
Received May 14, 2020, accepted June 19, 2020, date of publication June 24, 2020, date of current version July 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004612

Pipeline-Based Linear Scheduling of Big Data
Streams in the Cloud
NICOLETA TANTALAKI 1, STAVROS SOURAVLAS 1, (Member, IEEE),
MANOS ROUMELIOTIS1, (Member, IEEE), AND STEFANOS KATSAVOUNIS 2
1Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece
2Department of Production and Management Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Corresponding author: Nicoleta Tantalaki (nicoleta@uom.gr)

This work was supported by the project Algorithms and Applications in Social Networks and Big Data Systems which is funded by the
Unified Insurance Fund of Independently Employed (ETAA), Greece.

ABSTRACT Nowadays, there is an accelerating need to efficiently and timely handle large amounts of
data that arrives continuously. Streams of big data led to the emergence of several Distributed Stream
Processing Systems (DSPS) that assign processing tasks to the available resources (dynamically or not)
and route streaming data between them. Efficient scheduling of processing tasks can reduce application
latencies and eliminate network congestions. However, the available DSPSs’ in-built scheduling techniques
are far from optimal. In this work, we extend our previous work, where we proposed a linear scheme for
the task allocation and scheduling problem. Our scheme takes advantage of pipelines to handle efficiently
applications, where there is need for heavy communication (all-to-all) between tasks assigned to pairs of
components. In this work, we prove that our scheme is periodic, we provide a communication refinement
algorithm and a mechanism to handle many-to-one assignments efficiently. For concreteness, our work
is illustrated based on Apache Storm semantics. The performance evaluation depicts that our algorithm
achieves load balance and constraints the required buffer space. For throughput testing, we compared our
work to the default Storm scheduler, as well as to R-Storm. Our scheme was found to outperform both the
other strategies and achieved an average of 25%-40% improvement compared to Storm’s default scheduler
under different scenarios, mainly as a result of reduced buffering (≈ 45% less memory). Compared to
R-storm, the results indicate an average of 35%-45% improvement.

INDEX TERMS Stream processing, scheduling, big data, pipelines, distributed systems.

I. INTRODUCTION
Over past 20 years data has increased in a large scale and
in various fields. The rapid growth of cloud computing and
Internet of Things (IoT) promote the sharp growth of data fur-
ther. Managing the produced data and gaining insights from
it, is a challenge and possibly a key to competitive advantage.
Many organizations’ decisions rely heavily on processing
and analyzing this data the time it arrives. Environmental
monitoring, fraud detection, emergency response are just a
few examples of applications that require continuous and
timely processing of information [2], [3].

However, managing in real-time incoming data that arrives
continuously at volumes and high velocity, far exceeds the
capabilities of individual machines. Stream data processing

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

requires continuous calculation without interruption, and
high reliability requirements on resources. Messages should
be processed in-streamwithout any requirement to store them
to perform any operation or sequence of operations [4]. Cloud
computing technology with superior computational power
and high reliability rises as a promising solution for this kind
of processing.

In-memory computing is based on using a distributed
main memory system to process (and store) big data in real
time and is used to meet performance related requirements
like latency and throughput that are extremely important
in streaming applications [3]. If streams are not managed
carefully processing delays can become unacceptable and
lead to long queues at a processing node, buffer overflows,
and memory exhaustion. Multiple stream processing com-
putations should be interleaved on the same machine to
reduce the number of needed connections and assure high

117182 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3839-4829
https://orcid.org/0000-0002-9602-2663
https://orcid.org/0000-0001-8988-2457
https://orcid.org/0000-0003-2601-9327

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

throughput and increased performance. On the other hand,
heavily used machines result in memory thrashing, node
failures and increased network congestion. Overloaded and
underutilized machines should be avoided as imbalances lead
to increased computations and deteriorate system’s perfor-
mance [5]. Moreover, despite the dropping price of memory,
using large amounts of RAM to run everything in-memory
can be expensive, so proper mechanisms are needed to handle
it in an effective way.

The demand of elaborate orchestration over a collection
of machines becomes imperative to meet the required per-
formance for streaming applications and reduce costs in the
cloud. The process of scheduling the tasks into the cluster
resources in a way that achieves minimization of task com-
pletion time and improves resource utilization is known as
task scheduling. It focuses on which tasks to be placed on
which previously obtained resources, controls the order of job
execution [6], [7] and is an NP-hard problem [8], [9].

Several data stream processing systems (DSPSs) like
Apache Storm [10], Spark Streaming [11], Samza [12]
and Flink [13] have specifically emerged to address the
challenges of processing high-volume, real-time data. They
are designed to execute complex streaming applications as
Directed Acyclic Graphs (DAGs) over tuples of a stream.
They leverage data parallelism using mutiple threads of
execution per task (replicas), in addition to pipelined and
task-parallel execution of the desired DAG (see subsection
II.A ‘‘Preliminaries in Storm’’) [14].

Although there is extended literature on task scheduling in
batch systems like Hadoop [15], [16], the techniques used do
not fit in real-time processing of streams mainly because of
the difference in the computational model used in each case.
In batch processing systems, computations are assigned to the
nodes where the required data is stored, while in stream pro-
cessing systems most communicating tasks have to be placed
together on one node or rack. The available DSPSs’ in-built
scheduling techniques are far from optimal. For instance,
round robin that is the strategy used as the default scheduler
of Apache Storm does not take into account the cost of
moving tuples through network links to let them traverse
the correct sequence of tasks, defined in users’ applica-
tions. Several heuristics have been proposed, taking decisions
either offline (static solutions) or online (dynamic solu-
tions), based on the applications’ structure, tasks’ character-
istics, resources availability, workload and traffic conditions.
These heuristics are based on a number of different assump-
tions, have different optimization goals and aim at mini-
mizing different utility functions, like latency and network
usage.

In this work, we extend our previous work [1], where
we proposed a static, matrix-based, task allocation and
scheduling scheme performed in a memory-efficient and
well-balanced manner. We used a pipeline-based scheduling
approach that reduces the required buffer size to effectively
speed up processing. Our approach is inspired by the idea that
the reduction of the required buffer space can minimize tuple

losses (and possible re-submissions) and overhead delays that
heavily affect system’s performance. The use of pipelines
provides an enhanced scheme for internal queuing of the
incoming tuples and helps to process and forward them as
they arrive at the target node. Moreover, load balance opti-
mises the response time for each task, avoiding unevenly
overloading nodes while others are left idle. To the best of our
knowledge most of the existing solutions found in literature
rarely consider memory consumption in their analysis and
while they take into account the capability of the resources,
they generally ignore their load.

This time, we prove that the task allocation scheme that
forms the basis for our scheduler is periodic and thus,
the number of necessary computations can be decreased.
Moreover, taking into consideration that relevant tasks should
better be assigned to the same or adjacent nodes, we pro-
vide a communication refinement algorithm that was only
briefly described in our previous work. We also add another
pipeline-based scheme to handle ‘‘many-to-one’’ assign-
ments between tasks effectively and improve the system’s
performance. ‘‘Many-to-one’’ assignments led to delays in
tuple processing in our previous work. We also conduct more
experiments to validate our scheduler’s efficiency and com-
pare its performancewith the round strategy, that is the default
Apache Storm scheduler, and the R-Storm [17] scheduler
from the state-of-the-art.

We are going to use the operator-based model and Apache
Storm’s semantics to describe our work as it is a mature
project, with a very large community and popularity in cloud
computing industry, due to its high reliability and good pro-
cessing mode [3]. Our approach, though, is generic to any
data flow system and suitable for deployment and use in
large-scale clusters. While the proposed scheduler considers
only static scheduling for now, it can be extended to dynamic
scenarios but this is left for future work as described in
Section VII.

Our contributions are described below. We provide a
general topology-aware formulation of the task allocation
and scheduling problem using matrix transformations, which
introduces a scheme that:
• reduces the required buffer space. The queue size at each
task does not grow unmanageably, as each task receives
tuples from only one part of the stream at a time. Pipeline
stalls are also used to increase throughput and reduce the
number of tuple losses (tuples which are lost because
they cannot be processed on time).

• reduces the inter-node communication cost, thus the
total communication time, by placing to the max-
imum extent the communicating tasks to nearby
nodes.

• is balanced; provides almost equal processing load to the
cluster’s nodes.

• is periodic; the allocation of a specific number of tasks
is sufficient to complete the overall task allocation pro-
cedure.

• has linear complexity, determining faster computations.

VOLUME 8, 2020 117183

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

The rest of this paper is organised as follows: Section II
introduces the reader to Apache Storm and its default
scheduler to present the mathematical background of our
scheme based on Storm’s semantics. Section III describes
our task allocation and scheduling algorithms and includes
the proof of our scheme’s linear complexity. Section IV
depicts the application of our algorithms using two motivat-
ing examples. Section V reports the experiments done on our
approach. A discussion on the findings of our experiments is
also included. Section VI presents the related work regarding
both solutions already incorporated in prominent DSPSs and
heuristics found in literature. Finally, Section VII provides
conclusions and future directions.

II. BACKGROUND AND PROBLEM FORMULATION
In this section we briefly describe the way Apache Storm
represents and executes a stream processing application,
as we are going to use its semantics to describe our work.
Then, we present the mathematical background behind our
prototype design in details.

A. PRELIMINARIES IN STORM
A DSPS like Apache Storm represents a streaming applica-
tion as a Directed Acyclic Graph (DAG), where the vertices
show the operators that encapsulate processing logic (called
components in Storm) and the edges show the data flow
direction. Apache Storm uses the terms topology for a DAG
while a task is a component’s instance. The components of a
DAG are divided to spouts and bolts. A spout is a source of
streams in a topology and a bolt receives streams, processes
them, and forwards them for further processing.

We distinguish between the logical and physical abstrac-
tion in Storm. Fig. 1 shows the intercommunication of tasks
within a common topology in Storm (logical abstraction).
There is one spout, and four bolts, and each component
has four tasks. Links between components in the topology
indicate how tuples are passed around.

Part of defining a topology includes specifying for each
bolt which streams it should receive as input. A stream group-
ing defines how a stream should be partitioned among bolts’
tasks. Shuffle grouping is the most commonly used group-
ing [18]. It distributes tuples in a uniform randomly across
the tasks. An equal number of tuples should be processed by
each bolt. It is ideal when the processing load needs to be
distributed uniformly across the tasks and when there is no
requirement of any data-driven partitioning. It can be useful
for doing atomic operations such as a math operation but in
case the operation can’t be randomly distributed (e.g. in case
of word count), it does not fit.

In the physical layer, there is amaster node (Storm’s default
scheduler is a part of the Nimbus daemon on the master node)
and a set of physical machines (worker nodes) that can host
multiple operators. Nimbus communicates and cooperates
with a Zookeeper service to maintain a consistent list of
active worker nodes and to detect failures. Slots on each
worker node indicate the number of workers (Java Virtual

Machines-JVMs) that can run on this node. The number of
slots are typical set to the number of cores and execute a
part of the topology. Each worker running is launched and
monitored to have possible failures handled by a supervisor
executing on its worker node. Each operator’s code is exe-
cuted by threads or executors andmultiple threads of the same
component execute the same computation on different parts
of the stream in parallel. The number of parallel instances of
an operator (i.e. replicas) determine the operator’s replication
degree (also known as parallelization degree). In Apache
Storm it is set when a topology is submitted by the user.
Consequently, each component in a Storm topology has sev-
eral executors and each executor can have several tasks.
By default, Storm will run one task per thread. Each JVM
can host a number of threads from different components of
the same topology.

Storm’s default scheduler distributes the tasks of bolts and
spouts uniformly across all the nodes in the cluster in a round
robin fashion, but in this way it is not possible to balance load.
Tasks from a single bolt or spout will most likely be placed
on different physical machines but the main consideration in
this strategy is that the communication between tasks is not
taken into account. It is a common assumption that nearby
tasks would most probably communicate during processing,
so high communication latencies can be improved, if we
achieve task locality. Our approach looks at how components
are interconnected within the topology to determine what
are the executors (instances) that should be assigned to the
same or nearby nodes. The key idea is to use communication
patterns among executors, trying to place the most commu-
nicating executors as close as possible. Such a scheduling is
executed before the topology is started, so neither the load
nor the traffic are taken into account, and consequently no
constraint about memory or CPU is considered. Not taking
into account these points obviously limits the effectiveness
of an offline scheduler but our pipeline-based scheduling
technique tries to balance load and decrease queue waiting
times, enabling a very simple implementation that provides a
good performance.

Without loss of generality, we assume that the tuple pro-
cessing time of all the tasks is almost the same (this is a logical
assumption used also by shuffle grouping, see [8], [14]).
Under this hypothesis, we can divide the overall processing
into a set of well-defined processing steps and stages, terms
that are defined in the following subsection.

B. PROBLEM FORMULATION
Let us consider a cluster ofN nodes, and an application topol-
ogy like the one Fig. 1, where the interconnection between
the components is shown. In this figure, there are 4 bolts and
1 spout, each of them having 4 threads. Each thread executes
one task, so we can refer to tasks and threads interchangeably
from this moment on. We define the initial matrix, Minit ,
as a table that stores the tasks assigned to each node by the
default round-robin Storm scheduler. This table can have two
forms: in the first form, the tasks are indicated as letters and

117184 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 1. Intercommunication of tasks in a streaming application.

in the second they have been replaced by numbers.

Minit =

N0 N1 N2 N3 N4 N5
Q R S T A B
C D E F G H
I J K L M N
O P � � � �

≡

N0 N1 N2 N3 N4 N5
0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20© 21© 22© 23©

 (1)

The tasks indicated by � are added by our model as
‘‘dummies’’ and they are used to avoid empty values inMinit .
In the numbered representation, the dummy tasks are circled.
A dummy task plays no role in the actual processing.

Without loss of generality, we assume that the tuple pro-
cessing time of all the tasks is almost the same. Under this
hypothesis, we can divide the overall processing into a set
of well-defined processing steps and stages. In Definitions 1
and 2, we rigorously define these terms.
Definition 1: In our context, a processing step defines a

set of communications between nodes (which result in com-
munications between tasks), such that each node receives
stream parts from one node only. Once received, these stream
parts are assigned to proper threads, which, in their turn, are
executed on the data received.
Definition 2: In our context, a processing stage defines the

points of a logical path of spouts and bolts that a stream has
to follow, from its generation until the end of its processing.

In the example of Fig. 1, there are 3 stages: Stage 0, where
the stream parts move from the spout to Bolt 1, Stage 1, where
stream parts move from Bolt 1 to Bolts 2 and 3, and Stage 2,
where stream parts move from Bolts 2 and 3 to Bolt 4. Let
us define such an initial task allocation as A(t,N), where
t is the number of tasks per spout/bolt and N is the set of
nodes in the cluster. Proposition 1 forms the basis of our task
allocation. Algorithm 1 that is presented in subsection III.A
derives directly from the proof of this proposition.

Proposition 1: The initial matrix of Eq.1 can always be
transformed into an intermediate task allocation matrix,
M ′inter , where the rows of M

′
inter define a communication

between the cluster’s nodes, such that each node will be
receiving stream parts from one node at a time.

Proof: If we want to derive a mathematical formula
describing the round-robin placement of tasks in Minit , this
would be

Minit (i, j) = iN + j, (2)

where j is the column index, j ∈ [0 . . .N − 1], i is the row
index, i ∈

[
0, . . . ,

⌊
T
N

⌋
− 1

]
, and T is the total number

of tasks in the system. For our example, the application of
Eq.2 would produce the arithmetic representation of Eq.1.
By dividing Minit by t , we obtain an intermediate matrix,
M ′init , which represents tasks with their corresponding com-
ponent IDs (assuming that the spout has ID = 0, and bolts
1-4 have IDs 1-4, respectively). The ID = 5 corresponds to
the dummies:

M ′init =

0 0 0 0 1 1
1 1 2 2 2 2
3 3 3 3 4 4
4 4 5 5 5 5

≡

Q R S T A B
C D E F G H
I J K L M N
O P � � � �

 (3)

Actually,M ′init shows the initial allocation of spout/bolt tasks
into the system’s nodes. Now, we set G = gcd(t,N),
the greatest common divisor of t and N . Thus, we can find
integers t ′ and N ′, such that t = t ′G and N = N ′G. Under
this assumption, let us consider two rows of M ′init , one with
row index i and one with row index i′, where i′ = i+µt ′, for
some integer µ. Then,

M ′init (i, j) =
iN + j
t

(4)

M ′init (i
′, j) =

i′N + j
t
=

(i+ µt ′)N + j
t

(5)

By subtracting (4) from (5), we get

M ′init (i
′, j)−M ′init (i, j) =

(i+ µt ′)N + j− iN − j
t

=
iN + µt ′N + j− iN − j

t

=
µt ′N
t
=
µt ′GN ′

t

All the above divisions are integer. The notion of a class
will help us proceed with our proof.
Definition 3: A class k is defined as a group of the row

indices of M ′init , such that i (mod t
′) = k.

Because µt ′GN ′ is divided by N ′, in every column, all the
elements of M ′init with row indices that differ by t ′ will pro-
duce the same modulo when divided by N ′. These elements

VOLUME 8, 2020 117185

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

are G in total and can be brought together by following the
steps below:

1. For all the row indices ofM ′init , find all the k values, such
that i (mod t ′) = k . These distinct k values are called
classes.

2. Take the first row i, such that i (mod t ′) = k , that is i
belongs to class k .

3. All the row indices in every class will move to a new row
index:

inew =
⌊
i
t ′

⌋
+ kG (6)

The row transpositions will generate a transposed matrix
M ′trn. The transposed matrix M ′trn has two properties: (1) For
every column ofM ′trn, each class’s elements produce the same
modulo when divided to N ′, and (2)M ′trn can be divided into
a set of t ′×N ′ sub-matrices of sizeG×G. In other words, it is
a matrix with t ′ rows and N ′ columns of square sub-matrices
of size G×G. We use the notation1, to denote these square
sub-matirces:

M ′trn =

10,0 10,1 . . . 10,N ′−1
11,0 11,1 . . . 11,N ′−1
...

...
...

...

1t ′−1,0 1t ′−1,1 . . . 1t ′−1,N ′−1

 (7)

each element ofM ′trn is described by the following indices:

- i row index ofM ′trn as a whole, i ∈ [0, . . .
⌊
T
N

⌋
− 1]

- j column index ofM ′trn as a whole, j ∈ [0, . . . ,N − 1]
- r row index of sub-matrices, r ∈ [0, . . . , t ′ − 1]
- c column index of sub-matrices, c ∈ [0, . . . ,N ′ − 1]
- r ′ row index of an element within a sub-matrix, r ′ ∈
[0, . . . ,G− 1]

- c′ column index of an element within a sub-matrix, c′ ∈
[0, . . . ,G− 1]

Now, since the elements of M ′trn are, in groups, having the
same modulo N ′ values, we can express M ′trn as a sum of a
constant factorM ′1 and a matrixM ′2, where:

M ′1 =

0 0 . . . 0

1× N ′ 1× N ′ . . . 1× N ′
...

...
...

...

(G− 1)× N ′ (G− 1)× N ′ . . . (G− 1)× N ′

(8)

M ′2 =
⌊
rN ′ + c

t ′

⌋
(9)

Note that M ′1 is a matrix with G in total rows whose ele-
ments are multiplied by N ′, while theM ′2 derives by applying
Eq. (2) on the elements of a sub-matrix of size G × G,
substituting r for i, N ′ for N , and c for j, and dividing by
t ′ instead of t , 0 ≤ r ≤ t ′ − 1 and for 0 ≤ c ≤ N ′ − 1.

To complete the proof for Proposition 1, we need to show
that the elements of M ′2 can be aligned in such a manner that
all the rows contain different elements, sinceM ′1 is a constant.

Assume that two of theG×G sub-matrices in the same row
of M ′trn have the same elements. Because these sub-matrices
are a sum of a constant part M ′1 and a variable part M ′2,
we examine the variable part M ′2. Eq. (9) states that the row
index r of the sub-matrices M ′trn has the same modulo when
divided by t ′ but c (mod t ′) is different for the sub-matrix
columns. Therefore, to have a row of different sub-matrices,
we need to move at most N ′ − 1 sub-matrices from row r to
row rnew, using the formula:

rnew = (rN ′ + c)(mod t ′) (10)

Because (rN ′ + c)(mod t ′) = rN ′ (mod t ′) + c (mod t ′),
it follows that the sub-matrices found in the same row have the
same rN ′ (mod t ′) value, but their c (mod t ′) value changes
between consecutive columns.

Finally, to separate the same-valued elements found in
each row of a sub-matrix because of the constant factor of
M ′1 (see Eq. 8), we have to circularly move these elements
to different rows in the sub-matrix, so that they are put in
diagonal positions. This can be done because these matrices
are square, of sizeG×G. Thus, every row element will move
to a new row index r ′new according to:

r ′new = (r ′ + c′) (mod G) (11)

Now, the elements of every row of M ′trn are different
between them. The transformations of Eq.(10) and Eq.(11)
produce M ′inter . Thus, if we read each row element M ′inter
as a target node for the corresponding node label in every
column (for example, nodes N0 − N5 in Eq. 1), then each
row represents a processing step, where each node com-
municates with only one other node and Proposition 1 is
proven. �
Proposition 1.1 proves the periodicity of the transforma-

tions described and proved above.
Proposition 1.1: The transformation procedure that leads

to a task allocation matrix is periodical and its period is
LCM (t,N), the least common multiple of t and N.

Proof: Assume that two tasks tλ and tµ are initially
distributed in node n and belong to the same class k . Then,
n = tλ mod N and n = tµ mod N . From these two
relationships, it follows that

(tλ − n) mod N = 0 (12)

(tµ − n) mod N = 0 (13)

From Eq.(12) and (13), it follows that:

(tλ − tµ) mod N = 0 (14)

Suppose that tλ is located at line i1 and tµ is located at
line i2. Since these two tasks belong to the same class k ,
from the definition of classes, we have: i1 mod t ′ = k and
i2 mod t ′ = k . From these two relation ships, we have

(i1 − k) mod t ′ = 0 (15)

(i2 − k) mod t ′ = 0 (16)

117186 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

From Eq. (15) and (16), we get:

(i1 − i2) mod t ′ = 0

⇒ G(i1 − i2) mod Gt ′ = 0
Gt ′=t
⇒ G(i1 − i2) mod t = 0 (17)

However, i1 =
tλ
N and i2 =

tµ
N , so Eq. (17) becomes

G(tλ − tµ)
N

mod t = 0

N=GN ′
⇒

G(tλ − tµ)
GN ′

mod t = 0

(tλ − tµ)
N ′

mod t = 0

N ′ integer
⇒

N ′(tλ − tµ)
N ′

mod t = 0 or

(tλ − tµ) mod t = 0 (18)

Let us rewrite Eq. (14) and (18):

(tλ − tµ) mod N = 0

(tλ − tµ) mod t = 0,

from which it follows that

(tλ − tµ) mod LCM (t,N) = 0 (19)

Equation 19 states that the two tasks differ by the LCM of
t and N . Thus all tasks that differ by this quantity can be
distributed in the same manner. �

Proposition 2 forms the basis of our task scheduling.
Algorithm 2, that is also presented in subsection III.A, derives
directly from the proof of this proposition and along with
Algorithm 3 constitute our task scheduling approach.
Proposition 2: The task allocation defined by the interme-

diate task allocation matrix, M ′inter , can be refined to map
to the specific application’s DAG, so that the communicating
tasks can be (to the maximum extent) placed in nearby nodes
and produce the final task allocation-scheduling matrix, M ′fin.

Proof: If we view the elements of rows of M ′inter as
component IDs (and further, as tasks) rather than target nodes,
then we can show Proposition 2. Indeed, to see that Propo-
sition 2 also holds, one can easily see that each of the 1
square sub-matrices, in its final form, has G elements in each
diagonal. In this context a diagonal is a group of G elements
that belong to the same component.

By reading the DAG, we can easily see the interconnec-
tion between the components. Then, we can interchange the
diagonals of the N ′ sub-matrices over each row ofM ′inter in a
proper way, so that each sub-matrix has component IDs that
in fact are settled to communicate by the application. Because
M ′inter has t ′ rows and N ′ columns of square sub-matrices
of size G × G, it follows that, every diagonal of each row
sub-matrix can be transferred to at most N ′ − 1 different
sub-matrices over the row, indication that each diagonal can
change position atmostN ′−1 times. This completes the proof
of existence for Proposition 2. �

III. TASK ALLOCATION AND SCHEDULING APPROACH
Our scheme is divided into three parts: task allocation,
communication refinement and task scheduling, which are
described in the following paragraphs.

A. TASK ALLOCATION
The task allocation strategy is a straight forward imple-
mentation of the proof presented for Propositions 1 and 2.
In Algorithm 1, the proof of Proposition 1 is organized in
steps, so that the initial task allocation is produced. Then,
the diagonal movements discussed to prove the existence of
Proposition 2 result in Algorithm 2, that constitutes the refine-
ment of our task allocation. The communication refinement
of the M ′inter , the matrix that derives from the application of
Algorithm 1, uses as an input:
• a Bitmap matrix that represents the actual commu-
nications between the DAG’s components (rows and
columns refer to component IDs and ‘‘1’’ is used every
time a communication between the corresponding com-
ponents exists)

• the matrix M ′ which contains the discrete elements of
each G × G submatrix in each row in ascending order
and

• an R− array that contains the non-communicating com-
ponents in each G× G sub-matrix (each row represents
a component ID and its elements depict the component
IDs with which it does not communicate, in descending
order).

The function check_swap is called to make the necessary
diagonals’ interchanges, and gives as an output the refined
allocation tableM ′fin.

Algorithm 1: Task Distribution
input : An application graph organized in n

spouts/bolts of t tasks
A cluster of N nodes

output: M ′inter depicting a task allocation policy, such
that each node receives stream parts from one
node at a time

1 begin

2 DeclareM ′init , such that ∀i ∈
[
0, . . .

⌊
T
N

⌋
− 1

]
and

∀j ∈ [0, . . . ,N − 1] : M ′init =
iN+j
t

3 Set G = gcd(t,N), t ′ = t
G , N

′
=

N
G

4 Find all the classes k , such that i (mod t ′) = k
5 if a row index i ∈ k then
6 inew = i

t ′ + kG
7 end
8 Define the t ′ × N ′ sub-matrices of size G× G
9 Move all the sub-matrices with similar values to

different rows using Eq. (10)
10 Move all the similar values within each sub-matrix to

different rows using Eq. (11) // M ′inter has been
generated

VOLUME 8, 2020 117187

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

Algorithm 2: Communication Refinement

input : The task allocation matrixM ′inter derived from
the application of Algorithm 1 on an application
graph
Bitmap: A matrix representing the existing

communications between components
M ′: An array consisting the elements of each

G× G submatrix in each one of its rows in ascending
order

R−: An array containing the
non-communicating components in each G× G
submatrix in descending order
output: A refined allocation-scheduling tableM ′fin

1 Function main()
2 num_of _swaps = 0
3 for i = 0 to N ′ − 2 do
4 for j = i+ 1 to N ′ − 1 do
5 check_swap(i,j)
6 end
7 end
8 check_swap(i,j)
9 k = 0 //Index used in R−

10 for x = 0 to G− 1 do
11 for y = 0 to G− 1 do
12 source=M ′[i, x]
13 target=M ′[j, y]
14 if Bitmap[source, target] == 1 then

15 if num_of _swaps <
⌊
G
2

⌋
then

16 swap(R−[source, k], target)
17 k = k + 1
18 num_of _swaps = num_of _swaps+ 1
19 Store to M ′fin
20 else
21 num_of _swaps = 0
22 GoTo Line 3
23 end
24 end
25 end
26 end

B. TASK SCHEDULING
To perform the task scheduling, we need to arrange the
inter-node communications. In this context, we can viewM ′fin
as a communication schedule, where each row corresponds
to a processing step, as defined in Definition 1. An all to all
communication between all the cluster nodes requiresN rows
for M ′fin. In cases where N > t , we need to add another N−t

G
rows of sub-matrices. Such matrices are always available,
since, N ′ > t ′ (the number of sub-matrix columns is > than
the number of sub-matrix rows). The sub-matrices chosen to
be added include the missing communications. This addition
results in a square N ×N M ′fin matrix and is necessary before
applying the scheduling approach of Algorithm 3.

Algorithm 3: Task Scheduling
input : Number of stages, s, number of processing

steps, P, time required to process a stream part,
h

output:M ′fin depicting a task scheduling policy with
equal processing load per node

1 begin
2 δ = 0
3 while processing not complete do
4 {
5 time = δh;
6 for l = 0 to s− 1
7 {
8 if δ − l ≥ 0 then
9 stagel → stepδ−l (mod P)
10 else stagel → ∅
11 }
12 Execute communications defined by the processing

step
13 δ = δ + 1;
14 }

To read the communications, we view the label on top
of each column of M ′fin as the sending node and the
corresponding row elements as the receiving nodes. The
intra-node communications that result from this scheme are
very useful, as they perform task communications inter-
nally within a node, thus inter-node communication costs
are reduced. Of course we are also interested that the
communication between neighboring nodes is mapped in
the columns as well, to the larger possible extent. This is
guaranteed by the way this refinement is performed using
Algorithm 2.

Each application runs in processing stages (defined in
Definition 2). Our task scheduling approach organizes the
communication between tasks in a pipeline-based fashion,
such that: (1) At each processing step, each node receives
stream parts which are delivered to the proper tasks for
processing, from one node only, (2) The processing load is
balanced between the nodes available.

The time is divided into time slots of duration h, where
h is the constant time required to process each stream part.
We will use the notation ‘‘a step occupies a stage’’, to show
that, from the set of all the stream parts that need to be
transferred and processed by the tasks at this stage, our
system transfers only the stream parts between the node
pairs defined in the step. The rationale between our scheme
is the following: At every time slot, different steps occupy
different processing stages, thus, each node receives mostly
streams processed at different stages of the application (thus,
different tasks are occupied). This reduces the buffer space
that would be required if a task had to process many stream
parts arriving simultaneously to its node. Algorithm 3 gives

117188 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 2. Intercommunication of tasks within a random topology (DAG)
with heavy communications.

the pseudo-code of our task scheduling approach. The appli-
cation of Algorithms 1,2 and 3 are depicted by the motivating
examples of Section IV.

C. OVERALL COMPLEXITY
The transformations required by our task allocation and
scheduling scheme are of three types: 1) the transformations
required to move the classes in the same part of M ′trn, 2) the
transformations of Eq. (10-11), that will generate the process-
ing steps, and (3) the transformations used for refinement.
The first type is defined by Eq. (6) and at most t ′ rows
change position. The transformations described by Eq.(10)
moves at most N ′ − 1 sub-matrices and the transformations
of Eq.(11) introduce another G simultaneous moves. Finally,
the refinement phase includes at most N ′ − 1 moves of
diagonal elements to a new sub-matrix in every row of sub-
matrices. Since we have t ′ such rows, the refinement requires
at most (N ′ − 1)t ′ moves. Totally, our scheme requires t ′ +
N ′ − 1 + (N ′ − 1)t ′ moves, so its cost is O(t ′,N ′), a linear
dependence on t ′ and N ′.

IV. MOTIVATING EXAMPLES
We consider two different topologies; a random and a linear
as motivating examples. Figs. 2 and 6 show the interconnec-
tion between the components that are used.

A. RANDOM TOPOLOGY
In Fig.2 the topology consists of 4 bolts and 1 spout and the
maximum number of threads t per component, is 6. Each
thread executes one task, so we can refer to tasks and threads
interchangeably from this moment on. A cluster of N = 9
nodes will be used in our case. We add additional dummy
threads to components that have less than t tasks to define an
initialmatrix,Minit , as a table that stores the tasks assigned to
each node by the default round-robin Storm scheduler. This
table can have two forms: in the first form, the tasks are
indicated as letters and in the second they have been replaced

by numbers.

Minit =

N0 N1 N2 N3 N4 N5 N6 N7 N8

U V W X Y Z A B C

D E A’© F G H I F’© G’©

J K L M J’© K’© N O P

Q R N’© � � � � � �

� � � � � � � � �

� � � � � � � � �

≡

N0 N1 N2 N3 N4 N5 N6 N7 N8

0 1 2 3 4 5 6 7 8

9 10 11© 12 13 14 15 16© 17©

18 19 20 21 22© 23© 24 25 26

27 28 29© 30© 31© 32© 33© 34© 35©

36© 37© 38© 39© 40© 41© 42© 43© 44©

45© 46© 47© 48© 49© 50© 51© 52© 53©

The tasks indicated by � are added by our model as

‘‘dummies’’, they are used to avoid empty values in Minit ,
and assure that all the desired nodes take part in the alloca-
tion procedure. In the numbered representation, the dummy
tasks are circled. A dummy task plays no role in the actual
processing. The resulting table is an t×N matrix. By dividing
Minit by t , we obtain an intermediate matrix, M ′init , which
represents tasks with their corresponding component IDs
(assuming that the spout has ID = 0, and bolts 1-4 have
IDs 1-4, respectively). The IDs 5, 6, 7 and 8 correspond to
components containing dummies:

M ′init =

0 0 0 0 0 0 1 1 1
1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4 4
4 4 4 5 5 5 5 5 5
6 6 6 6 6 6 7 7 7
7 7 7 8 8 8 8 8 8

We also have G = gcd(6, 9) = 3, thus t ′ = 2 and N ′ = 3.

Because t ′ = 2, there are two classes, k = 0 and k = 1.
According to Definition 3, row indices 0, 2 and 4 belong to
class k = 0 and row indices 1, 3 and 5 belong to class k = 1.
According to Eq. (6), row i = 0 is the first row of class 0 and
as
⌊
0
2

⌋
+ 0× 3 = 0, it will remain in the same position. The

next row in class k = 0 is the row with i = 2. It will move to
row

⌊
2
2

⌋
+ 0× 3 = 1. The last row in class k = 0 is the row

with i = 4. It will move to row
⌊
4
2

⌋
+ 0 × 3 = 2. For class

k = 1,we have row i = 1, that will move to row
⌊
1
2

⌋
+1×3 =

3, row i = 3, that will move to row
⌊
3
2

⌋
+ 1× 3 = 4 and row

i = 5, that will stay in row
⌊
5
2

⌋
+ 1× 3 = 5. To summarize,

we have the following moves:
- Row 0 will stay in row 0
- Row 1 will move to row 3

VOLUME 8, 2020 117189

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

- Row 2 will move to row 1
- Row 3 will move to row 4
- Row 4 will move to row 2
- Row 5 will stay in row 5
resulting into a transformed matrixM ′trn:

M ′trn =

0 0 0 0 0 0 1 1 1
3 3 3 3 3 3 4 4 4
6 6 6 6 6 6 7 7 7
1 1 1 2 2 2 2 2 2
4 4 4 5 5 5 5 5 5
7 7 7 8 8 8 8 8 8

The horizontal line separates the elements of the two

classes. Class k = 0 elements are at the top rows and class
k = 1 elements are at the bottom rows. Also, note that,
in every column of M ′trn, each classe’s elements produce the
same modulo when divided to N ′ = 3. Next, we can note that
M ′trn can be divided into a set of t ′ × N ′ sub-matrices of size
G× G:

M ′trn =
[
10,0 10,1 10,2
11,0 11,1 11,2

]

=

0 0 0 0 0 0 1 1 1
3 3 3 3 3 3 4 4 4
6 6 6 6 6 6 7 7 7
1 1 1 2 2 2 2 2 2
4 4 4 5 5 5 5 5 5
7 7 7 8 8 8 8 8 8

Now, by applying the row transformations of Eq. (10),M ′trn

becomes

M ′trn =

0 0 0 2 2 2 1 1 1
3 3 3 5 5 5 4 4 4
6 6 6 8 8 8 7 7 7
1 1 1 0 0 0 2 2 2
4 4 4 3 3 3 5 5 5
7 7 7 6 6 6 8 8 8

and by applying the row transformations of Eq. (11), we get
the M ′inter :

M ′inter=

N0 N1 N2 N3 N4 N5 N6 N7 N8
0 6 3 2 8 5 1 7 4
3 0 6 5 2 8 4 1 7
6 3 0 8 5 2 7 4 1
1 7 4 0 6 3 2 8 5
4 1 7 3 0 6 5 2 8
7 4 1 6 3 0 8 5 2

To start the communication refinement, we define the
matrices Bitmap, M ′, and R−, that are necessary for the

implementation of Algorithm 2.

Bitmap =

N0 N1 N2 N3 N4 N5 N6 N7 N8
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

M ′ =

 0 3 6
2 5 8
1 4 7

 ,

R− =

6 3
7 4
8 5
6 0
7 1
8 2
3 0
4 1
5 2

Based on Algorithm 2, the first swap occurs for i = 0,

j = 2, x = 0 and y = 0 as:

• source = M ′[0, 0] = 0
• target = M ′[2, 0] = 1
• Bitmap[0, 1] = 1 as there is a communication from
component ID = 0 to component ID = 1

and this leads to a swap between elements 6 (R−[0, 0]) and 1
(target) in matrixM ′fin. Moreover, for i = 1, j = 2, x = 0 and
y = 1:

• source = 2
• target = 4
• Bitmap[2, 4] = 1 as there is a communication from
component ID = 2 to component ID = 4

and this leads to a swap between elements 8 and 4 in matrix
M ′fin. Finally,M ′fin becomes:

M ′fin =

N0 N1 N2 N3 N4 N5 N6 N7 N8
0 1 3 2 4 5 6 7 8
3 0 1 5 2 4 8 6 7
1 3 0 4 5 2 7 8 6
6 7 8 0 1 3 2 4 5
8 6 7 3 0 1 5 2 4
7 8 6 1 3 0 4 5 2

≡

N0 N1 N2 N3 N4 N5 N6 N7 N8
U A J F N � � � �

K V B � G O � � �

C L W P � H � � �

� � � X D M I Q �

� � � � Y E � � R
� � � � � Z � � �

117190 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 3. (a) Pipeline-based scheduling for the random topology example (b)Task
communications after implementing processing step 0, when the pipeline is already
full.

Now we can also view M ′fin as a communication schedule.
An all to all communication between all the cluster nodes
requires N rows for M ′fin. In our example, we add another
9−6
3 = 1 row of sub-matrices to M ′fin, to make it a square

9×9matrix. The sub-matrices chosen to be added include the
missing communications and our scheduling matrix becomes
as follows:

M ′fin =

N0 N1 N2 N3 N4 N5 N6 N7 N8
step 0 0 1 3 2 4 5 6 7 8
step 1 3 0 1 5 2 4 8 6 7
step 2 1 3 0 4 5 2 7 8 6
step 3 6 7 8 0 1 3 2 4 5
step 4 8 6 7 3 0 1 5 2 4
step 5 7 8 6 1 3 0 4 5 2
step 6 2 4 5 6 7 8 0 1 3
step 7 5 2 4 8 6 7 3 0 1
step 8 4 5 2 7 8 6 1 3 0

The pipeline that derives from the application of
Algorithm 3 in the example of Fig. 2 is shown in Fig. 3(a).
Fig.3(b) shows the task communications performed after
implementing Step 0, when the pipeline is already full. In our
context, the pipeline is full once all the steps have gone
through all the stages once (unlike the usual interpretation,

which states that all the stages are full). When this is the case,
we have a communication pattern between the application’s
tasks, such that the number of multiple part streams loaded
to a task is minimized, thus minimizing the need for buffer
space. From Fig. 3(b), one can see that the communica-
tion from task J to P can only be implemented after the
communication from D to J. The first implementation of
step 1, results in a communication between the JVMs of
nodes 4 and 2 transferring a stream part from D to J (task
D has already received and can deliver a stream part). Then
the implementation of step 0, transfers a stream part between
the JVMs of nodes 2 and 3 i.e. from task J to task P. This
is depicted by the dashed arrow connecting tasks D and J
in Fig. 3(b) as it refers to Step 1.

Moreover, we see a case where possible buffering is
required in Step 0; two tasks from node 5 (M and H) com-
municate with task O in the same node. In such cases (which
sometimes are inevitable when multiple components forward
tuples to a single one), we could monitor an increase in queue
waiting times and tuple latencies. The burden can become
even worse when the application workload is increased.

A dynamic scheme could adopt data parallelism and scale
out the number of parallel instances for the operator that
is overloaded and becomes a bottleneck and/or increase the

VOLUME 8, 2020 117191

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 4. A complex scenario.

number of VMs that run in the cluster [14]. Possible task
migrations would be needed to reduce resource utilization
imbalances between nodes. Elastic data parallelism during
run-time,makes a system adaptive to changes in the execution
environment but in systems like Apache Storm, the required
reconfiguration and restart of the application also results in
significant downtime [5], [9].

In a static scheme, when several tuples arrive simulta-
neously from different tasks to the same task, more than
one tuples could fail to be processed or a tuple could be
selected to be processed and let the remaining be processed
in the next processing step, where the same communication
occurs. In the first case, the tuple could be replayed later or
could be missed based on the fault-tolerance guarantees that
would be needed in the specific user’s topology (at-least-once
guarantee in contrast to at-most-once guarantee). This would
either increase tuple latency or our system would provide the
least desirable outcome in matters of reliability, as messages
would be lost [3]. In case of keeping the tuples to be processed
in the next appropriate step, the required buffer space would
increase.

Our approach provides an efficient solution for the afore-
mentioned scenario and implements a pipeline stall. The
duration of this stall equals to the time required to process the
remaining tuples by the corresponding tasks. In our example
the stall’s duration equals to h as we just need to let task O
process the tuple received from e.g. task M (in case the tuple
received by task H was initially selected to be processed).

This solution can prove its value inmore complex scenarios
like the one presented in Fig. 4. During Step 0, three different
tasks from Node 2 (tasks I, M, and Q) send stream parts to a
single task of Node 3 (task T). Simultaneously, in Step 1, two
different tasks from Node 1 send stream parts to be processed
to a task (O) inNode 2. In this case, the duration of the pipeline
stall equals the maximum time needed by a task to process
all its stream parts as can be seen in Fig. 5. In this case this

FIGURE 5. Pipeline stall.

FIGURE 6. Intercommunication of tasks within a linear topology (DAG)
with heavy communications.

duration equals t = 2h as O will take t = h to process the
remaining part from the second task, while Twill need t = 2h
to process the remaining parts from the other two tasks that
wanted to communicate with it.

B. LINEAR TOPOLOGY
In Fig.6 a linear topology with 3 bolts and 1 spout is repre-
sented. The maximum number of threads t per component,
is 4. A cluster of N = 8 nodes will be used in this example.
The resulting initial matrix, Minit , is the following:

Minit =

N0 N1 N2 N3 N4 N5 N6 N7
L M N L’© A B C D
E F G E’© H I J K
� � � � � � � �

� � � � � � � �

By dividing Minit by t , we obtain an intermediate matrix,
M ′init . The IDs 4, 5, 6 and 7 correspond to components con-
taining dummies:

M ′init =

0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3
4 4 4 4 5 5 5 5
6 6 6 6 7 7 7 7

In this example we have G = gcd(4, 8) = 4, thus

t ′ = 1 and N ′ = 2. Because t ′ = 1, there is only one
class and consequently, there is no need to transpose lines.
The transposed matrix M ′trn is equivalent to M

′
init and can be

117192 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 7. (a) Pipeline-based scheduling for the linear topology example (b)Task
communications after implementing processing step 0, when the pipeline is already
full.

divided into a set of t ′ × N ′ sub-matrices of size G× G:

M ′trn =
[
10,0 10,1

]
=

0 0 0 0 1 1 1 1
2 2 2 2 3 3 3 3
4 4 4 4 5 5 5 5
6 6 6 6 7 7 7 7

Eq. (10) does not result in row transformations inM ′trn (there
is only one row), but Eq. (11), results in the following alloca-
tion matrixM ′inter :

M ′inter =

N0 N1 N2 N3 N4 N5 N6 N7
0 6 4 2 1 7 5 3
2 0 6 4 3 1 7 5
4 2 0 6 5 3 1 7
6 4 2 0 7 5 3 1

The communication refinement algorithm leads to two
swaps; 6 with 1, and 4 with 3 that result in the followingM ′fin:

M ′fin =

N0 N1 N2 N3 N4 N5 N6 N7
0 1 3 2 6 7 5 4
2 0 1 3 4 6 7 5
3 2 0 1 5 4 6 7
1 3 2 0 7 5 4 6

≡

N0 N1 N2 N3 N4 N5 N6 N7
L A H E � � � �

F M B I � � � �

J G N C � � � �

D K � � � � � �

Now we can also view M ′fin as a communication schedule
that after adding 1 row of sub-matrices to include the missing
communications, becomes as follows:

M ′fin =

N0 N1 N2 N3 N4 N5 N6 N7
step 0 0 1 3 2 6 7 5 4
step 1 2 0 1 3 4 6 7 5
step 2 3 2 0 1 5 4 6 7
step 3 1 3 2 0 7 5 4 6
step 4 6 7 5 4 0 1 3 2
step 5 4 6 7 5 2 0 1 3
step 6 5 4 6 7 3 2 0 1
step 7 7 5 4 6 1 3 2 0

The pipeline that derives from the application of
Algorithm 3 in the example of Fig. 6 is shown in Fig. 7(a).
Fig.7(b) shows the task communications performed after
implementing Step 0, when the pipeline is already full.

V. EXPERIMENTAL RESULTS
In this section, we discuss how we evaluate the performance
of our proposed scheduling approach. We present two sets of

VOLUME 8, 2020 117193

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

experiments, as will be described in the following paragraph:
In the first set, we examine the average latency, the per-
centage of buffer memory used, the load balancing per node,
and finally the throughput to check our system’s performance
against the default Apache Storm’s scheduler using a random
and a linear topology. In the second set, we compared our
system with one more scheduler, Peng’s et al. [17] scheduler,
namedR-Storm, to examine their throughput using a diamond
and a linear topology. R-Storm was chosen as it has been
included as an alternative scheduler for Apache Storm, as of
v1.0.1., it tries to reduce the inter communication latency
between adjacent tasks just like our approach and takes into
consideration memory usage. It is a resource-aware strategy
that tries to maximize resources utilization (also discussed in
subsection VI.B ‘‘HEURISTIC APPROACHES’’.)

A. EXPERIMENTAL SETUP
Our scheduling strategy is evaluated using a simulation envi-
ronment, which provides researchers with a wide range of
choices to develop, debug, and evaluate their experimental
system. In our experimental setup, the Storm cluster con-
sists of nodes that run Ubuntu 16.04.3 LTS with an Intel
Core i7-8559U Processor system and clock speed at 2.7GHz,
1 Gb RAM per node. Further, there is all-to-all commu-
nication between the nodes, which are interconnected at a
speed of 100 Mbps. Also, we assume that the data transfer
rates between the cluster nodes are equal, but their proximity
differs (nodes with smaller index difference are consider to
be located at lower distances between them). The tuples
generated are assumed to have equal size, 8Kb.

For our experiments we ran two topologies: (a) A random
topology with four bolts and one spout, where the maximum
number of threads per component, is 6 (see Fig.2). (b) A linear
topology with three bolts and one spout. The maximum num-
ber of threads t per component, is 4 (see Fig.6). In the case
of random topology, we used a cluster with N = 9 worker
nodes, each with 4 slots and in the case of linear topology we
used a set of N = 8 worker nodes, each with 4 slots. One
extra node, designated as the master node to host the Nimbus
and Zookeeper services was also used in both cases. For our
comparisons, we chose the default Storm scheduler, which is
the most widely used comparison candidate in the literature.

TABLE 1. Experimental environment.

B. AVERAGE TOTAL LATENCY
This set of experiments focus on the comparison of the over-
all runtime behavior of our scheduling strategy against the
default Storm scheduler. The average latency refers to the
time needed by tuples to traverse the entire topology. To fairly

FIGURE 8. Average latency comparisons between our strategy and the
default scheduler: Random topology.

FIGURE 9. Average latency comparisons between our strategy and the
default scheduler: Linear topology.

estimate the overall latency we worked as follows: (a) Each
tuple has to ‘‘travel’’ some distance (nodes with close ID
numbers are considered to be placed more closely) from the
node that has processed it until the node that will continue the
processing. (b) A tuple can either be buffered or directly be
processed. However, in cases where there is no buffer space
available, the tuple is not omitted. Instead, it is resent after
a short period. Although this is not always the case (some
systems prefer to omit such tuples), this type of policy can be
helpful in examining the overall latency.

In the experiments presented, we assigned a buffer space
of 32 Mb per task, which is enough to accommodate about
4K tuples. The other settings (number of threads and nodes)
are as described in the previous subsection. Fig. 8 shows
the average tuple latency for the random topology, while
Fig. 9 shows the average tuple latency for the linear topol-
ogy. In both cases, our strategy presents lower latencies,
but the average gain is higher when the linear topology is

117194 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 10. Average memory use comparisons between our strategy and
the default scheduler: Random topology.

used (25% and 40% respectively). There is a combination of
reasons behind this result: First, the linear topology has even
smaller inter-node traffic when executed in a pipeline fashion,
compared to the random topology. However, reducing the
inter-node communication cost is not always sufficient to
guarantee lower latencies. It is also important to consider that,
our strategy avoids having intensively loaded paths between
nodes, and this is especially true in the linear case. In the
random topology, there are cases where a task may receive
large loads (see the example of Fig. 3). Therefore, our strategy
pays-off specifically for linear applications, in that it reduces
the overall latency to almost 40% compared to the default
scheduler.

C. PERCENTAGE OF BUFFER MEMORY USED
Although there are 3 main resources involved in the overall
evaluation of a stream scheduling strategy (network links,
CPU and memory), in this paragraph, we show the fact that
our strategy requires much less memory space compared to
the default scheduler. In the plots of Figs. 10 and 11, we show
the average memory usage for the random and linear topol-
ogy, respectively. Specifically, when the random topology is
executed, the results have indicated that the default scheduler
uses, in the worst case, about 70% of the available memory
space available. This is due to the fact that some nodes
become overloaded for some periods of time and requiremore
buffering. Our strategy uses at most 26% of the memory
space, in caseswhere pipeline stallsmay occur (thus buffering
is required). For the linear case, the memory space required
is reduced for both strategies, however, the improvement
offered by our strategy is higher, primarily because in this
case our strategy consumes only about 7% of the memory
resources in this case (some tuples needed to be bufferred
due to network flaws, so re-transmissions were necessary).
In fact, in a linear topology, our strategy can have each
task receive a tuple at a time thus buffering is not generally
required.

FIGURE 11. Average memory use comparisons between our strategy and
the default scheduler: Linear topology.

FIGURE 12. Load balancing in a random topology application.

D. LOAD BALANCING
In this part of our study we examine if our strategy offers
indeed satisfactory balancing between the nodes. We reduced
the tuple size to 1KB, to have faster processing time per
tuple and we measured the tuples processed at each node.
The results have shown that, for both topologies, the 9 nodes
receive almost balanced processing load (see Fig. 12 and 13).
Some divergences (an average of 7%) appear in the random
topology scenario, where nodes 3 to 5 appear to process more
load compared to the others. This can be explained in two
ways: (1) these nodes have processed more pipeline stalls
(cases where tasks inside these nodes receive more tuples,
which are buffered and pipeline stalls are used), (2) these
nodes suffer less data losses during transmissions. When the
topology is linear, the load delivered to the nodes is more bal-
anced, as seen in Fig. 13: there is a ‘‘one-to-one’’ component
communication and ‘‘one-to-one’’ inter-node communication
and the small imbalances that appear can be explained by
the fact that not all the task communications defined by our

VOLUME 8, 2020 117195

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 13. Load balancing in a linear topology application.

schedule are actually defined in the application. The default
Storm scheduler does not provide any mechanism for han-
dling the communication between tasks in a stepwise manner,
so generally it achieves no balancing.

E. THROUGHPUT
This section provides the results of two different sets of
experiments: (i) First, we compared the average throughput
(tuples/min) between our strategy and the default round-robin
scheduling strategy. (ii) We then compared our system with
the default scheduler and R-Storm under different scenarios,
to verify the fact that our strategy can achieve better through-
put performance.

(i) The average throughput is defined as the rate of tuples
being processed by the topology’s bolts. For the random
topology, we varied the number of threads from 3 to 6 and we
averaged the throughput values. We kept processing tuples
over a period of 20 minutes. Throughput is mainly affected
by the inter-node communication required, and the possible
delay, when a tuple is buffered to be processed at a later time.

The results shown in Fig. 14 indicate that our strategy
outperforms the default round robin strategy. Our strat-
egy offers an average of 25% improvement in throughput.
There are two main reasons for this improvement: (i) As
the total time increases, the round-robin strategy suffers
large numbers of tuples, which are not processed in-time,
due to node over-utilization (for example, when multiple
tuples are submitted from different tasks to a certain task).
These tuples are either buffered, or omitted (in such a case
they are re-submitted for processing), and (ii) Our strat-
egy places the relevant tasks to the same or nearby nodes
(refinement process). This type of placement decreases the
total tuple processing time, as the inter-node communica-
tion cost is reduced. For larger number of threads and a
maximum runtime of 20 minutes, the overall improvement
approached 35%.

FIGURE 14. Throughput comparisons between our strategy and the
default scheduler: Random topology.

FIGURE 15. Throughput comparisons between our strategy and the
default scheduler: Linear topology.

For the linear topology, we varied the number of threads
from 2 to 4 and we averaged the results. Again, our strategy
outperforms the default scheduler by an average of 40%.
We noticed larger throughput increases compared to the ran-
dom topology. This is explained by the fact that our approach
buffers fewer tuples in the linear topology case, compared to
the random one. Figure 15 shows the experimental results for
the linear topology case.

(ii) In the second set of experiments (regarding the through-
put of our strategy), we compared our work with the
default scheduler and R-Storm. We used 8 worker nodes
and 1 node designated as the master node, running Nimbus
and Zookeeper and ran two different topologies; a diamond
(Fig.16 (a)) and a linear (Fig.16 (b)). The diamond topology,
consists of one spout, two intermediate bolts one sink bolt.
Each component consists of 10 tasks. The linear topology has
one spout and four bolts and the number of tasks is 16, 16, 8,
4 and 1 respectively.

117196 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

FIGURE 16. Experimental topologies.

FIGURE 17. Throughput comparisons between our strategy, R-Storm and
the default scheduler: Diamond topology.

The results obtained justify our claim, that when there is
a special care on the buffering of incoming tuples, that is,
buffering is reduced and thus the highest percentage of tuples
are processed as they arrive to the proper target node, then
the average throughput increases. The R-Storm does not have
any special mechanism for reducing the buffer space required.
Instead, it expects the user to provide the node capacities
and the task requirements, in order to perform allocation of
threads and manage the available resources. From Fig. 17 it
can be seen that our strategy offers an improvement of≈ 35%
compared to R-Storm as the time increases for the diamond
topology.

For the linear topology the results indicate that the
improvement approaches almost 45% compared to R-Storm.
This is because that our strategy generally buffers less
tuples when running a purely linear topology compared to

FIGURE 18. Throughput comparisons between our strategy, R-Storm and
the default scheduler: Linear topology.

diamond or random topologies. In such topologies, tasks
may receive multiple tuples from other tasks, which can’t be
processed simultaneously, thus they are bufferred. Then, all
bufferred tuples are processed in an extra step (pipeline stall),
as explained in the text.

One final observation is that, there is a period of time (in
the first seconds of execution) that R-Storm outperforms our
strategy. This is explained by the fact that our strategy needs
to execute once all the communicating steps and have the
pipelines full, in order to start performing more efficiently.
When this occurs, our scheme clearly ourperforms R-Storm.

VI. RELATED WORK
In this section, we review efforts related to scheduling strate-
gies in DSPSs.We initially focus on available solutions incor-
porated in the most prominent DSPSs [3] and then present
different heuristic approaches.

A. DSPSs
We distinguish two different execution models in stream
processing; the operator-based approach where a task encap-
sulates the logic of a predefined operator and records are
processed as they arrive, and the micro-batch approach where
a streaming computation is treated as a sequence of trans-
formations on bounded sets by discretizing a distributed data
stream into batches [19].

Historically, Aurora [20] was an early implementation that
was used to parallelize streaming computations including rich
operation and windowing semantics. Initially, it was designed
as a single site stream-processing engine. Its predecessor,
Borealis [21] was a stream processing engine that focused
on balancing load on individual machines and distributing
load shedding in static environments. Borealis was based
on ROD (resilient operator distribution) to determine the
best operator distribution plan, trying to be closest to an
‘‘ideal’’ feasible set, having a maximum set of machines
underloaded. At the aftermath of Big Data and the Internet

VOLUME 8, 2020 117197

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

of Things (IoT), new challenges were posed to traditional
stream processing engines. These challenges arose from the
need to work with huge amount of data, requiring massive
parallel stream processing capabilities. New solutions were
implemented to do for real-time processing, what Hadoop did
for batch processing, using in-built scheduling techniques.

One of the most prominent representatives is the open
source engine Apache Storm [10]. Storm uses a round-robin
strategy to assign tasks to nodes’ slots equally. In this way,
though, logical links between tasks are not taken into con-
sideration and inter-node communication costs may increase.
This simplistic scheduling method frequently leads to low
efficiency in load balancing among the available worker
nodes. As a tuple is processed as it arrives, Storm follows the
operator-based model.

Apache Samza [12] provides a unified programming API
for both batch and stream processing. It is based on the
publish/subscribe model that listens to a data stream and pro-
cessesmessages (tuples in Storm) as they arrive, one at a time.
It is tightly tied to the Apache Kafka messaging system [22]
for streaming data between tasks and Apache YARN [23] the
for distribution of tasks among nodes in a cluster. YARN is
configured to use Fair Scheduler with continuous-scheduling
enabled.

Apache Flink [13] relies on a streaming execution model
but can process both bounded and unbounded data, with two
APIs running on the same distributed streaming execution.
Its core is built on a data flow streaming engine, whose
fundamental functionality is pipelining. A slot in a machine
runs one pipeline which consists of multiple successive (com-
municating) tasks. Its system defines which tasks may share
a slot and which tasks must be strictly placed into the same
slot. It employs a schedule-once, long-running allocation
of tasks and uses an immediate scheduling and a queued
scheduling algorithm that work in an arbitrary fashion. The
first one returns a slot immediately when there is a request,
while the second one queues the request and returns the slot
whenever it is available.

Apache Spark [11] batches up events within a short frame
before processing the arrived data, offering full in-memory
computations. Its scheduler runs jobs in FIFO fashion and
each application tries to use all available nodes. Although job
dependencies can be captured with FIFO, this approach can
result in increased latency when a long running job delays
jobs behind it [3].

The aforementioned DSPSs are presented in Table 2. The
scheduling approaches incorporated in these systems are not
optimal and do not take into consideration the application’s
structure that is about to be executed or prior knowledge of
the cluster’s condition.

B. HEURISTIC APPROACHES
Most of the available DSPSs, allow users to specify cus-
tomized scheduling for tasks. Several heuristic algorithms,
that attempt to choose the optimal task allocation and
scheduling technique to maximize their performance have

TABLE 2. Big data DSPSs and their scheduling techniques.

been proposed. Most of them are implemented based on
Apache Storm and its semantics.

Eidenbenz and Locher [8] proved that the task alloca-
tion problem is NP-hard and focused on stream topologies
expressed as directed serial parallel decomposable graphs.
In their work, they established a theoretical foundation by
formally defining the allocation problem using a fixed set of
resources with uniform capacities and bandwidths.

Aniello et al. [24] proposed a topology-aware scheduler for
Storm. Their approach identifies possible sets of operators’
threads to be scheduled on the same slot by looking how
components are interconnected within the topology (DAG)
and finally assigns slots to nodes in a round robin fashion.
Their approach tries to balance the total CPU demand of each
worker. As load imbalances are possible due to workload
fluctuations, monitoring is used by their dynamic adaptive
scheduler to handle these cases. Our approach is also a
topology-aware approach but does not adapt to workload
fluctuations. It improves system’s performance by balancing
load, reducing the inter-node communication cost and the
required buffer space (for each task and thus for each worker
node).

Peng et al. [17] implemented R-Storm, a topology and
resource-aware scheduling approach that also schedules adja-
cent components’ tasks as close as possible to reduce com-
munication latency using breadth first traversal (BFS). It also
tries to maximize the resource usage in a slot to minimize
resource waste in nodes, using a resource-aware distance
function. R-Storm’s scheduler yields better performance than
the default round-robin Storm’s scheduler but it cannot con-
trol the performance when CPU sharing occurs. Towards
this direction, De Xiang et al. [25] implemented a schedul-
ing algorithm to minimize the resources wastage with the
consideration of the worker nodes’ load, named RB-storm.
To do so, they applied a Resource Imbalance Vector (RIV) to
represent the imbalance of resource utilization in tasks and
work nodes. Both Peng et al. [17] and De Xiang et al. [25]
worked with homogeneous clusters and considered memory
as a constraint in their analysis. Resource waste is minimized
with respect to the knowledge about the node capacities and
the task requirements provided by user. Our solution does
not require users to provide any further information but their
topology, to achieve load balance and thus high performance.

Smirnov et al. [26] proposed another topology-aware strat-
egy that also takes into consideration system’s performance.
Their approach is based on a genetic algorithm (GA) and
uses performance models of executors on specified nodes to

117198 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

estimate their throughput. In their experiments, they allowed
CPU-sharing between tasks and they proved that maximum
tasks’ performance can be achieved via minimum CPU
sharing, consuming though the maximum number of cores.
In their experiments, GA scheduler was better in handling
the high workload in several topologies, whereas R-Storm’s
and Storm’s performance remained almost equal and low.
Their performance models demand either history data or
data collected during runtime. Our scheduler works with no
prior knowledge. Memory saving is not considered in their
analysis, whereas minimum CPU sharing that is suggested
requires a cluster with large CPU-capacity.

Taking advantage of prior knowledge, Eskandari et al. [27]
presented P-scheduler. This scheduler uses data transfer rates
between tasks and topology workload obtained by running
the known topology a priori. It places highly-communicating
task pairs to the same working node applying hierarchical
graph partitioning. Their work assumes that the cluster is
homogeneous. Later, they extended their work [28] in hetero-
geneous clusters and proposed I-Scheduler, an iterative graph
partitioning-based heuristic algorithm. This approach finds
partitions of highly communicating tasks, sized according to
node capacities and fuses each partition into a single task.
A node’s capacity is defined as the sum of the CPU speed
for all cores within a node. While these schedulers can esti-
mate the necessary number of nodes for an application and
maximize resource utilization, memory resources and their
consumption are not taken into account. Our approach does
not not run the given topology a priori and cannot estimate the
number of necessary nodes for an application. It uses all the
nodes provided and tries to balance the load between them.

Shukla and Simmhan [14] also utilized a priori knowl-
edge of the tasks’ performance (using micro-benchmarks)
to get a predictable scheduling behavior given a fixed input
stream rate. Apart from assigning threads to the working
nodes to ensure an expected performance, they also exam-
ined the matter of allocation of threads and resources for a
DAG. That means that their scheduler determines the appro-
priate number of replicas per task and quanta of comput-
ing resources. Our algorithm cannot make such predictions.
Their analysis is based on CPU and memory resources and
offer lower resource requirements and VM cost compared
to R-Storm. Benchmarking of application on a particular
cluster prior to its run in production was also used by
Rychly’s et al. [7] resource and performance aware strategy.
Their scheduling algorithm works on heterogeneous clusters
and employs design-time knowledge (a tagging process is
required) and benchmarking to take decisions. Unlike our
work, both Rychly and Shukla use benchmarking techniques
to get nodes’ performance and tasks’ computations charac-
teristics. In this way they improve system’s performance and
balance the workload in the cluster optimally.

Linear programming is widely used in task scheduling
approaches found in literature (e.g. [14], [17], [25], [26]).
In such cases, the allocation problem is considered as a
linear programming problem. Taking advantage of linear

programming privilleges, Cardellini et al. [29] provided
a solution that takes into consideration the heterogeneity
of computing and network resources to optimize differ-
ent QoS requirements. The proposed formulation consid-
ers user-oriented QoS attributes like end-to-end latency and
application availability and network-related attributes like
network usage, inter-node traffic and elastic energy. Memory
consumption is not considered in their QoS metrics but it
could be in a possible extension. Workload balancing and
distribution are also not considered.

Towards this direction, Al-Sinayyid and Zhu [30] proposed
MT-scheduler that uses a dynamic programming technique
to efficiently map a DAG onto heterogeneous systems.
They proposed a polynomial-time heuristic solution that is
based on computing and data transfer requirements, and the
capacity of the underlying cluster resources. Memory is not
considered in node attributes in this work and unlike our
work, reducing its consumption is not a matter of inter-
est. Their system performance optimization is realized by
estimating and minimizing the time incurred at the com-
puting and transfer bottlenecks. To handle load and avoid
system overloading, Nimbus periodically calls the scheduler
to update the mapping process.

Janßen et al. [31] also assumed a static environment with
heterogeneous resources. In their work, QoS metrics like
response time, bandwidth congestion and resource fitting are
combined into an optimization function to implement meta-
heuristic methods for near-optimal task placements. Unlike
most approaches that workwith Apache Storm, they extended
Apache Flink’s scheduling workflow.

Mortazavi-Dehkordi & Zamanifar [32] combined lin-
ear programming with queries’ attributes. They proposed
Bframework that examines the topology structure of a query
to estimate the size of output stream flow of its operators to
profile and partition them. Different scheduling strategies are
applied to each partition. At first, operators are assigned to
thread computing units and the identified threads are assigned
to processes. Its off-line scheduler (they also extended their
work to dynamic environments) finally assigns the processes
to a set of available computing nodes. The aim is to minimize
the inter-operator traffic load and thus the tuple latency of
the accepted queries, distribute and balance the operators’
workload. The complexity of their solution is logarithmic and
memory is not considered in cluster resources.

The aforementioned approaches are static; they work
off-line and are presented in Table 3. A review of these
works is presented in [3] but the diversity of the clusters,
on which the evaluation of these schemes took place, and
the applications used do not allow safe comparisons between
them.

Static scheduling fails to consider the workload variability
and the variability in system conditions. This can lead to
overutilization and under-utilization of the cluster resources
and create a situation for job execution failure ([5], [6]). In the
context of DSPSs the relationships are very complicated and
the problem requires strong assumptions to be solved [33].

VOLUME 8, 2020 117199

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

TABLE 3. An overview of scheduling heuristics over DSPSs.

Dynamic scheduling techniques ([5], [9], [24], [32]–[41])
monitor the queue waiting times and performance parameters
(e.g. workload, traffic load, system’s latency and through-
put) during runtime and update tasks’ replication degree
and their placement (the MAPE-monitor, analyze plan,and
execute- reference model is commonly used for implement-
ing dynamic systems [5], [9], [14]). Decisions are taken
online.

Elasticity is a matter of crucial importance in online envi-
ronments as the input rate can vary drastically in streaming
applications and operators’ replication degree needs to be
configured to maintain system’s performance. Unfortunately,
most of the available solutions require users to manually
tune the number of replicas per operator but users usually
have limited knowledge about the runtime behavior of the
system [3], [9]. Several approaches (e.g. [9], [34], [39]–[43])
try to deal with replication runtime decisions in stream
processing.

Dynamic techniques, while advantageous, can lead to local
optima for individual tasks without regard to global efficiency
of the dataflow. This introduces latency and cost overheads
or offer weaker guarantees for the QoS. The applica-
tion’s reconfiguration and re-balancing, consisting of migra-
tions and scaling operations may also be time-consuming
(e.g.≈ 200 secs in Storm [14]), and entail a significant service
interruption when it comes to real-time stream processing.
Recent works try to develop techniques to deal with appli-
cation’s downtime (e.g. [14], [33], [34], [43]).

In summary, our work presents a static and topology-aware
formulation that well represents the task allocation and
scheduling problem. The operator-based execution model
and Apache Storm’s semantics are used as in most systems
mentioned in literature. DAGs are used to represent stream-
ing applications. Our policy uses linear algebra and matrix
transformations for our processes, while linear programming
seems to be the dominant strategy in most of the aforemen-
tioned solutions.

Most of the static topology and resource-aware policies
try to improve system’s performance by considering the

topology’s structure and the capability of the resources,
but they generally ignore the resource load. Our scheduler
improves system’s performance using an algorithm of linear
complexity on a given topology’s structure and taking advan-
tage of pipelines. The required buffer space is reduced, while
memory consumption is not considered in most cases of the
state-of-the-art.

Traffic and workload-aware policies demand either prior
knowledge to improve system’s performance or users to pro-
vide design time information. However, users usually ignore
the application’s run-time resource demands. Of course,
dynamic approaches can adapt to run-time needs but this
requires monitoring and re-scheduling. While our proposed
scheme considers only static scheduling for now, it handles
queue waiting times efficiently. Rather than re-configuring
online the tasks’ allocation to cope with changes in the stream
rates as dynamic techniques do, it tries to maintain a sta-
ble and robust configuration by balancing load between the
cluster’s nodes.

Of course an adaptive version of our scheme would
increase its performance, so this extension is left for future
work. The main idea behind this extended work is to model
the possible system changes (for example, different number
of tasks per executor or different number of nodes) as a
task redistribution problem, formed by sets of linear Dio-
phantine equations (more details are found in Section VII.
Conclusions-Future Work). Such a strategy would be more
comparable to the known dynamic schemes in the literature
(e.g. [39]–[41]).

VII. CONCLUSION-FUTURE WORK
This work presented a task allocation and scheduling
approach to handle applications that require hefty commu-
nication between nodes and tasks. Our approach is organized
in a set of communication steps, where there is an one-to-one
communication between the system’s nodes. This approach
offers a set of advantages.

The buffer space required per task is reduced, resulting
in higher throughput, as the largest percentage of tuples are

117200 VOLUME 8, 2020

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

processed as they arrive to the target node (no buffering is
required). In case of bufferred tuples resulting from each com-
munication step, these are processed in a single step, where
the pipeline is stalled. This reduces the extra processing time
that would be necessary, if these tuples were processed at
random times. In addition, the refinement phase employed
by our strategy reduces the inter-node communication costs,
thus it reduces communication latencies. Moreover, there
is almost complete load balancing in the network result-
ing in reduced latencies and as the scheduler itself has lin-
ear complexity, it determines the communication steps very
fast. Finally, the scheduler is proven to be periodic, with a
period equal to LCM (t,N). This means, that once the first
LCM(t,N) communications are arranged, the same communi-
cation pattern can follow, in case of a bigger problem, where
the number of nodes or tasks is multiplied by an integer
factor.

The experimental results have verified the advantagesmen-
tioned above. Our strategy offers reduced average latency and
percentage of buffed memory used compared to the default
scheduler. Also, it offers good load balancing. For throughput
testing, we compared our work to the default scheduler as
well as to R-Storm. Our scheme was found to outperform
both the other strategies and achieved higher throughput
(tuples/min) under different scenarios, mainly as a result of
reduced buffering.

In this paper, we assumed a static environment, in which
bandwidth capacities and the other resources do not change
over time, and also static ingestion rates, which in real-
ity is often not the case due to possible changing network
topologies and load fluctuations. In the future, we plan to
implement a dynamic version, where task replicas will be
introduced when necessary and the number of nodes may
need to change during execution. Continuous monitoring and
adaption of schedules would considerably improve solutions
for real environments and applications.

One drawback of our current work is that, when
G = gcd(t,N) = 1, it needs to add a minimum number of
tasks, so that theG value becomes 6= 1. This needs to be done
before scheduling. Currently, we are working on a dynamic
strategy that will resolve this issue. Our dynamic approach
models the system changes in the form of redistribution from
R to R′, where R is the initial task distribution between nodes
and R′ is the next task distribution derived from the system
changes. Both R and R′ are modeled via linear Diophantine
equations (which are ideal for round robin distributions) and
the task redistribution is determined by the solutions to the
set of linear Diophantine equations, R = R′.

REFERENCES
[1] N. Tantalaki, S. Souravlas, M. Roumeliotis, and S. Katsavounis, ‘‘Linear

scheduling of big data streams on multiprocessor sets in the cloud,’’ in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI). New York, NY, USA:
ACM, 2019, pp. 107–115.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, ‘‘The rise of ‘big data’ on cloud computing: Review and open
research issues,’’ Inf. Syst., vol. 47, pp. 98–115, Jan. 2015.

[3] N. Tantalaki, S. Souravlas, and M. Roumeliotis, ‘‘A review on big data
real-time stream processing and its scheduling techniques,’’ Int. J. Parallel,
Emergent Distrib. Syst., p. 30, Mar. 2019.

[4] M. Stonebraker, U. Çetintemel, and S. Zdonik, ‘‘The 8 requirements
of real-time stream processing,’’ ACM SIGMOD Rec., vol. 34, no. 4,
pp. 42–47, Dec. 2005.

[5] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara, ‘‘Online
scheduling and interference alleviation for low-latency, high-throughput
processing of data streams,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 12, pp. 3553–3569, Dec. 2017.

[6] K. Govindarajan, S. Kamburugamuve, P. Wickramasinghe, V. Abeykoon,
and G. Fox, ‘‘Task scheduling in big data–review, research challenges,
and prospects,’’ in Proc. 9th Int. Conf. Adv. Comput. (ICoAC), Dec. 2017,
pp. 165–173.

[7] M. Rychlý, P. Škoda, and P. Smrž, ‘‘Heterogeneity-aware scheduler for
stream processing frameworks,’’ Int. J. Big Data Intell., vol. 2, no. 2,
pp. 70–80, 2015.

[8] R. Eidenbenz and T. Locher, ‘‘Task allocation for distributed stream pro-
cessing,’’ in Proc. IEEE INFOCOM-35th Annu. IEEE Int. Conf. Comput.
Commun., Apr. 2016, pp. 1–9.

[9] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, ‘‘Optimal
operator deployment and replication for elastic distributed data stream
processing,’’ Concurrency Comput., Pract. Exper., vol. 30, no. 9, p. e4334,
May 2018.

[10] Apache Software Foundation. (2019). Apache Storm. Accessed:
Jun. 5th, 2019. [Online]. Available: http://storm.apache.org/

[11] Apache Software Foundation. (2019). Spark Streaming-Apache Spark.
Accessed: Jun. 5th, 2019. [Online]. Available: http://spark.apache.org/
streaming/

[12] Apache Software Foundation. (2019).Apache Samza-ADistributed Stream
Processing Framework. Accessed: Jun. 5th, 2019. [Online]. Available:
https://samza.apache.org

[13] Apache Software Foundation. (2019). Apache Flink-Stateful Computa-
tions Over Data Streams. Accessed: Jun. 5th, 2019. [Online]. Available:
https://flink.apache.org/

[14] A. Shukla and Y. Simmhan, ‘‘Model-driven scheduling for distributed
stream processing systems,’’ J. Parallel Distrib. Comput., vol. 117,
pp. 98–114, Jul. 2018.

[15] W. Zhang, S. Rajasekaran, T. Wood, and M. Zhu, ‘‘MIMP: Deadline
and interference aware scheduling of Hadoop virtual machines,’’ in Proc.
14th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2014,
pp. 394–403.

[16] Y. Wang and W. Shi, ‘‘Budget-driven scheduling algorithms for batches of
MapReduce jobs in heterogeneous clouds,’’ IEEE Trans. Cloud Comput.,
vol. 2, no. 3, pp. 306–319, Jul. 2014.

[17] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, ‘‘R-storm:
Resource-aware scheduling in storm,’’ in Proc. 16th Annu. Middleware
Conf. New York, NY, USA: ACM, 2015, pp. 149–161.

[18] G. Eisbruch, J. Leibiusky, and D. Simonassi, Continuous Streaming Com-
putation With Twitter’s Cluster Technology. Newton, MA, USA: O’Reilly
Media, 2012.

[19] P. Carbone, G. E. Gévay, G. Hermann, A. Katsifodimos, J. Soto, V. Markl,
and S. Haridi, Large-Scale Data Stream Processing Systems. Cham,
Switzerland: Springer, 2017, pp. 219–260.

[20] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, ‘‘Aurora: A new model and
architecture for data streammanagement,’’ VLDB J. Int. J. Very Large Data
Bases, vol. 12, no. 2, pp. 120–139, Aug. 2003.

[21] N. Tatbul, Y. Ahmad, U. Çetintemel, J.-H. Hwang, Y. Xing, and S. Zdonik,
Load Management and High Availability in the Borealis Distributed
Stream Processing Engine. Berlin, Germany: Springer, 2008, pp. 66–85.

[22] Apache Software Foundation. (2019). Apache Kafka-A Distributed
Streaming Platform. Accessed: Jun. 5th, 2019. [Online]. Available:
https://kafka.apache.org/

[23] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, ‘‘Apache Hadoop
YARN: Yet another resource negotiator,’’ in Proc. 4th Annu. Symp. Cloud
Comput. (SOCC), 2013, pp. 1–16.

[24] L. Aniello, R. Baldoni, and L. Querzoni, ‘‘Adaptive online scheduling in
storm,’’ in Proc. 7th ACM Int. Conf. Distrib. Event-Based Syst. (DEBS).
New York, NY, USA: ACM, 2013, pp. 207–218.

VOLUME 8, 2020 117201

N. Tantalaki et al.: Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud

[25] D. Xiang, Y. Wu, P. Shang, J. Jiang, J. Wu, and K. Yu, ‘‘RB-storm:
Resource balance scheduling in Apache storm,’’ in Proc. 6th IIAI Int.
Congr. Adv. Appl. Informat. (IIAI-AAI), Jul. 2017, pp. 419–423.

[26] P. Smirnov, M. Melnik, and D. Nasonov, ‘‘Performance-aware scheduling
of streaming applications using genetic algorithm,’’Procedia Comput. Sci.,
vol. 108, pp. 2240–2249, Jun. 2017.

[27] L. Eskandari, Z. Huang, and D. Eyers, ‘‘P-scheduler: Adaptive hierarchical
scheduling in Apache storm,’’ in Proc. Australas. Comput. Science Week
Multiconf. New York, NY, USA: ACM, 2016, pp. 26:1–26:10.

[28] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, ‘‘Iterative scheduling
for distributed stream processing systems,’’ in Proc. 12th ACM Int.
Conf. Distrib. Event-Based Syst. New York, NY, USA: ACM, Jun. 2018,
pp. 234–237.

[29] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, ‘‘Optimal operator
placement for distributed stream processing applications,’’ in Proc. 10th
ACM Int. Conf. Distrib. Event-Based Syst. (DEBS). New York, NY, USA:
ACM, 2016, pp. 69–80.

[30] A. Al-Sinayyid and M. Zhu, ‘‘Job scheduler for streaming applications
in heterogeneous distributed processing systems,’’ J. Supercomput., p. 20,
Mar. 2020.

[31] G. Janssen, I. Verbitskiy, T. Renner, and L. Thamsen, ‘‘Scheduling stream
processing tasks on geo-distributed heterogeneous resources,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 5159–5164.

[32] M. Mortazavi-Dehkordi and K. Zamanifar, ‘‘Efficient resource scheduling
for the analysis of big data streams,’’ Intell. Data Anal., vol. 23, no. 1,
pp. 77–102, Feb. 2019.

[33] T. Li, Z. Xu, J. Tang, and Y. Wang, ‘‘Model-free control for distributed
stream data processing using deep reinforcement learning,’’ Proc. VLDB
Endowment, vol. 11, no. 6, pp. 705–718, 2018.

[34] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, ‘‘Dhalion:
Self-regulating stream processing in Heron,’’ Proc. VLDB Endowment,
vol. 10, no. 12, pp. 1825–1836, Aug. 2017.

[35] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, ‘‘Distributed QoS-
aware scheduling in storm,’’ in Proc. 9th ACM Int. Conf. Distrib. Event-
Based Syst. (DEBS). New York, NY, USA: ACM, 2015, pp. 344–347.

[36] C. Meng-Meng, Z. Chuang, L. Zhao, and X. Ke-Fu, ‘‘A task scheduling
approach for real-time stream processing,’’ in Proc. Int. Conf. Cloud
Comput. Big Data, Nov. 2014, pp. 160–167.

[37] J. Xu, Z. Chen, J. Tang, and S. Su, ‘‘T-storm: Traffic-aware online schedul-
ing in storm,’’ in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst.,
Jun. 2014, pp. 535–544.

[38] T. Z. J. Fu, J. Ding, R. T. B.Ma,M.Winslett, Y. Yang, and Z. Zhang, ‘‘DRS:
Dynamic resource scheduling for real-time analytics over fast streams,’’ in
Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst., Jun. 2015, pp. 411–420.

[39] D. Sun, H. Yan, S. Gao, X. Liu, and R. Buyya, ‘‘Rethinking elastic
online scheduling of big data streaming applications over high-velocity
continuous data streams,’’ J. Supercomput., vol. 74, no. 2, pp. 615–636,
Feb. 2018.

[40] M. Mortazavi-Dehkordi and K. Zamanifar, ‘‘Efficient deadline-aware
scheduling for the analysis of big data streams in public cloud,’’ Cluster
Comput., vol. 23, no. 1, pp. 241–263, Mar. 2020.

[41] D. Sun, S. Gao, X. Liu, F. Li, X. Zheng, and R. Buyya, ‘‘State and runtime-
aware scheduling in elastic stream computing systems,’’ Future Gener.
Comput. Syst., vol. 97, pp. 194–209, Aug. 2019.

[42] L. Xu, B. Peng, and I. Gupta, ‘‘Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,’’ in Proc. IEEE Int. Conf. Cloud Eng.
(IC2E), Apr. 2016, pp. 22–31.

[43] J. Li, C. Pu, Y. Chen, D. Gmach, and D.Milojicic, ‘‘Enabling elastic stream
processing in shared clusters,’’ in Proc. IEEE 9th Int. Conf. Cloud Comput.
(CLOUD), Jun. 2016, pp. 108–115.

NICOLETA TANTALAKI received the Diploma
degree in applied informatics and the first M.S.
degree in business informatics from the University
of Macedonia (UOM), Greece, and the second
M.S. degree in information and communication
technology in education from the Aristotle Uni-
versity of Thessaloniki, Greece. She is currently
pursuing the Ph.D. degree with the University of
Macedonia. She is also a Research Associate with
the University of Macedonia. Her research inter-

ests are in the field of parallel and distributed computing systems, with a
special emphasis on big data systems and scheduling algorithms for big
data stream processing. She received over ten research and education grants
from various agencies, such as the State Scholarship Foundation, the Onassis
Foundation, and Google Company.

STAVROS SOURAVLAS (Member, IEEE) is cur-
rently an Assistant Professor of computer architec-
ture and digital logic design with the Department
of Applied Informatics, School of Information Sci-
ences, University of Macedonia, where he joined
in 2014. His research interests include computer
architecture and performance evaluation, parallel
and distributed systems, big data stream schedul-
ing, cloud computing, and systems modeling and
simulation.

MANOS ROUMELIOTIS (Member, IEEE)
received theDiploma degree in electrical engineer-
ing from the Aristotle University of Thessaloniki,
Greece, in 1981, and theM.S. and Ph.D. degrees in
computer engineering from the Virginia Polytech-
nic Institute and State University, Blacksburg, VA,
USA, in 1983 and 1986, respectively. At VPI&SU,
he taught as a visiting Assistant Professor, in 1986.
From 1986 to 1989, he was an Assistant Professor
with the Department of Electrical and Computer

Engineering, West Virginia University. From 1995 until 2008, he was an
Assistant Professor with the Department of Applied Informatics, University
of Macedonia, Thessaloniki, Greece. Since April 2008, he has been a Profes-
sor with the Department of Applied Informatics, University of Macedonia.
He is currently the Director of the CNST Lab. He has published more than
120 articles in refereed journals and at conference proceedings. His research
interests include digital logic simulation and testing, computer architecture
and parallel processing, VR and serious gaming, and ancient technology.

STEFANOS KATSAVOUNIS is currently an Asso-
ciate Professor with the Department of Produc-
tion Engineering and Management, Democritus
University of Thrace, Greece. His scientific inter-
ests revolve around scheduling, RCMPSP, project
management, graph theory and modeling, heuris-
tics for NP-hard problems in social networks,
transportation and supply chain management, grey
analysis, and data processing in material science.

117202 VOLUME 8, 2020

