end if
end while

Algorithm 1: iEPSA
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Figure 1 Flow diagram of iEPSA.
Full-size DOI: 10.7717/peerjcs.265/fig-1

through x iexterior and x iinterior with the feasible region. This gives a line segment l (assuming
the problem is bounded) with midpoint x imiddle . Otherwise, one takes a half-step from the
current x iinterior in the direction of x

i
middle and sets this as the new x i+1interior . One also computes

the endpoint of the line segment l closest to x iinterior . This endpoint lies on some facet of
the feasible region. This facet dictates which nonbasic variable will enter the basis and an
appropriate exiting variable is selected. This then gives the new basic solution x i+1exterior .

A flow diagram of iEPSA combined with EPSA and PDIPSA to provide an integrated
solver for LP is shown in Fig. 1. A formal description of the iEPSA method is given in
Algorithm 1.

An example
We will briefly demonstrate the iEPSA method in a simple example. Points {αα,ββ}
represent the exiting and entering boundary points correspondingly for each feasible
direction spanning the polyhedron. Assume we are given the following linear programming
problem:

max Z = x1 + x2
subject to x1 − x2 ≤ 2

−x1 + x2 ≤ 4
3x1 + 5x2 ≤ 30
−4x1 − 13x2 ≤ −23

x1 − 8x2 ≤ −12
8x1 − 5x2 ≤ 3

xi ≥ 0,∀i∈ {1,2}

(4)

The corresponding feasible region is depicted in Fig. 2. There exist in total eight different
variables after the addition of the slack ones. The axis system represents variables x1 (y=0)
and x2 (x=0). The numbers with P in brackets on the right at each basic solution stand for
the number of elements in vector P . The optimal point is [3,4.2] and the optimal objective
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Figure 2 Feasible region and duality on vertexes for Eq. (4).
Full-size DOI: 10.7717/peerjcs.265/fig-2

value is Z = 7.2. After the addition of the slack variables we have:

A=



1 −1 1 0 0 0 0 0
−1 1 0 1 0 0 0 0
3 5 0 0 1 0 0 0
−4 −13 0 0 0 1 0 0
1 −8 0 0 0 0 1 0
8 −5 0 0 0 0 0 1


,c =

[
−1,−1,0,0,0,0,0,0

]
,b=



2
4
30
−23
−12
3


Initialization

Assume we start with the infeasible partition B= [1,3,4,5,7,8], N = [2,6] and the
following interior point xinterior (calculated from MOSEK’s IPM). All the appropriate
computations are:

(AB)−1=



1 0 0 0.25 0 0
0 1 0 −0.25 0 0
0 0 1 0.75 0 0
0 0 0 0.25 1 0
0 0 0 −0.25 0 0
0 0 0 2 0 1


,(sN )T =

[
2.25,−0.25

]
,wT
=

[
0,0,0,0.25,0,0

]
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xB=



−3.75
9.75
12.75
−17.75
5.75
−43


,xcurrent =



5.75
0
−3.75
9.75
12.75
0

−17.75
−43


,xinterior =



0.3189
3.0877
4.7688
1.2312
13.6047
18.4160
12.3829
15.8874


Here w are the dual variables. The N set of indexes actually represents the current

non-basic solution. In our case [2,6] is the 2-D point [5.75,0]. A feasible direction d is then
constructed by connecting the interior point with the infeasible basic solution:

d = xinterior−xcurrent =



0.3189
3.0877
4.7688
1.2312
13.6047
18.4160
12.3829
15.8874


−



5.75
0
−3.75
9.75
12.75
0

−17.75
−43


=



−5.4311
3.0877
8.5188
−8.5188
0.8547
18.4160
30.1329
58.8874


Mapping now the direction d on the basic variables we get dB:

dB=



8.5188
−8.5188
0.8547
30.1329
−5.4311
58.8874


Also we have P = [6] andQ= [2]. The direction from the initial infeasible basic solution

(5.75,0) to the interior point is shown in Fig. 3. Since xcurrent is our initial infeasible basic
solution and d is our current feasible direction, this direction intersects the feasible region
at an exiting point AA1 (as shown in Fig. 3) which can be calculated using the relations
below:

General loop - Iteration 1

α=
xB[r]
−dB[r]

=min
{

xB[i]
−dB[i]

: dB[i]< 0
}
=min

{
xB[2,5]
−dB[2,5]

}
=min

{
9.75
8.5188

,
5.75
5.4311

}
=

min{1.1445,1.0587}= 1.0587
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Figure 3 Constructing the first direction for Eq. (4).
Full-size DOI: 10.7717/peerjcs.265/fig-3

αα= xcurrent +αd =



5.75
0
−3.75
9.75
12.75
0

−17.75
−43


+1.0587



−5.4311
3.0877
8.5188
−8.5188
0.8547
18.4160
30.1329
58.8874


=



0
3.2690
5.2690
0.7310
13.6549
19.4973
14.1522
19.3451


In a similar manner, the entering point BB1 (as shown in Fig. 3) can be calculated using

a maximum ratio test:

β =
−xB[r]
dB[r]

=max
{
−xB[i]
dB[i]

: xB[i]< 0
}
=max

{
−xB[1,4,6]
dB[1,4,6]

}
=

max
{
−3.75
−8.5188

,
−17.75
−30.1329

,
−43
−58.8874

}
=max{0.4402,0.5891,0.7302}= 0.7302

Hence, rb = 3, then the 3rd element of [1,4,6] is r = 6.
The entering point then is:

ββ = xcurrent +βd =



5.75
0
−3.75
9.75
12.75
0

−17.75
−43


+0.7302



−5.4311
3.0877
8.5188
−8.5188
0.8547
18.4160
30.1329
58.8874


=



1.7842
2.2547
2.4705
3.5295
13.3741
13.4475
4.2533

0


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It is easy now to compute the middle point MIDDLE1 (as shown in Fig. 3) between
αα−ββ:

xmiddle =
αα+ββ

2
=



0.8921
2.7618
3.8697
2.1303
13.5145
16.4724
9.2027
9.6726


We observe the following:
• Both exiting and entering points have only one zero element which was expected since
both points are boundary in a 2-D problem
• Maximum step size β is less than the minimum step α so as the entering point is closer
to the infeasible basic solution and the exiting furthest as expected, since the direction
will intersect the feasible region
• These two boundary points define a unique feasible ray segment from ββ to αα
(ββ→αα)
• The objective function value at ββ is better than in αα (direction is non-improving)
and the objective function value at the middle point is better than the initial interior
point.

Since the middle point has better objective value than the initial interior point (it
is: Zmiddle = (cTmiddle)= [−0.8921,−2.7618] = −3.6539 and Zxinterior = (cTxinterior )=
[−0.3189,−3.0877] =−3.4066) we keep this middle point as an improved interior point
for the next iteration. We now choose the leaving variable according to ββ boundary point:
k= 8,r = 6. The variable xB(r)= xk = x8 is leaving the basis. We can nowmove on, to select
the entering variable xl :

HrP =B−1A.P = [2]> 0

HrQ=B−1A.Q= [−31]< 0

l = 2,t2= 1,P = [6],Q= [8]

θ1= [ ],θ2= [0.0726]

Since only θ2 could be computed, the selection is done using the set Q. Variable xl = x2
is entering the basis. The pivot operation now updates the basic and non-basic index lists
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as shown below:

B=
[
3,4,5,7,1,2

]
,N =

[
8,6
]
,(AB)−1=



1 0 0 −0.0242 0 −0.1371
0 1 0 0.0242 0 0.1371
0 0 1 0.4435 0 −0.1532
0 0 0 −0.4758 1 −0.3629
0 0 0 −0.0403 0 0.1048
0 0 0 −0.0645 0 −0.323


,

(sN )T =
[
0.0726,−0.1048

]
,wT
=

[
0,0,0,0.1048,0,−0.0726

]
,

xB=



2.1452
3.8548
19.3387
−2.1452
1.2419
1.3871


,xcurrent =



1.2419
1.3871
2.1452
3.8548
19.3387

0
−2.1452

0


Note that xB≤ 0 in this pivot. The new direction d = xmiddle−xcurrent now is:

d =



0.8921
2.7618
3.8697
2.1303
13.5145
16.4724
9.2027
9.6726


−



1.2419
1.3871
2.1452
3.8548
19.3387

0
−2.1452

0


=



−0.3498
1.3747
1.7246
−1.7246
−5.8242
16.4724
11.3479
9.6726


H⇒ dB=



1.7246
−1.7246
−5.8242
11.3479
−0.3498
1.3747


General loop: Iteration 2

The new exiting boundary point AA2 (as shown in Fig. 4) is:

α=
xB[r]
−dB[r]

=min
{

xB[i]
−dB[i]

: dB[i]< 0
}
=min

{
xB[2,3,5]
−dB[2,3,5]

}
=min

{
3.8548
1.7246

,
19.3387
5.8242

,
1.2419
0.3498

}
=min{2.2352,3.3204,3.5499}= 2.2352

αα= xcurrent +αd =



1.2419
1.3871
2.1452
3.8548
19.3387

0
−2.1452

0


+2.2352



0.3498
1.3747
1.7246
−1.7246
−5.8242
16.4724
11.3479
9.6726


=



0.4599
4.4599

6
0

6.3203
36.8196
23.2200
21.6204


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Figure 4 Constructing the second direction for Eq. (4).
Full-size DOI: 10.7717/peerjcs.265/fig-4

Correspondingly, the entering point BB2 (as shown in Fig. 4) can be calculated using
the maximum ratio test:

β =
−xB[r]
dB[r]

=max
{
−xB[i]
dB[i]

: xB[i]< 0
}
=max

{
−xB[4]
dB[4]

}
=max

{
−2.1452
−11.3479

}
= 0.1890

Hence, rb= 4 so r = 4. The entering point then is:

ββ = xcurrent +βd =



1.2419
1.3871
2.1452
3.8548
19.3387

0
−2.1452

0


+0.1890



−0.3498
1.3747
1.7246
−1.7246
−5.8242
16.4724
11.3479
9.6726


=



1.1758
1.6470
2.4712
3.5288
18.2377
3.1139

0
1.8285


The new middle pointMIDDLE2 (as shown in Fig. 4) between αα−ββ is now:

xmiddle =
αα+ββ

2
=



0.8179
3.0535
4.2356
1.7644
12.2790
19.9667
11.6100
11.7244


The variable xB(r)= xk = x7,r = 4 is leaving the basis. We can now move on to select the

entering variable xl :
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P = [6],Q= [8]

HrP = (AB)−1A.P = [−0.4758]< 0

HrQ= (AB)−1A.Q= [−0.3629]< 0

l = 2,t2= 1,P = [7],Q= [8]

θ1= [−0.2203],θ2= [0.2]

Since θ1≤ θ2 the selection is done using the set P . Variable xl = x6 is entering the basis.
The pivot operation now updates the basic and non-basic index lists as shown below:

B=
[
3,4,5,6,1,2

]
,N =

[
8,7
]

(AB)−1=



1 0 0 0 −0.0508 −0.1186
0 1 0 0 0.0508 0.1186
0 0 1 0 0.9322 −0.4915
0 0 0 1 −2.1017 0.7627
0 0 0 0 −0.0847 0.1356
0 0 0 0 −0.1356 0.0169


,(sN )T =

[
0.1525,−0.2203

]
,

wT
=

[
0,0,0,0,0.2203,−0.1525

]
,xB=



2.2542
3.7458
17.3390
4.5085
1.4237
1.6780


Note that xB≥ 0 in this pivot. Method iEPSA stops here. The basic solutions constructed

as shown in Fig. 4 are C1→G→ A1. In practice, EPSA would take over and finish the
optimization moving with one extra iteration to the optimal vertex from the feasible vertex
A1. Note that in the second pivot, the middle point (MIDDLE2) constructed could have
worse objective function than MIDDLE1 (although it seems better in this case). We did
not calculate it on purpose here, since the second basic solution constructed is feasible.
The sequence of the objective function value at each pair of basic solutions with the
corresponding interior points is shown below:

basic solutions :
[
5.75, 2.629, 3.1017

]
interior points :

[
3.4066→ improved→ 3.6539
3.6539→ improved→ 3.8714

]
.

Proof of Correctness
The proposed method consists of three different algorithms. Besides iEPSA (the non-
monotonic part), the rest two (EPSA and PDIPSA) have been already proven to be correct
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and finite. For more details see (Paparrizos, Samaras & Stephanides, 2003a; Paparrizos,
Samaras & Stephanides, 2003b). Since the nature of the iEPSA is non-monotonic, the
finiteness cannot be verified by proving that the algorithm improves the objective function
value at each iteration. Therefore iEPSA’s finiteness relies on the non-cycling property.

We will now use the same notation used in Zhang (1999) in respect to sign-properties
and simplex tableau. Later on we will adjust to what is proven in Fukuda & Terlaky (1997)
and explain how this portion of information affects iEPSA’s finiteness. With respect to the
basic partition [BN ] we call the following augmented matrix a simplex tableau:

where:

∣∣aij∣∣|B|×|N |= (AB)−1AN

{sj |j ∈N }= (cN )T − (cB)T (AB)−1AN

{xi|i∈B}= (AB)−1b

z = (cB)T (AB)−1b

It is well known, that if xB ≥ 0 the basis is primal feasible. If sN ≥ 0 the basis is dual
feasible. If both apply, the current basis is optimal. No primal or dual feasibility is required
in iEPSA, and the value of the objective function does not improve necessarily in a
monotonic way. Let us start by focusing on the correctness first. We have to prove that at
each iteration, an available pivot is always given. This actually means that both the selection
of the entering and leaving variables are well defined. First let us provide a series of proofs
about the monotonicity of the interior point that iEPSA uses to construct the feasible
direction at each iteration.
Lemma 1 A direction from an infeasible (exterior) point to an interior one, intersects the
feasible region into a unique pair of entering/leaving points.

Proof Assume the polyhedron X = {x|Ax ≥ b}. Let points αα,ββ be computed as
presented in iEPSA algorithm:

αα= xcurrent +αd

ββ = xcurrent +βd

Since xinterior and points αα,ββ lie on the same direction, the linear combination of the
interior point is:

xinterior = λαα+ (1−λ)ββ > 0, λ∈ (0,1).
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So for each element i of xinterior the following applies:

(λaai+ (1−λ)bbi)> 0,(λ> 0),∀i= 1,...,m

(aai+bbi)> 0

so there is no index i for which both elements in αα,ββ are equal to zero. This means that
points αα,ββ lie on a different hyperplane of the feasible region.

Lemma 2 Given a pair of a primal infeasible basic solution xcurrent and an interior point
xinterior , the direction d = xinterior − xcurrent intersects the feasible region into a pair of
leaving/entering αα,ββ boundary points and the middle point xmiddle =

αα+ββ

2 is also
interior.

Proof We will use the contradiction method. Assume that xmiddle is not interior. From
Lemma1 we know that the entering ββ ≥ 0 and leaving αα≥ 0 boundary points are not
the same. For the middle point we have:

xmiddle =
αα+ββ

2
≥ 0

Since xmiddle is not an interior point, there exists at least one element i equal to zero:

ααi+ββi

2
= 0

which contradicts with Lemma1. So xmiddle is interior (xmiddle > 0).

Lemma 3 From a given interior point, the half step of the minimum ratio test computed for
any given descending direction results to a strictly better interior point.

Proof Let xinterior be the first interior point. For a given descending direction d , its widely
know that the minimum ratio test computes the largest step we can move alongside the
direction d while preserving feasibility. We get:

α=
xB[ra]
−dB[ra]

=min
{

xB[i]
−dB[i]

: dB[i]< 0
}
,∀i= 1,2,...,m.

The new interior point is: x interior = xinterior+ α
2 d . Suppose now that x interior is not strictly

better. We have:

cTxinterior ≤ cTx interior⇔

cTxinterior− cTx interior ≤ 0⇔

cT (xinterior−x interior )≤ 0

If we substitute x interior we take:

cT (xinterior−xinterior−
α

2
d)≤ 0⇔−

α

2
cTd ≤ 0

which is a contradiction since d < 0. Hence, the new interior point x interior has a better
objective value.

Lemma 4 At each iteration of iEPSA, the direction d intersects the feasible region.
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Proof Lemmas 1, 2 and 3 immediately imply that at each iteration we construct the
direction towards an interior point. Thus, each direction intersects the feasible region.

Theorem 1 At each iteration of iEPSA, the objective value at the interior point xinterior
strictly decreases.

Proof iEPSA starts by constructing the direction towards an interior point. Lemma 1
implies that the entering and leaving points for this direction are not the same. The
algorithm then constructs at each iteration the middle point of the entering feasible
ray segment. Lemma 2 shows that this point will also be interior. It then compares the
two interior points and acts accordingly to secure the construction of a better interior
point. By exploiting the non-monotonicity on the infeasible basic solutions that result
in middle-interior points worse than in previous iterations and as a result offering a
descending direction between these two we can still provide improvement on the interior
point. Lemma 3 promotes the monotonicity in the interior of the feasible region.

We will prove each case by induction. The possible combinations for the objective
function value between points xmiddle and xinterior are shown below:

• cTxmiddle < cTxinterior : This case is trivial to examine.We directly acquire a better interior
point due to the relational geometric position of the points.
• cTxmiddle = cTxinterior : Since the objective function’s value is same on both points, they
either match or lie on a hyperplane vertical to the objective function vector c . We use
d =−c in that case, since the latter is a descending direction, as no direction can be
constructed between the two points. Using Lemma 2 the new interior point will have
better objective function value than the previous one.
• cTxmiddle > cTxinterior : We have

cTxmiddle > cTxinterior⇔

cTxinterior− cTxmiddle < 0⇔

cT (xinterior−xmiddle)< 0⇔

cTd < 0

So it stands that the direction d = xinterior−xmiddle is a descending direction. According
to Lemma 3 the interior point which will be constructed in the next iteration using the
half of the minimum ratio step from point xinterior will be better. So in this case a better
interior point is also constructed.

For all the possible combinations an improved interior point can be constructed. Thus
iEPSA uses monotonicity in interior points.
Lemma 5 At each iteration of iEPSA, a leaving variable is always eligible.
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Proof Assume that at some iteration, xinterior > 0 is the current point and xcurrent < 0 is the
current infeasible basic solution. From the constraints of Eq. (1) we have:

(Axcurrent = b and Axinterior = b)⇔

Axinterior =Axcurrent⇔

Axinterior−Axcurrent = 0⇔

A(xinterior−xcurrent )= 0⇔

Ad = 0

hence d is a direction. The maximum ratio test is then given by:

β =
−xB[r]
dB[r]

=max
{
−xB[i]
dB[i]

: xB[i]< 0
}
,∀i= 1,2,...m

and we now need to prove that β > 0. We have d = xinterior −xcurrent , and for xcurrent < 0
since xinterior > 0, it follows that d > 0. Thus there exist columns in the maximum ratio test
that will be positive, so β > 0 is computable.

Lemma 6 If a pivot from an infeasible basic solution B→ B′ to another is admissible for
iEPSA, then the inverse B′→B is not.

Proof First we will analyze the sign properties of the algorithm. Assume that k is the
leaving variable (k ∈B), l is the entering one (l ∈N ). The difference in objective function’s
value between two consecutive extreme points [B,N ] and

[
B′,N ′

]
is given by:

z ′−z =1z = (sN )l(xB′)l .

We know also that the revised updating equation for the basic solution xB is:

xB′ = xB−
f
g
hl ,where

f = xB(r),g =Hrl,h.l = (AB)−1A.l

The algorithm selects the entering variable so as HrN = [HrP HrQ] < 0, thus Hrl = g < 0.
This means that the conjunction of the pivot row and column, the pivot element, is always
negative for iEPSA. For the pivot row it also applies that Hrl =−1,xB(r)= xk = 0. So:

xB(l)′ = xl =
f
g
=
< 0
< 0

> 0.

This means that the leaving variable will be replaced by a positive one after the pivot. Since
the pivot from B′→ B is reverse to B→ B′, the leaving variable of the first pivot cannot
be selected immediately as leaving for the next pivot since it needs to be negative (as a
reminder, the leaving variable is selected always by using the maximum ratio test, thus
always negative).

Lemma 7 If iEPSA selects the entering variable from set P then the step is monotonic. If it is
from set Q then the step is non-monotonic.
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Figure 5. Pivot type I (set P).

sl
−z ⋆ ⋆ · · · ⋆ ⋆ −
⋆ ⋆
...

...
⋆ ⋆

xk − ⋆ ⋆ · · · ⋆ ⋆ −

Figure 6. Pivot type II (set Q).

sl
−z − ⋆ · · · − ⋆ +
⋆ ⋆
...

...
⋆ ⋆

xk − + ⋆ · · · + ⋆ −

When the selection is done from sets P and Q respectively, and since:385

P =
{

j ∈ N : s j < 0
}

and Q =
{

j ∈ N : s j ≥ 0
}

386

we have (via the positivity of the leaving variable on the adjacent basic solution of Lemma 7):387

P =⇒ ∆z = z′− z = slxl = (−)(+)< 0388

Q =⇒ ∆z = z′− z = slxl = (+)(+)> 0389

The sign properties previously proved result into the following unique pair of pivot types, depicted in390

Figures 5 and 6. To select an entering variable from set Q (thus pivot of type II), automatically means that391

either HrP ≥ 0, or P = Ø).392

Lemma 9 The selection of the entering variable for iEPSA is well defined.393

In (Fukuda and Terlaky, 1997) three types of terminal tableau for a linear problem are defined. Those394

are considered to be terminal because they define three different terminal states for a LP: i) optimality ii)395

primal-inconsistency iii) dual-inconsistency. We emphasize on the second one shown here:396

− ⊖ ·· · ⊖397

Notice that since the leaving variable xk = xB(r) is always negative for iEPSA, and Terlaky is using398

D =−(AB)
−1AN , this tableau version has opposite signs of what iEPSA uses for the pivot row (HrN =399

(AB)
−1

rAN). We know that iEPSA selects an entering variable with HrN = [ HrP HrQ] < 0, thus the400

pivot row on this terminal tableau matches the case where HrN ≥ 0 for iEPSA. This would be a deadlock401

for iEPSA, a case where no eligible entering variable could be detected (all pivot elements positive or402

zero). As a result, this terminal tableau cannot occur in iEPSA run time, since iEPSA is only applicable on403

feasible LPs as it requires an initial interior point to initialize, and this terminal tableau reveals infeasibility404

of the primal problem.405
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Figure 5. Pivot type I (set P).
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When the selection is done from sets P and Q respectively, and since:385

P =
{

j ∈ N : s j < 0
}

and Q =
{

j ∈ N : s j ≥ 0
}

386

we have (via the positivity of the leaving variable on the adjacent basic solution of Lemma 7):387

P =⇒ ∆z = z′− z = slxl = (−)(+)< 0388

Q =⇒ ∆z = z′− z = slxl = (+)(+)> 0389

The sign properties previously proved result into the following unique pair of pivot types, depicted in390

Figures 5 and 6. To select an entering variable from set Q (thus pivot of type II), automatically means that391

either HrP ≥ 0, or P = Ø).392

Lemma 9 The selection of the entering variable for iEPSA is well defined.393

In (Fukuda and Terlaky, 1997) three types of terminal tableau for a linear problem are defined. Those394

are considered to be terminal because they define three different terminal states for a LP: i) optimality ii)395

primal-inconsistency iii) dual-inconsistency. We emphasize on the second one shown here:396
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Notice that since the leaving variable xk = xB(r) is always negative for iEPSA, and Terlaky is using398

D =−(AB)
−1AN , this tableau version has opposite signs of what iEPSA uses for the pivot row (HrN =399

(AB)
−1

rAN). We know that iEPSA selects an entering variable with HrN = [ HrP HrQ] < 0, thus the400

pivot row on this terminal tableau matches the case where HrN ≥ 0 for iEPSA. This would be a deadlock401

for iEPSA, a case where no eligible entering variable could be detected (all pivot elements positive or402

zero). As a result, this terminal tableau cannot occur in iEPSA run time, since iEPSA is only applicable on403

feasible LPs as it requires an initial interior point to initialize, and this terminal tableau reveals infeasibility404

of the primal problem.405
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Figure 6 Pivot type II (set Q).
Full-size DOI: 10.7717/peerjcs.265/fig-6

Proof When the selection is done from sets P and Q respectively, and since:

P =
{
j ∈N : sj < 0

}
and Q=

{
j ∈N : sj ≥ 0

}
we have (via the positivity of the leaving variable on the adjacent basic solution of Lemma
6):

P H⇒1z = z ′−z = slxl = (−)(+)< 0

QH⇒1z = z ′−z = slxl = (+)(+)> 0

The sign properties previously proved result into the following unique pair of pivot types,
depicted in Figs. 5 and 6. To select an entering variable from set Q (thus pivot of type II),
automatically means that either HrP ≥ 0, or P =Ø).

Lemma 8 The selection of the entering variable for iEPSA is well defined.

In Fukuda & Terlaky (1997) three types of terminal tableau for a linear problem
are defined. Those are considered to be terminal because they define three different
terminal states for a LP: (i) optimality (ii) primal-inconsistency (iii) dual-inconsistency.
We emphasize on the second one shown here:
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Proof Notice that since the leaving variable xk = xB(r) is always negative for iEPSA, and in
Fukuda & Terlaky (1997) D=−(AB)−1AN , this tableau version has opposite signs of what
iEPSA uses for the pivot row (HrN = (AB)−1r AN ). We know that iEPSA selects an entering
variable with HrN = [HrP HrQ] < 0, thus the pivot row on this terminal tableau matches
the case where HrN ≥ 0 for iEPSA. This would be a deadlock for iEPSA, a case where no
eligible entering variable could be detected (all pivot elements positive or zero). As a result,
this terminal tableau cannot occur in iEPSA run time, since iEPSA is only applicable on
feasible LPs as it requires an initial interior point to initialize, and this terminal tableau
reveals infeasibility of the primal problem.

Following the insight of what is stated in Fukuda & Terlaky (1997), we will now prove
that iEPSA will never reach a deadlock, a case where the method is forced to cycle. We first
need a definition:

Definition: We call redundant a constraint in a LP which represents geometrically a half-
space implied already by other constraint(s). Thus, a redundant constraint can be eliminated
from the original LP without altering the equivalence of its initial feasible region.
Theorem 2 Method iEPSA cannot reach a cycling deadlock.

Proof The near-terminal tableau of type B as shown in Fig. 7 in Fukuda & Terlaky (1997),
actually means that the entering variable represents a redundant constraint. However in
terms of iEPSA sign properties, this translates into: (i) negative leaving variable xk (ii) pivot
row: HrN = (AB)−1r AN ≥ 0 except for the entering variable xl , which gives (HrN ).l < 0. This
means that only one entering variable is eligible. We now move onto proving that vector
HrN cannot contain only one negative element in the general case of cycling. The cycling
example that we will analyze is minimal; each variable in the cycle became entering and
leaving only once.

This near-terminal tableau means that the constraint represented by variable l is a
redundant constraint for the primal problem. Let us assume the general case, where cycling
occurred as shown in Fig. 8. For simplicity, we depict basic solutions as nodes in a graph.
Each oriented arrow represents an admissible pivot for iEPSA except for the one(s) in red
color. A cycling assumption implies a case where the algorithm began on basic solution
like node 1, moved after a finite number of pivots to node n and then again to 1, thus
producing a cycle. All variables involved into the cycle changed basic/nonbasic status at
least once.

Assume the pivot from (1→ n) is given by the pivot operation xk,sl where k is the index
of the leaving variable, and l the index of the entering one. The step (n→ 1) was admissible
by the algorithm, the sign properties apply, so on basic solution 1, xk > 0 , and of course
on n, xl < 0 (via Lemma 6). It is now also clear that (1→ n) cannot be admissible for
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Following the insight of what is stated in (Fukuda and Terlaky, 1997), we will now prove that iEPSA will406

never reach a deadlock, a case where the method is forced to cycle. We first need a definition:407

Definition: We call redundant a constraint in a LP which represents geometrically a half-space408

implied already by other constraint(s). Thus, a redundant constraint can be eliminated from the original409

LP without altering the equivalence of its initial feasible region.410

Theorem 10 Method iEPSA cannot reach a cycling deadlock.411

The near-terminal tableau of type B as shown in Figure 7 in (Fukuda and Terlaky, 1997), actually means412

that the entering variable represents a redundant constraint. However in terms of iEPSA sign properties,413

this translates into: i) negative leaving variable xk ii) pivot row: HrN = (AB)
−1

rAN ≥ 0 except for the414

entering variable xl , which gives (HrN).l < 0. This means that only one entering variable is eligible. We415

now move onto proving that vector HrN cannot contain only one negative element in the general case of416

cycling. The cycling example that we will analyze is minimal; each variable in the cycle became entering417

and leaving only once.418
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Figure 7. Near terminal tableau type B.

This near-terminal tableau means that the constraint represented by variable l is a redundant constraint419

for the primal problem. Let us assume the general case, where cycling occurred as shown in Figure420

8. For simplicity, we depict basic solutions as nodes in a graph. Each oriented arrow represents an421

admissible pivot for iEPSA except for the one(s) in red color. A cycling assumption implies a case where422

the algorithm began on basic solution like node 1, moved after a finite number of pivots to node n and423

then again to 1, thus producing a cycle. All variables involved into the cycle changed basic/nonbasic424

status at least once.425

Assume the pivot from (1 → n) is given by the pivot operation xk,sl where k is the index of the leaving426

variable, and l the index of the entering one. The step (n → 1) was admissible by the algorithm, the sign427

properties apply, so on basic solution 1, xk > 0 , and of course on n, xl < 0 (via lemma 7). It is now also428

Figure 8. The general case of cycling.
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Figure 7 Near terminal tableau type B.
Full-size DOI: 10.7717/peerjcs.265/fig-7

the algorithm (although 1,n are obviously neighbors) via Lemma 6. However, somewhere
before visiting node n, variable k, changed status and left the basis (in order to be eligible
as entering on the last node n).

Now, since the algorithm always selects leaving variables throughout a max-ratio test,
it’s obvious that all leaving variables are hyperplanes of the feasible region. Thus all leaving
variables selected by the algorithm are non-redundant, as removing either of them would
result to a new LP which would not be equivalent to the previous one.

If we assume that there is only one pivot admissible by the sign properties of the
algorithm on node n (that is, moving to 1), this means that the tableau on that pivot has
a negative leaving variable and, there is only one negative element in the pivot row HrN .
However according to Fukuda & Terlaky (1997), this is a near-terminal tableau of type B.
It means that the constraint that the entering variable represents, is a redundant one for
the primal problem. Since the entering variable k on n, is already known to be leaving in
some previous iteration, and all leaving variables are non-redundant in this algorithm this
is a contradiction. This near-terminal tableau of type B tableau can never appear for an
entering variable that has already previously served as an outgoing.

The algorithm as shown in Fig. 8 from n can either move to n→ 1 or to 2, since n is a
neighbor to 1 and 1 is a neighbor to 2, then n is potentially a neighbor to 2. If not a neighbor,
the pivot would not be admissible anyhow to assume a case of cycling. Additionally, node
n−1 is excluded as via Lemma 6 the backwards pivot is non-admissible, since the forward
was. The direct backwards pivot to n→ 1 is not possible via Lemma 6. So the algorithm can
again theoretically cycle with 2 now. We extract the following scenario depicted in Fig. 9:
the pivots 1→ 2,n→ 2,n→ 1 in the case of cycling are all admissible. Via Lemma 6, we
know that the leaving variable is always negative, and always being substituted by a positive
one on the pivot. Since 1→ 2 is admissible, k1≤ 0. Since n→ 2 is also admissible, k2≤ 0
as well. But in the pivot n→ 1, variable k must be substituted at node 1 with a positive
variable, and the substitution here is k1. However since 1→ 2 is admissible, again k1≤ 0
must apply; contradiction.

This case can only take place if 1→ 2,n→ 2 are admissible pivots, but the pivot element
for n→ 1 is positive, which is not applicable for iEPSA, so as the returning variable k1 can
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Figure 8 The general case of cycling.
Full-size DOI: 10.7717/peerjcs.265/fig-8

Figure 9 Supposing cycling was possible even for the only second alternative entering variable, this
schememust apply.

Full-size DOI: 10.7717/peerjcs.265/fig-9

be again negative. This means that the pivot n→ 1 is both ways non-admissible for iEPSA
if this applies.

RESULTS
Computational studies can provide preliminary results on the computational behavior
of an algorithm, thus enabling us to gain insight of its performance in different types of
LPs. The most popular types of test instances available for computational experiments are
instances from real world applications. The test bed used in the computational study was
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a set of benchmark problems (netlib, Kennington, Mészáros) that do not have bounds
and ranges sections in their .mps files. All reported times were measured in seconds with
built-in function cputime.

The computing environment we used in the computational study is described in Table 1,
using the most up-to-date possible software versions. Table 2 presents detailed information
about the computational study. The first column includes the name of the problem, the
second the number of constraints, the third the number of variables, the fourth the nonzero
elements of the matrix A and then the triplets of the results for all three algorithms in terms
of cpu time and total number of iterations follow. Finally the last three columns contain
the optimal objective value reported by each algorithm. The test bed includes 93 LPs from
netlib, Kennington and Mészáros collection. Ordónez & Freund (2003) have shown that
nearly 71% of the netlib LPs are ill-conditioned. Hence, numerical difficulties may occur.
We implemented anmps parser to read mps-files and convert data into MATLABmat files.

The proposed algorithm (iEPSA) was implemented in MathWorks MATLAB
environment. The main reason for this choice was the support for high-level sparse
matrix operations. Four programming adjustments were used to improve the performance
of memory bound code in MATLAB. Those were: (i) store and access data in columns,
(ii) avoid creating unnecessary variables, (iii) vectorization instead of for-loops and (iv)
pre-allocate arrays before accessing themwithin loops. In order to handle numerical errors,
tolerance scalars were introduced. The default values of the above mentioned tolerances
were set equal to 1e−8 for all vectors and matrices for iEPSA. For the basis update of
iEPSA, EPSA and PDIPSA we used the MATLAB LU factorization decomposition scheme.
Furthermore, to obtain the first (and only) interior point for iEPSA we used a MATLAB
interface under a MEX-function provided for the MOSEK IPM (Andersen & Andersen,
2000; Andersen & Ye, 1996). This interface allowed us to modify appropriately the IPM so
as to stop the solver directly after finding the first interior point. We emphasize that we
used a zero objective function vector with MOSEK, and as a result MOSEK IPM is agnostic
in directions pointing towards any existing optimal solutions. In this way, the claim that
the first interior point we construct actually brings iEPSA very close to the optimal solution
already, is at least unsubstantiated. The pipeline representing how the total running times
were calculated for the competing algorithms is shown in Fig. 10. We did not use any
scaling technique to solve successfully all tested benchmarks as the EPSA pivoting scheme
is scaling invariant (Triantafyllidis & Samaras, 2014).

In Table 2 we present the arithmetic mean (A_MEAN ) computed for both the total cpu
time (in seconds) and number of iterations (niter). We present the execution time and
the number of iterations of each algorithm over the netlib, Kennington and Mészáros set
of LPs included. We compare the performance of the proposed new algorithm (iEPSA)
against CPLEX (Primal Simplex) using its default settings and forcing the suite to use
Primal Simplex (as iEPSA also solves the primal problem) and Gurobi (Primal Simplex)
using the same method as well. The proposed algorithm performs fewer iterations on
44/93 benchmarks versus CPLEX and 43/93 versus Gurobi. Specifically, in terms of average
number of iterations, iEPSA performs 47.3% less iterations than CPLEX and 28.7% less
iterations than Gurobi.
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Table 1 Description of the computing environment.

CPU Intel R© XEONTM E-2186 (2.9Ghz @ 6 cores - 12 threads)
RAM Size 64GB 2666MHz DDR4 Memory
L3 cache size 12MB
Operating System Windows 10 Pro x64
MATLAB version R2019b (9.7.0.1216025) Update 1 (Build date: Sept. 2019)
MOSEK Interior-Point Method v.9.0.94 (Build date: June 2019)
CPLEX Primal Simplex (ILOG Opt.Studio) v.12.9 (Build date: March 2019)
Gurobi Primal Simplex v.8.1.1

In terms of cpu-time, CPLEX, iEPSA and Gurobi correspondingly required on average
0.452, 5.59 and 0.057 seconds to solve all tested instances. Even if the difference between
iEPSA and the commercial solvers is substantial, it is worthy to note that m-code (iEPSA) is
significantly slower than pure C implementations (mex-functions of CPLEX and Gurobi),
thus justifiable to witness in this computational study. However, the average number of
iterations is irrelevant to the programming language used, and only relies on the algorithmic
mechanics for each solver. Therefore, it can be a transparent criterion to gain insight about
practical performance among the competing algorithms. Also, Fig. 11 shows the violin
plots for the total number of iterations for all three algorithms across all tested benchmarks
stratified by three levels of sparsity.

Finally, there have been observed differences in the optimal value between the solvers in
the problems of the family largeXXX. This has to do with the very nature of the problems
themselves where numerical instability is highly present. iEPSA tends to agree completely
though with CPLEX objective values.

CONCLUSIONS
In this paper we proposed a new non-monotonic simplex-type algorithm for solving LPs.
iEPSA does not maintain monotonicity on the basic solutions but only on the interior
point solutions. This new algorithm is a combination of three different methods. The
computational results are very encouraging for the new algorithm. Algorithm iEPSA
performs 47.3% less iterations than CPLEX and 28.7% less iterations than Gurobi in
a collection of 93 well-known benchmarks. Future work includes the extension of the
computational studies to a larger number of tested problems from available benchmark
collections, improving the cpu-time performance by implementing the algorithms to a
low-level programming language and finally, implementing a tailored method to compute
the first interior point rather than using a commercial IPM.
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Table 2 Computational results on a selection of well known benchmark LPs.

CPU (s) NITER OBJECTIVE VALUE

BENCHMARK ROWS COLUMNS SPARSITY CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI

1 adlittle 55 95 7.18% 0.351 0.143 0.008 80 96 99 2.25E+05 2.25E+05 2.25E+05

2 afiro 26 32 9.74% 0.087 0.065 0.008 6 15 7 −4.65E+02 −4.65E+02 −4.65E+02

3 agg 112 112 4.94% 0.087 0.164 0.03 59 99 77 −1.64E+08 −1.64E+08 −1.64E+08

4 agg2 301 301 3.07% 0.084 0.284 0.019 117 201 170 −5.81E+07 −5.81E+07 −5.81E+07

5 agg3 301 301 3.08% 0.193 0.205 0.014 116 212 193 −3.83E+07 −3.83E+07 −3.83E+07

6 bandm 243 398 1.99% 0.084 0.351 0.012 266 307 308 −3.08E+02 −3.08E+02 −3.08E+02

7 baxter 14959 14959 0.03% 5.297 1.449 0.066 12 23 21 1.77E+15 1.77E+15 1.77E+15

8 beaconfd 82 143 10.70% 0.068 0.066 0.01 1 32 19 3.35E+04 3.35E+04 3.35E+04

9 blend 71 80 7.85% 0.073 0.089 0 77 106 50 −3.08E+01 −3.08E+01 −3.08E+01

10 bnl1 596 1,169 0.72% 0.136 1.359 0.027 1,897 874 1,446 1.88E+03 1.88E+03 1.88E+03

11 bnl2 1,821 3,007 0.23% 0.293 5.769 0.088 3,826 1,840 2,719 1.74E+03 1.74E+03 1.74E+03

12 brandy 133 207 6.89% 0.063 0.179 0.01 156 166 162 1.52E+03 1.52E+03 1.52E+03

13 cep1 1,520 3,248 0.14% 0.149 1.421 0.094 2,181 1,154 4,063 5.00E+04 5.00E+04 5.00E+04

14 cr42 905 1,513 0.48% 0.07 1.141 0.04 521 529 219 2.80E+01 2.80E+01 2.80E+01

15 cre_a 2,977 3,969 0.12% 0.443 4.989 0.041 2,904 1,973 2,962 2.36E+07 2.36E+07 2.36E+07

16 cre_c 2,349 3,392 0.14% 0.292 2.87 0.043 1,432 1,290 1,498 2.43E+07 2.43E+07 2.43E+07

17 degen2 442 534 1.67% 0.104 0.632 0.016 1,080 390 740 −1.44E+03 −1.44E+03 −1.44E+03

18 degen3 1,501 1,818 0.90% 0.415 7.486 0.051 4,549 1,560 4,276 −9.87E+02 −9.87E+02 −9.87E+02

19 e18 14230 14230 0.05% 4.877 11.58 0.12 655 727 1,282 3.00E+02 3.00E+02 3.00E+02

20 fffff800 319 663 2.36% 0.071 0.307 0.016 364 298 154 5.56E+05 5.56E+05 5.56E+05

21 fxm2-6 1,388 2,056 0.37% 0.127 2.749 0.061 1,433 1,415 1,615 1.84E+04 1.84E+04 1.84E+04

22 iiasa 632 2,970 0.35% 0.086 0.645 0.052 1,468 647 1,553 1.90E+08 1.90E+08 1.90E+08

23 israel 142 142 10.50% 0.071 0.247 0.007 171 295 145 −9.00E+05 −9.00E+05 −9.00E+05

24 large002 3,800 5,484 0.08% 0.684 32.964 0.177 4,749 1,941 2,167 7.61E+13 7.61E+13 8.61E−01

25 large003 3,726 5,457 0.08% 0.543 26.376 0.138 4,009 1,876 2,363 5.45E+17 5.45E+17 1.18E+02

26 large007 3,780 5,477 0.08% 0.64 30.559 0.184 4,031 2,456 2,475 6.30E+16 6.30E+16 1.62E+00

27 large008 3,798 5,484 0.08% 0.675 33.135 0.145 4,002 2,895 2,231 1.79E+16 1.79E+16 2.11E+00

28 large009 3,787 5,484 0.08% 0.667 33.223 0.143 4,236 3,048 2,337 1.76E+16 1.76E+16 1.77E+00

29 large011 3,782 5,480 0.08% 0.751 31.291 0.168 4,723 2,596 2,362 1.86E+16 1.86E+16 1.79E+00

30 large012 3,802 5,484 0.08% 0.669 31.915 0.146 4,270 2,359 2,160 4.13E+16 4.13E+16 1.78E+00

31 large016 3,810 5,458 0.08% 0.573 33.549 0.186 3,138 2,824 2,349 3.72E+21 3.72E+21 1.17E+02

32 lotfi 133 288 2.11% 0.068 0.14 0.006 97 204 162 −2.53E+01 −2.53E+01 −2.53E+01

33 multi 60 102 15.70% 0.055 0.032 0.036 53 49 64 4.04E+04 4.04E+04 4.04E+04

34 nemscem 479 1,398 0.50% 0.064 0.193 0.042 320 163 196 7.56E+04 7.56E+04 7.56E+04

35 nsic1 441 463 1.39% 0.062 0.727 0.037 382 418 398 −1.21E+07 −1.21E+07 −1.21E+07

36 nug05 148 225 2.22% 0.062 0.061 0.038 696 40 112 5.00E+01 5.00E+01 5.00E+01

37 nw14 73 123409 10.04% 0.394 10.392 0.403 179 302 4,895 6.18E+04 6.18E+04 6.18E+04
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Table 2 (continued)
CPU (s) NITER OBJECTIVE VALUE

BENCHMARK ROWS COLUMNS SPARSITY CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI
38 osa-07 1,118 23949 0.54% 0.428 2.136 0.11 681 445 1,112 5.36E+05 5.36E+05 5.36E+05

39 p0033 15 32 20.21% 0.062 0.011 0.025 16 13 14 1.73E+03 1.73E+03 1.73E+03

40 p0040 23 40 11.96% 0.062 0.015 0.025 6 14 16 6.18E+04 6.18E+04 6.18E+04

41 p0201 133 201 7.19% 0.064 0.053 0.009 64 72 114 6.88E+03 6.88E+03 6.88E+03

42 p0282 233 274 2.70% 0.07 0.014 0.006 33 10 105 3.67E+05 3.67E+05 3.67E+05

43 p0548 170 543 1.70% 0.069 0.089 0.008 88 101 71 3.77E+04 3.77E+04 3.77E+04

44 p19 284 586 3.19% 0.075 0.224 0.009 333 243 413 2.38E+05 2.38E+05 2.38E+05

45 p2756 739 2,740 0.39% 0.099 0.05 0.013 61 29 203 2.10E+04 2.10E+04 2.10E+04

46 refine 27 31 14.10% 0.065 0.022 0.005 24 24 17 −4.86E+05 −4.86E+05 −4.86E+05

47 rlfddd 4,050 57471 0.11% 2.811 0.115 0.048 13 14 13 −1.30E+01 −1.30E+01 −1.30E+01

48 rlfprim 8,048 8,048 0.04% 1.641 1.029 0.012 59 89 88 1.00E+00 1.00E+00 1.00E+00

49 route 20779 23923 0.04% 13.334 117.45 1.27 37650 7,551 20749 5.94E+03 5.94E+03 5.94E+03

50 sc105 103 103 2.62% 0.062 0.05 0 18 55 23 −5.43E+01 −5.43E+01 −5.43E+01

51 sc205 202 202 1.34% 0.061 0.147 0 76 200 63 −5.27E+01 −5.27E+01 −5.27E+01

52 sc50a 47 47 5.70% 0.059 0.018 0 7 25 8 −7.59E+01 −7.59E+01 −7.59E+01

53 sc50b 48 48 5.12% 0.058 0.03 0 11 44 12 −7.00E+01 −7.00E+01 −7.00E+01

54 scagr25 469 498 0.66% 0.068 0.267 0.014 350 181 517 −1.45E+07 −1.45E+07 −1.45E+07

55 scagr7 127 138 2.34% 0.061 0.039 0.005 84 43 71 −2.08E+06 −2.08E+06 −2.08E+06

56 scagr7-2r-108 3,474 4,123 0.08% 0.301 15.115 0.019 1,188 1,321 1,469 −8.34E+05 −8.34E+05 −8.34E+05

57 scagr7-2r-16 546 643 0.53% 0.065 0.262 0.008 130 191 228 −8.33E+05 −8.33E+05 −8.33E+05

58 scagr7-2r-27 909 1,072 0.32% 0.074 0.625 0.011 273 342 376 −8.34E+05 −8.34E+05 −8.34E+05

59 scagr7-2r-4 150 175 1.89% 0.056 0.048 0.007 68 54 90 −8.33E+05 −8.33E+05 −8.33E+05

60 scagr7-2r-8 282 331 1.02% 0.059 0.092 0.006 68 103 152 −8.33E+05 −8.33E+05 −8.33E+05

61 scfxm1 302 431 1.76% 0.065 0.244 0.01 283 232 288 1.85E+04 1.85E+04 1.85E+04

62 scfxm1-2b-4 622 946 0.59% 0.077 0.744 0.015 571 524 508 2.88E+03 2.88E+03 2.88E+03

63 scfxm1-2c-4 622 946 0.59% 0.083 0.765 0.015 595 538 558 2.88E+03 2.88E+03 2.88E+03

64 scfxm1-2r-4 622 946 0.59% 0.072 0.764 0.031 551 528 552 2.88E+03 2.88E+03 2.88E+03

65 scfxm1-2r-8 1,158 1,786 0.30% 0.103 2.348 0.045 1,127 1,115 1,252 2.88E+03 2.88E+03 2.88E+03

66 scfxm2 604 862 0.88% 0.077 0.77 0.02 582 553 573 3.68E+04 3.68E+04 3.68E+04

67 scfxm3 906 1,293 0.59% 0.098 1.411 0.023 875 801 947 5.50E+04 5.50E+04 5.50E+04

68 scorpion 317 324 1.13% 0.063 0.119 0.008 67 88 56 1.88E+03 1.88E+03 1.88E+03

69 scrs8 422 1,109 0.63% 0.073 0.403 0.009 515 375 218 9.04E+02 9.04E+02 9.04E+02

70 scrs8-2r-64b 936 1,587 0.20% 0.083 0.346 0.027 28 162 35 1.35E+03 1.35E+03 1.35E+03

71 scsd1 77 760 4.08% 0.065 0.271 0.004 258 358 216 8.67E+00 8.67E+00 8.67E+00
(continued on next page)
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Table 2 (continued)
CPU (s) NITER OBJECTIVE VALUE

BENCHMARK ROWS COLUMNS SPARSITY CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI CPLEX iEPSA GUROBI
72 scsd8 397 2,750 0.79% 0.092 3.162 0.01 1,720 1,869 786 9.05E+02 9.05E+02 9.05E+02

73 scsd8-2b-4 90 630 3.33% 0.058 0.183 0.025 193 239 97 1.53E+01 1.53E+01 1.53E+01

74 scsd8-2c-16 330 2,310 0.94% 0.075 1.159 0.028 1,174 827 251 1.50E+01 1.50E+01 1.50E+01

75 scsd8-2c-4 90 630 3.33% 0.062 0.167 0.04 215 227 97 1.50E+01 1.50E+01 1.50E+01

76 scsd8-2r-4 90 630 3.33% 0.063 0.171 0.028 155 224 83 1.55E+01 1.55E+01 1.55E+01

77 scsd8-2r-8 170 1,190 1.80% 0.062 0.476 0.027 337 493 134 1.60E+01 1.60E+01 1.60E+01

78 scsd8-2r-8b 170 1,190 1.80% 0.063 0.52 0.028 337 493 134 1.60E+01 1.60E+01 1.60E+01

79 sctap1 284 480 1.20% 0.078 0.249 0.008 185 313 171 1.41E+03 1.41E+03 1.41E+03

80 sctap1-2b-16 990 1,584 0.37% 0.087 0.439 0.024 294 414 113 2.81E+02 2.81E+02 2.81E+02

81 sctap1-2b-4 270 432 1.30% 0.061 0.084 0.028 79 106 40 2.39E+02 2.39E+02 2.39E+02

82 sctap1-2c-16 990 1,584 0.37% 0.088 0.518 0.026 322 451 167 3.26E+02 3.26E+02 3.26E+02

83 sctap1-2c-4 270 432 1.30% 0.065 0.082 0.04 93 112 48 2.36E+02 2.36E+02 2.36E+02

84 sctap1-2r-4 270 432 1.30% 0.058 0.079 0.035 64 106 15 2.81E+02 2.81E+02 2.81E+02

85 sctap1-2r-8 510 816 0.70% 0.068 0.189 0.026 125 229 41 3.61E+02 3.61E+02 3.61E+02

86 sctap1-2r-8b 510 816 0.70% 0.067 0.169 0.026 134 198 43 2.50E+02 2.50E+02 2.50E+02

87 sctap2 1,033 1,880 0.33% 0.098 0.473 0.015 535 351 237 1.72E+03 1.72E+03 1.72E+03

88 sctap3 1,408 2,480 0.25% 0.123 0.794 0.018 721 465 315 1.42E+03 1.42E+03 1.42E+03

89 share1b 112 220 4.55% 0.061 0.088 0.009 141 98 207 −7.66E+04 −7.66E+04 −7.66E+04

90 share2b 79 79 9.85% 0.059 0.035 0.005 42 39 49 −6.60E+02 −6.60E+02 −6.60E+02

91 ship08s 276 1,582 0.83% 0.068 0.493 0.009 282 410 308 1.88E+06 1.88E+06 1.88E+06

92 slptsk 2,861 3,347 0.76% 0.498 55.496 0.366 3,216 1,210 2,789 2.99E+01 2.99E+01 2.99E+01

93 stocfor1 96 96 3.53% 0.064 0.044 0.005 11 51 21 −7.91E+04 −7.91E+04 −7.91E+04

A_MEAN 0.452 5.59 0.057 1,240.688 653.581 917.441

Triantafyllidis
and

Sam
aras

(2020),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.265

27/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.265


Figure 10 The pipeline showing how we gradually construct an appropriate .mat file format (MAT-
LAB data file) to input in the competing algorithms and which segment of the pipeline we took into ac-
count in calculating their total cpu running time.

Full-size DOI: 10.7717/peerjcs.265/fig-10

Figure 11 Violin plots of number of iterations stratified by sparsity for all algorithms.
Full-size DOI: 10.7717/peerjcs.265/fig-11
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