
A review on Big Data real-time stream processing and its

scheduling techniques

Nicoleta Tantalaki , Stavros Souravlas and Manos Roumeliotis

University of Macedonia, Egnatias 156, 54636, Thessaloniki, Greece

ARTICLE HISTORY

Compiled February 7, 2019

ABSTRACT
Over the last decade, several interconnected disruptions have happened in the large
scale distributed and parallel computing landscape. The volume of data currently
generated by various activities of the society has never been so big and is gener-
ated in an increasing speed. Data that is received in real-time can become way
too valuable at the time it arrives and support valuable decision making. Systems
for managing data streams is not a recently developed concept but it’s becoming
more important due to the multiplication of data stream sources in the context of
IoT. This paper refers to the unique processing challenges posed by the nature of
streams, and the related mechanisms used to face them in the big data era. Sev-
eral cloud systems emerged to enable distributed processing of streams of big data.
Distributed stream management systems (DSMS) along with their strengths and
limitations are presented and compared. Computations in these systems demand
elaborate orchestration over a collection of machines. Consequently, a classification
and literature review on these systems’ scheduling techniques and their enhance-
ments is also provided.

KEYWORDS
Big Data, Stream Processing, Real-Time Processing, Task Scheduling, Resource
Allocation

1. Introduction

Over the past 20 years data has increased in a large scale and in various fields. Man-
aging the produced data and gaining insights from it, is a challenge and possibly a key
to competitive advantage, so industries have to find ways to collect and integrate mas-
sive data from widely distributed data sources. The rapid growth of cloud computing
and Internet of Things (IoT) promote the sharp growth of data even more. Objects
contain embedded technology to interact with the external environment and support
decision-making. Sensors all over the world are collecting and transmitting data to be
processed and stored in the cloud [1].

The term of big data is utilized exactly to refer to this increase in the volume
of data that is difficult to store, process and analyze through traditional database
technologies. Big data is characterized by the 4 Vs ([1], [2]), namely, volume, variety,
velocity and veracity that clearly depict the need for technologies, which require new

CONTACT Nicoleta Tantalaki. Email:nicoleta@uom.gr



forms of integration to uncover fast, large hidden values from large datasets that are
diverse, complex and of massive scale. Cloud-based data analytics require high-level,
easy-to-use design tools for programming applications dealing with huge, distributed
data sources [3].

Recently, multiplication of data stream sources (sensor networks, connected devices
etc) is observed in the context of IoT. As the amount of such data grows, the need
to use models to process and analyze it as it arrives, becomes imperative. Several
technologies have emerged specifically to address the challenges of processing high-
volume, real-time data. Although systems for managing data streams is not a recently
developed concept, it is becoming more important in the mentioned context of IoT.
New frameworks have emerged but their differences and ideal use cases are not clear
enough. This raised the motivation to answer the following questions:

• How are stream processing challenges faced by technologies in the big data era?
• Which are the main candidate solutions for data stream processing?
• How do they differ in the way they handle streams of data?
• What issues should be taken into consideration when choosing a stream process-

ing solution?

From Stonebraker’s et al. [4] analysis and according to related works (for
instance [5], [6], [7], [8],[9]), the matters of performance and fault tolerance
of these systems rise to the top. Table 2 in Subsection 5.4 presents a full list
of such related works. The unpredictable data characteristics and arrival patterns
in streams of data pose unique challenges. Retaining state is also critical in most appli-
cations involving processing of streams of data. Frameworks should take advantage of
the inherent characteristics of parallel and distributed computing to meet these chal-
lenges. The demand of elaborate orchestration over a collection of machines becomes
imperative but the available frameworks’ in-built scheduling techniques are far from
optimal. The dynamic nature of cloud environments makes the efficient placement of
stream processing tasks on available resources and application adaptation challenging.
The following additional queries were raised:

• Which scheduling approaches have been developed in big data stream processing
systems?

• Which are the common themes in the available approaches?
• Which parameters affect the scheduling decisions in streaming big data clusters?

This work aims to address the issues raised by the aforementioned questions. In
particular, this survey:

1. highlights the challenges associated with processing streams of big data
2. provides an overview of the mechanisms that are used to face them
3. compares dominannt frameworks based on a list of criteria that arose

from the study of related reviews of the state of the art on stream
processing([4],[10],[11],[12],[13],[14],[15],[16]), and based on (1)-(3):
Informs potential users about the criteria to consider when choosing a framework
for a specific task

4. provides an up-to-date overview and classification of task allocation policies that
are either incorporated in the processing systems reviewed or are proposed in
the literature

5. detects the factors that affect scheduling decisions, and based on (4)-(5):
Supports the design and implementation of effective stream processing frame-

2



works in the future

The rest of this paper is organized as follows. Related work is presented
in Section 2. Section 3 describes the steps we followed to conduct our re-
search and the reasons for selecting the specific candidates for evaluation.
Section 4 refers to stream processing of big data. The available execution
models are presented, a number of issues and requirements are discussed
and mechanisms used to face them in the big data era are referred. The
dominant frameworks are evaluated based on several functionality charac-
teristics and are compared to finally analyze the reasons for selecting each
candidate solution. In Section 5, we focus on the matter of task and resource
scheduling in stream processing and present a taxonomy of scheduling ap-
proaches found in literature. A discussion on the findings of our survey is
also included. Section 6 provides conclusions and future directions.

2. Related Work

Any kind of processing and analysis on voluminous data with no specific structure
that are produced and arrive to be processed at high speed demands frameworks with
scaling capabilities, able to take advantage of parallel and distributed computing.
Choosing the right platform based on different use cases and needs becomes of crucial
importance. Singh and Reddy [17] used metrics like scalability, fault tolerance, and
data I/O rate to compare platforms for big data processing, but their work was focused
on hardware platforms and only on a few software frameworks like Hadoop [18] and
Spark [19] that are used for batch processing. In the past years, batch processing of
big data was a focal point in distributed processing.

Nevertheless, numerous applications like environmental monitoring and fraud de-
tection applications require continuous and timely processing of information. The area
of stream processing is not new. In 2005, Stonebraker et al. [4] defined the require-
ments that should be met by a real-time stream processing system to handle stream
processing applications. Consequently, several attempts were dedicated to present so-
lutions provided by the community in stream processing. Examples of early stream
processing frameworks like Esper, Aurora and Borealis are discussed in [20]. The term
Information Flow Processing (IFP) systems was used to describe systems providing
continuous and timely processing of information. Authors present different aspects of
these systems and provide a useful model for their classification. Nevertheless, the term
“big data” and the challenges arising by it are not mentioned at their work. With the
emergence of IoT in recent years, new distributed stream processing systems arose.

Research and developments in big data stream processing are ongoing and of great
interest against the challenges posed by business trends. Brief reviews over initial
solutions ([10], [21],[22]) and comparisons based on the basic selection criteria such
as language support and documentation [11] soon led to full surveys over a number
of available choices and valuable comparisons between them for potential users ([12],
[13], [14], [15], [16]). Hesse and Lorenz [12] presented prominent stream processing
engines and key components of their architectures, and compared them on performance
metrics like latency, throughput and message processing assurance. Details on systems’
mechanisms leading to specific performance characteristics are not, though, provided.
Authors praised the need for benchmarks and scalability analysis in their work.

Towards this direction, Georgiadis [13] provided a useful overview of the frameworks

3



studied by Hesse and Lorenz [12] and tested the way two of them, Spark and Flink
[23], exploit cluster’s resources as they scale out, using an appropriate benchmark.
Details on aspects like memory and iteration management were also studied for these
frameworks. Efficient resource management is also a matter of interest for Assuncao et
al. [14]. The authors provided a survey on stream processing engines and mechanisms
for exploiting resource elasticity features of cloud computing proposed in the literature,
were also examined. Assuncao et al. focused on the mechanisms required to exploit the
elasticity features of a stream processing engine and the comparisons between various
techniques focus on the metrics considered when scheduling a scaling operation.

Kamburugamuve et al. [15] evaluated streaming solutions on their programming API
for developing applications and their execution model. To compare the stream process-
ing frameworks they divided them into separate layers and evaluated the functionality
of each layer. Authors support that aspects like fault tolerance and high performance
of the execution engine raise the need for research on scheduling of streaming tasks.
In-built scheduling techniques in most processing systems mentioned in the aforemen-
tioned literature are far from optimal but most systems allow users to specify custom
scheduling for tasks.

In this work, we compare and evaluate the stream processing systems
by first specifying the key mechanisms of each system and by showing
how these mechanisms lead to certain performance features. As far as the
practical part is concerned, a few experiments that investigate the per-
formance and the impact of fault tolerance mechanisms used by several
stream processing systems have been conducted ([24],[25],[26],[27],[28]) and
are presented in our work. More real-world streaming experiments would
be useful for potential users as most of the available systems are frequently
updated by their communities, new possibilities are added, and new en-
gines arise to replace them. Also, we present several scheduling approaches
in stream processing, discuss scheduling techniques being developed, and
outline future directions.

3. Our approach in Data acquisition and Selection criteria

To address the research questions as outlined in the Introduction, we surveyed the
literature between January 2010 and March 2018. The choice of the review period
was a practical one and took into consideration the fact that big data is a rather
recent phenomenon. There is only one exception. Stonebraker’s et al. paper “The
Requirements of Real-Time Stream Processing”, goes back in 2005 but valued as a
crucial prototype that still characterizes modern stream processing frameworks in the
big data industry and we tried to present it adapted it in this context.

The bibliographic analysis in the domain under study involved three steps:

(1) Collection of related work
(2) Filtering of relevant work
(3) Detailed review and analysis of state of the art

Steps had to be repeated both for Section 4 and Section 5. In the first step, a
keyword-based search for conference papers, journal articles, technical reports was
performed using the following databases: IEEE Xplore, Science Direct, ACM, and
CiteSeer. These databases were chosen because of their wide coverage of relevant lit-
erature and advanced bibliometric features such as suggesting related literature or

4



citations. Keywords like “stream processing”, “real-time”, “big data”, “cloud comput-
ing”, “distribtued processing”, were used, in possible combinations. After a literature
of the state of the art had been studied, we proceeded with bibliographic search based
on keyword combinations using a search engine that indexes the full text and meta-
data of scholarly literature, Google Scholar to add more specific information. Terms
like “windows”, “watermarks”, “recovery”, and “state management” were added to
our ”pool” of keywords to explore the mechanisms used in big data era to handle
requirements in stream processing.

To select the major solutions that satisfy stream processing require-
ments and perform comparison between them, we consulted surveys
([10],[11],[12],[13],[14],[15],[16],[21],[22]) presented in the “Related work” Sec-
tion. We had to select a subset of the state of the art systems, which are able to
satisfy the requirements and use the most representative mechanisms to do so. We
also wanted to focus on open-source solutions with active community support that
would also be useful for the second part of our work referring to task scheduling.

Initially, we chose two main representatives of the two available execution models for
processing streams to understand how they perform; Apache Spark Streaming [29] and
Storm[30]. Spark is the most active project in terms of community numbers and utilizes
the micro batch technique while Storm uses a streaming computation model (Heron
[31] is an improved version of Storm but it is not such a mature project and we would
not be able to find enough work addressing scheduling techniques on it). Flink [23] can
support the same capabilities as Spark but works as a native stream engine and arises
several challenges for Spark in stream processing (e.g. in case of recovery and latency).
Thus, it was added to our review. Flink also seems to have more capabilities than
Storm. Nevertheless, Storm has a larger community and as it is a mature project, there
is extensive literature on scheduling techniques on it. Samza[32] is a distributed stream
processing framework that is interesting chiefly due to the capabilities arising by its
smart coordination with Kafka message broker [33]. This provides several advantages
like automatic flow control built in the system. Consequently, we ended up with 4
prominent stream processing frameworks namely Apache Storm, Spark, Samza and
Flink.

The names of frameworks under consideration; “Spark Streaming”, “Storm”,
“Samza”, and “Flink” were added to our keywords “pool” and used in several com-
binations to check how the issues studied are addressed by prominent frameworks,
provide an overview, and make comparisons between them based on a list of criteria.
For Section 5 keywords “task scheduling”, “stream scheduling”, and “resource alloca-
tion” were used in combination with most of the aforementioned keywords to retrieve
scheduling approaches either incorporated in the existing frameworks or proposed with
new possible architectures.

In the second step, we restricted our study to a number of papers having the high-
est quality and considered as the most important resources in this field. To do this,
we focused on papers with higher impact (that is, higher number of cita-
tions). An exception was made for papers published in 2016-2018, where papers with
small number of citations were also accepted. In this way, gray literature, though
quite informative for big data industry conditions, was avoided. Nevertheless, official
documentation of each framework complemented the related articles retrieved several
times.

We further filtered out papers referring to matters of interest (e.g. distributed pro-
cessing, stream processing, scalability, etc.) in the cloud that did not make actual use
of big data and their inherent characteristics (i.e. volume, velocity, variety). We also

5



had to filter out papers not referring to stream processing of big data, as literature is
much more rich when it comes to processing of already stored big data and Hadoop
MapReduce [34] scheduling enhancements. In this way, the number of papers qualified
according to our constraints was severely restricted.

In the last step, we studied the selected literature in detail to extract the information
relevant to our research questions. Additional literature that had not been identified in
the first step was retrieved in this step as well if they were referred to by “related work”.
This “snow-ball” approach resulted in additional articles and web-items from which
relevant information was extracted as well. The extracted information was analyzed
and synthesized.

4. Stream Processing of Big Data

Centralized computing systems have been around in technological computations for
years. In such systems, one central computer controls the peripherals and performs
complex computations. Centralized computing systems require expensive hardware in
order to process huge volumes of data and support multiple online users concurrently.
Under these circumstances, cloud and distributed computing systems arose to exploit
parallel processing technology. Users can share computing resources, which can be
virtualized and allocated dynamically in the cloud, typically characterized by scalable
and elastic resources.

Nowadays, distributed cloud computing attract numerous customers and service
providers. The importance of stream processing systems increases as more and more
modern applications impose tighter time constraints on a particular event. The re-
sultant analysis provides information that can provide companies with visibility into
many aspects of their business and customer activity and enables them to respond
rapidly to emerging situations. Much of the data that companies receive in real time
is more valuable at the time it arrives. For example, businesses can track changes
in public preference on their brands and products by continuously analyzing social
media streams. There is no point in detecting a potential buyer after the user leaves
the e-commerce site or detecting a credit card fraud after a transaction is completed
[35]. For instance, eBay detects frauds from PayPal usage by analyzing 5 million real-
time transactions every day. Online machine learning is also another promising use
case. There are numerous use cases making the need for stream processing imperative.
When data arrives fast and need to be processed with real-time restrictions, a stream
processing system has usually to be placed on top of a cloud infrastructure. Processing
and analyzing data streams in real time are tasks that traditional data-warehousing
environments cannot handle easily due to high latency and cost [36].

A stream processing system or data stream management system (DSMS), is de-
signed to handle data streams and manage continuous queries. It executes continuous
queries that are not only once performed, but are continuously executed until they are
explicitly uninstalled. It produces results as long as new data arrives in the system and
data is processed on the fly without the need for storing it. Data is usually stored af-
ter processing. Stream processing systems differ from batch processing systems, due to
the requirement of real time data processing. The term “real time processing system”
refers to a system that responds within “real-world” time deadlines. It guarantees that
a certain process will be executed within a given period, maybe a few seconds, depend-
ing on the quality of service constraints. The term “real-time” is a bit redundant but
many systems use the term to describe themselves as low latency systems. Elaborate

6



and agile systems have been proposed for these new demands.
Streaming applications can be represented using a directed acyclic graph (DAG),

where vertices are the operators and the edges are the channels for dataflow between
operators [12].The processing can go through operators in a particular order, where
the operators can be chained together, but the processing must never go back to an
earlier point in the graph. There are two execution models used in stream processing
[37]:

(1) The Stream-Dataflow Approach, where an application is viewed as a
dataflow graph with operators and data dependencies between them (sometimes
referred as operator-based approach). A task encapsulates the logic of a
predefined operator like filter, window, aggregate or join or even a routine with
user-specified logic. A data stream between two operators represents an infinite
sequence of data produced by a task, which is available for further consumption.
Data is delivered and consumed in arbitrary order across parallel tasks, and
as a result, there is a lack of a coarse-grain unit for transactional processing.
Everything is automatically pipelined.

(2) The Micro-Batch Approach, that offers a solution to enable processing
data streams on batch processing systems. With micro-batching, we can treat
a streaming computation as a sequence of transformations on bounded sets by
discretizing a distributed data stream into batches, and then scheduling these
batches sequentially in a cluster of worker nodes.

The progress of real-time stream processing systems in the cloud has been rela-
tively slow, but nowadays there are several solutions offered. Apache Storm [30] is a
real-time distributed computing technology for processing streaming messages on a
continuous basis. Individual logical processing units are connected like a pipeline to
express series of transformations and expose opportunities for concurrent processing.
Heron is a processing engine for streaming and real-time data at scale that was devel-
oped at Twitter as a replacement for Apache Storm. Spark Streaming [29] is another
solution that makes it easy to build streaming applications using the micro-batching
approach. The idea behind this is to process in the same fashion as the batch pro-
cessing but keeping the batch sizes very small. Apache Samza [32] is a distributed
stream-processing framework that provides a simple API, comparable to MapReduce.
There are also commercial solutions like Amazon Kinesis [38], a fully managed ser-
vice for real-time processing of streaming data at massive scale and IBM InfoSphere
Streams [39]. Research and development in the area of stream processing is
continuous and becomes of great importance in the mentioned context of
IoT. In the following section, we are going to outline issues and require-
ments that stream processing systems have to meet to excel at real-time
stream processing applications. Our work relies mostly on Stonebraker’s et
al.[4] analysis. Also, we present the mechanisms used in the big data era
to face the aforementioned challenges.

4.1. Issues/Requirements in Big Data Real-Time Stream Processing

Stonebraker et al. [4] introduced the requirements for real-time processing of data
streams to provide high-level guidance of what to look for when evaluating stream

7



processing solutions. The most prevalent of them can characterize the available stream
processing frameworks for big data in ways that are presented below and could be
further enhanced. A real-time stream processing system has to:

(1) “Process messages in-stream without any requirement to store them
to perform any operation or sequence of operations.”
More and more modern applications impose tighter time constraints on a par-
ticular event. Performance related requirements like latency and throughput are
extremely important in streaming applications. To meet these requirements, pro-
cessing has to be done without the costly storage operation. MapReduce can han-
dle large datasets but works using permanent storage [34]. Thus, it fails when it
comes to real-time data processing, as it was designed to perform batch process-
ing on voluminous amounts of data. In-memory computing provides a solution
to this problem and is based on using a distributed main memory system to
store and process big data in real time. Main memory delivers higher bandwidth
and better latency compared to hard disk. Even if the framework uses mem-
ory for caching of frequently used data, the whole job execution performance
will be improved significantly [21]. Despite the dropping price of memory, using
large amounts of RAM to run everything in-memory can be expensive, so proper
mechanisms are needed to handle it in an effective way.

Spark Streaming is a system that arose to provide in-memory computation
effectively. It processes all data in-memory, only interacting with the storage
layer to initially load the data into memory and at the end to persist the final
results. To implement in-memory computations, Spark uses a model called
Resilient Distributed Datasets or RDDs, its in-memory abstraction to work
with data. Flink also offers in-memory computations. Its core is built on a data
flow streaming engine whose fundamental functionality is pipelining i.e. all
tasks have to be online simultaneously in order for the data to be able to flow
through the tasks regardless of the node, that a task might reside on ([13]).
Storm runs also in-memory to process big data at in-memory speed. Memory
is a resource of crucial importance for a DSMS. Since in-memory computing is
not only about storing but also processing big data in real-time, problems like
efficient scheduling and appropriate moving code to data rather than data to
code are matters that it has to deal with ([21]).

(2) “Support a proper querying language with extensible stream oriented
primitives.”

Stream processing systems receive input streams from one or more sources and
organize the computation into a directed graph of operators either explicitly or
implicitly. In the first case, systems are known as compositional. They offer basic
building blocks for composing custom operators and topologies. The user has to
implement the whole logic himself and the operators are defined as implementa-
tions of classes. In the latter case, systems are called declarative and developers
are provided with high-level languages that are automatically translated by the
system into the operator graph ([37],[15]).

Querying mechanisms are needed to detect events of interest or com-
pute real-time analytics. General purpose languages like Java have been used
as programming tools in streaming applications but using low-level program-
ming schemes results in long development cycles and high maintenance costs.

8



Using a stream processing system with no support for SQL like query languages,
requires sound knowledge on imperative style programming and distributed sys-
tems to effectively utilize it. Support for SQL like continuous query languages
or SQL with streaming extensions can help towards this direction. SQL remains
a reliable query language with high performance for real-time analytics ([40])
but has limitations when dealing with huge amounts of data. Systems can adopt
SQL-like languages that represent the processing as queries that get repeatedly
and continuously evaluated as new data becomes available. New projects like
SQLStream [41] and Apache Calcite [42] emerge to execute queries over big data
using a set of streaming-specific extensions to standard SQL. There have been
a number of efforts towards using various languages in event processing systems
to allow users to express their interests. Different projects have taken different
directions with the research [43].

There is a concept of vital importance when it comes to data stream
mining. The data set is assumed to be infinite, creating problems in processing.
Not all operators can be evaluated over streams. A stream processing engine
has to know when to finish an operation on a stream of data and output an
answer. Traditional methods have the advantage of knowing the total size
of the set. Sampling is a tool that addresses this problem. Windowing is a
sampling method defining the scope of an operation and is a heavily used
approach in stream processing. An unbounded stream of data is split into finite
sets, called windows, based on specified criteria, like time. A window can be
conceptualized as an in-memory table where events are added and removed and
computations are calculated on each window of events. In [44] and [45] there
are detailed analysis over windowing techniques. There are stream processing
frameworks that offer only the basics, like Storm, Samza and Spark Streaming
that only supports time windows having a size and slide that are multiple of the
batch size. On the contrary, Spark Structured Streaming, a new component in
Spark 2.0, offers more windowing possibilities. Flink also offers a wide range of
windowing features. Tumbling windows, sliding windows, session windows and
global windows are pre-implemented while users can also implement their own
windows. The notions of windowing and time, and the windowing semantics
used by prominent stream processing frameworks are further discussed in [46].

(3) “Use mechanisms to provide resiliency against stream imperfections
including out-of-order or missing data which are commonly present
in real-world data streams.”

Incomplete datasets, destroyed data, the presence of outliers or biases in the
training affect the analysis’ accuracy. Missing data is a phenomenon that is
inevitable in distributed communication environments. A transmission loss due
to broken link between sensors or a malfunctioning sensor leads to missing values
from the data. A sensor accident can lead to permanent missing values while a
temporal disconnection or network delay leads to temporal loss as data may
arrive in a short while ([47]).

The assessment of data quality demands significant human involvement
and expert knowledge but when it comes to large volumes of unstructured data
even semi-automated approaches are not practical. Streaming data and real-
time processing outweigh data quality, making data quality management more
imperative than ever. To the best of our knowledge, the above problems have

9



not been addressed effectively so far, but there is growing interest towards this
direction ([47], [48]).Techniques like outlier detection, data transformations, di-
mensionality reduction, cross-validation and bootstrapping are valuable tools in
data quality management but until recently, data quality research has primarily
focused on structured data stored in relational databases and file systems.

Streaming data is also typically not well ordered in time. Event-time
ordered data is uncommon in many real-world, distributed input sources. While
receiving a stream of an IoT sensor readings for example, some devices might
be offline, and send data after some time. Leaving a strictly time-constrained
system waiting is not an appealing solution. Keeping all windows around
forever would also consume all available memory. When it comes to real-time
processing, there must be a mechanism to allow windows to stay open for a
while. Watermarks are such a mechanism. They enable streaming systems to
emit timely, correct results when processing out-of-order data. They are used as
a heuristic, assuming that all events before a specific time have been observed.
This technique is further explored in [45]. Most prominent stream processing
systems (e.g. Spark Structured Streaming, Storm, Samza, Flink etc.) implement
watermarking techniques.

(4) “Ensure that the apps are up and available and the integrity of the
data should be maintained at all times despite failures. The system
should have the capability to efficiently store, access state information
and combine it with live streaming.”

Network failures, lack of resources, and network software bugs can cause even
more problems in large-scale distributed computing. When large sets of such
components are working together there is high probability that at least one
component may fail at a given time. Almost all stream processing systems in
big data industry provide the ability to recover automatically from faults. Sev-
eral techniques have been developed to recover fast enough so that the normal
processing can continue with the minimal effect to the overall performance. We
distinguish three main categories for recovery in stream processing; precise re-
covery, rollback recovery and GAP recovery (the interested reader can refer
to [49] for a thorough analysis of fault tolerance in stream processing engines).
Precise recovery provides no evidence of a failure afterwards but there is an
increase in latency. In rollback recovery the output produced after a failure is
“equivalent” to, but not necessarily the same as, the output of an execution with-
out failure. For example, information may be processed more than once when a
failure happens. In GAP recovery the loss of information is expected in favor of
reduced recovery time and runtime overhead.

Storm and Samza use upstream backup techniques that provide roll-back
recovery. Generally speaking, a stream processing system can use the upstream
backup method to avoid any checkpointing overhead e.g. disk I/Os and data
structures (checkpointing is also available in both aforementioned systems).
When it comes to state, though, Storm requires the user to manually handle
recovery of state [50]. Apache Zookeper [51] has to be used to maintain its
cluster state while Samza makes state changes fault tolerant by modeling them
as an output log (commitlog or changelog) to a Kafka topic [33]. Systems
like Spark Streaming that work with batches usually re-execute the necessary
computations in case of failures, yielding the same output regardless of them

10



due to RDDs, that can be recomputed deterministically. RDDs are immutable,
meaning that no worker node can modify it, it can only process it and output
some results. Each RDD can trace its lineage back through its parent RDDs and
ultimately to the data on disk ([52], [53]). Flink implements different recovery
mechanisms; rollback/restart for finite streams and distributed snapshotting for
infinite streams. Flink’s checkpointing mechanism stores consistent snapshots of
distributed data stream and operator state. These fault recovery methods lead
to different processing guarantees for each system (and provide fault tolerance
in different ways) that are further examined in Subsection 4.2.

(5) “Be able to distribute its processing across multiple processors and
machines to achieve incremental scalability. Ideally, the distribution
should be automatic and transparent.”

Streams do not have preset lifespan, arrive at non predefined rates and are
voluminous. If not managed carefully, processing delays can become unacceptable
and lead to long queues at a processing node, buffer overflows, and memory
exhaustion. The number of stream computations are much more than the number
of machines available for processing. Multiple stream processing computations
should be interleaved on the same machine to reduce the number of needed
connections and assure high throughput and increased performance. On the other
hand, if tasks are densely allocated in nodes, a node failure will bring down most
of the application. Overloaded and underutilized machines should be avoided as
imbalances deteriorate system’s performance.

Running algorithms in a sequential manner is not sufficient. Algorithms
should run in parallel with streams of data also partitioned to many distributed
processing units. Moreover, unlike stateless computations, stateful computa-
tions cannot simply be replicated on multiple machines with streams of data
been processed in e.g. a simple round robin fashion in parallel. Horizontal
scaling requires adapting the graph of processing elements, exporting and
saving operators’ state for replication, fault tolerance and migration [14].
As stream processing queries are often treated as long running that cannot
be restarted without incurring a loss of data, the initial task assignment,
where processing elements are deployed on available computing resources
becomes more critical than in other systems. Processing must be orchestrated
carefully over a collection of machines making task scheduling either stat-
ically or dynamically at scale over a set of machines, a challenge. This led
us to investigate scheduling techniques in the streaming big data era in Section 5.

(6) “Have a highly-optimized, minimal-overhead execution engine to
deliver real-time response for high-volume applications”

The aforementioned rules make no sense alone unless an application can pro-
cess high-volumes of streaming data with very low latency and high throughput,
to meet the real-time demands. The ability to process large volumes of data on
the fly, as soon as they become available, is a fundamental requirement in todays
information systems. There is a rapid increase in the number of available stream
processing engines. However, each engine defines its own processing model and
execution semantics that affect its performance. For instance, Apache Storm
uses the dataflow execution model where streams of data are processed tuple

11



by tuple on continuous operators. On the other hand, Spark streaming creates
small batches of streaming data and execute them based on its batch processing
engine. To have this requirement met, it is imperative that any user with a
high-volume streaming application carefully examine the given solutions to the
one that better fits his use case and its demands. We provide a comparison
between the systems under study in Subsection 4.2 and this comparison’s results
in Subsection 4.3 to support potential users towards this direction.

Taking into account the aforementioned requirements, the nature of streams poses
several processing challenges. The matters of performance and message processing
assurance seem to rise to the top when choosing a framework for a specific application.
We are going to further examine the aforementioned DSMSs with respect mainly to
these matters to further check and compare their capabalities and the results of their
built-in mechanisms. Efficient task scheduling strongly affects both handling fault
tolerance and performance [15]. Most streaming systems allow the user to specify
custom scheduling for tasks and the interest on this aspect grows widely but there is
still much work to be done. This raised our interest to examine the problem of task
placement and resource allocation in a distributed setup in Section 5.

4.2. Comparing and Evaluating Stream Processing Solutions

Available frameworks have several differences in their architecture and in the pro-
cessing model they use. Choosing a system that can guarantee fault-tolerant, high
performance stream processing based on user’s needs is quite cumbersome. The mech-
anisms overviewed to handle the stream processing requirements provide different
functionality characteristics to each DSMS. In this section, we divide the functionality
of a streaming engine mainly in matters in context of performance and fault tolerance
to evaluate the selected DSMSs. Related surveys ([10],[11],[12],[13],[14],[15],[16]) were
also consulted for defining the list of criteria used for our purposes .

All streaming solutions examined in this section use a parallel distributed archi-
tecture that allows portioning of data streams and parallelisation across a cluster of
machines. The attributes that are also examined are the following:

Processing Model: The selection of a processing model for a system varies from
batch processing and micro-batch processing to stream processing tuple by tuple.
Batch processing systems such as MapReduce are out of our interest in this section.

Stream Primitive: Refers to the main data structure in a streaming system. These
systems use various words for such concepts.

Latency: Refers to the elapsed time from job submission to receiving the first
response.

State Management: Streaming computation can be either stateless or stateful. “A
stateless program looks at each individual event and creates some output based on
that last event” [54]. For example a streaming program might receive traffic data and
raise an alert in the event of traffic light violations. “A stateful program creates output
based on multiple events taken together” [54]. All kinds of state machines used for com-
plex event processing (CEP) are stateful. For example, creating an alert after receiving

12



two traffic light violations that differ by less than 5 minutes is a stateful computation.
The frameworks examined use various strategies to store states or may not store state.

Throughput: Refers to the average number of jobs or tasks or operations per time
unit.

Delivery Guarantee: Refers to the “level of correctness” of the results produced
after a failure and a successful recovery of the system compared to what the results
would be without any failures. Stream processing systems are characterized by the
following three semantics [32]:

• at-most-once delivery, which drops messages in case they are not processed cor-
rectly, or in case the processing unit fails. This is usually the least desirable
outcome as messages may be lost.

• at-least-once delivery, which tracks whether each input was successfully processed
within a preset timeout. It this way it guarantees that messages are redelivered
and re-processed after a failure. If a task fails, no messages are lost, but some mes-
sages may be redelivered. In case the effect of a message on state is idempotent,
no problem occurs if the same message is processed more than once. A duplicate
update will not change the result. However, for non-idempotent operations such
as counting, at-least-once delivery guarantees can give incorrect results. This
approach is good enough for many use cases but it may cause duplicates.

• exactly-once semantics, which uses the same failure detection mechanism as
the at-least-once mode. Messages are actually processed at least once, but
duplicates can be avoided via various techniques. Such systems guarantee that
the final result will be exactly the same as it would be in the failure-free sce-
nario. This is the most desirable feature but it is difficult to guarantee in all cases.

Programming Model: Systems can be either compositional when users have to
model the streaming application as graph explicitly or declarative when users are
provided with higher level abstractions.

API languages: Refers to the languages that someone can use in order to develop
an application for this framework.

Contributers: Refers to the respective community of contributors based on Github.

Table 1 summarizes how four different frameworks support the above features.

Storm implements the dataflow model. The topology of an application is described by
using components named “spouts” and “bolts”, referring to data sources and elements
that process data in the form of tuples respectively [55]. Since a tuple is processed
as it arrives, Storm has sub-second latency. Its mechanism supports low throughput
mainly because of its acknowledge mechanism. Each record that is processed from
an operator sends an acknowledgement back to the previous operator, indicating
that it has been processed. This mechanism may also falsely classify a number of
records as non-aknowledged. Threfore, these records will have to be re-processed
leading to even lower throughput. It does not provide state recovery but provides
guaranteed delivery and processing of data using the upstream backup mechanism

13



Table 1. Classification of Streaming Solutions
Platform/Criteria Processing Stream Latency Throughput Stateful Guarantee Programming API Contributers

Framework Primitive Operations Model languages (Github)

Storm Streaming Tuple Subsecs Low No At least once Compositional Any 294
(exactly with
Trident)

Spark Streaming Micro-Batch Dstream Few Secs High Yes Exactly once Declarative Java, Scala, 1287
R, Python

Samza Streaming Message Subsecs High Yes At least once Compositional JVM 93
languages

Flink Hybrid DataStream Subsecs High Yes Exactly once Declarative Java, Scala, 444
Python

and record acknowledgements [30]. In case of failure (e.g. worker failure), if not all
acknowledgements have been received, the records are replayed by the spout [24]. In
this way, no data loss will occur but duplicate records may pass through the system.
Mutable states may be incorrectly updated twice. That’s why it offers at-least-once
delivery guarantee. Micro-batch processing is offered by Trident Storm for higher
throughput. In Storm Trident the state can be managed automatically, so it does
guarantee state consistency (exactly-once delivery) but state is kept in a replicated
database which is expensive, as all updates are replicated across the network([50],
[56]). Apache Storm is a compositional system that expects user to explicitly define
the application DAG.

Spark Streaming batches up events within a short frame before processing arrived
data. At the low-level, data is represented as RDDs and computations on these RDDs
can be represented as either transformations or actions. The abstraction for data
streams is called Dstream and it consists of an RDD sequence, containing data of a
certain stream interval. DStreams let users apply transformations to them.

Streaming computations in Spark Streaming, represent a series of batch compu-
tations of a definable time interval size [57]. Adapting the batch methodology for
stream processing involves buffering the data as it enters the system leading to few
seconds latency. There is a penalty of latency equal to the micro-batch duration.
Waiting to flush the buffer also leads to an increase in latency. Nevertheless, the
buffer allows Spark Streaming to handle a high volume of incoming data, increasing
overall throughput [16]. As we can see there is a trade-off between low latency and
high throughput. Systems based on micro-batching can achieve high throughput
but in case processing of a batch takes longer in downstream operations than in
the batching operations, the micro-batch will take longer than configured. This may
lead to more and more batches queueing up (or to a growing mini-batch size) [33].
While Spark Streaming may be adequate for many projects, it is not a true real-time
system. Zaharia et al. [58] mention, though, that while this model is slower than
true streaming, the latency can be minimized enough for most real-world projects
due to the use of RDDs. RDDs allow in-memory computations in a fault-tolerant
manner, avoiding writing outputs to replicated, disk storage systems yielding to
time consuming disk I/Os. Spark Streaming provides support for both stateful and
stateless computations and guarantees that batch level processing will be executed in
an exactly once manner. This is achieved by tracking the lineages in each DStream.
All state in Spark Streaming is stored in RDDs [58]. It is a declarative system as it
introduces several abstractions for representing data and managing different types of
computations. The code defines just the functions that need to be performed on the
data and Spark implies the corresponding DAG from the functions called.

14



Samza is a stream-processing framework based on the Publish/Subscribe model. It
listens to a data stream, processes messages which are its stream primitive as they
arrive, one at a time, and outputs its result to another stream. It is tightly tied
to the Apache Kafka messaging system [33] for streaming data between tasks and
Apache YARN [59] the for distribution of tasks among nodes in a cluster. Kafka
offers replicated storage of data that can be accessed with low latency, so Samza
jobs can have latency in the low milliseconds when running with it. Samza allows
tasks to maintain state by storing it on disk (typically using Kafka). This state is
stored on the same machine as the processing task, to avoid performance problems.
By co-locating storage and processing on the same machine, Samza is able to achieve
high throughput [32]. It also tracks whether a message is delivered or not and it
redelivers it in case of failure, to avoid data loss using a checkpointing system but can
only deliver at least once guarantees. If a Samza task fails and is restarted, it may
double-count some messages that may have been consumed since the last checkpoint
was written. The topology of a Samza job is explicitly defined by the user’s code [15].

Flink is an hybrid solution [60]. The need to manage different workloads under a
coherent architecture led to several design patterns with the most popular being the
“Lambda Architecture”. The complexity of using different batch and streaming ar-
chitectures paved the way to the “Kappa architectural” pattern that fuses the batch
and stream layers together. Flink is a materialization of the Kappa archtecture. De-
spite the fact that it relies on a streaming execution model, it is possible to process
both bounded and unbounded data, with two APIs running on the same distributed
streaming execution.

The basic data abstraction for stream processing is called DataStream. It executes
arbitrary dataflow programs in a data-parallel and pipelined manner, which results in
achieving low latency. Apache Flink’s dataflow programming model provides event-at-
a-time processing [61]. Tuples can be collected in buffers with an adjustable timeout
before they are sent to the next operator to turn the knob between throughput and
latency. It performs at large scale, running on thousands of nodes with very good
throughput and latency characteristics based on existing benchmarks. When using
stateful computations, it ensures exactly once semantics. Apache Flink includes a
lightweight fault tolerance mechanism based on distributed checkpoints. Its algorithm
is based on a technique introduced by Chandy and Lamport [62] and periodically
draws consistent snapshots of the current state of the distributed system without
missing information and without recording duplicates. These snapshots are stored to
a durable storage. In case of failure the latest snapshot is restored, the stream source
is rewinded to the point when the snapshot was taken, and is replayed [23]. Flink is
currently a unique option in the processing framework world but at the moment, it
is a young project and there hasn’t been much research into its scaling limitations. It
is a declarative system, providing higher level abstractions to users like Spark. The
DAG is implied by the ordering of the transformations while its engine can reorder
the transformations if needed.

15



4.3. Comparison Results

The provided overview reveals that there is no system able to do everything and no
system that does nothing. All systems do something but they do it differently. Bench-
marking can be a good way to compare them, especially when it has been done by
third parties. To shed some light on the performance of the above engines, a few ex-
periments that investigate latency, throughput and the impact of their fault tolerance
mechanism have been conducted. Some examples are provided below:

• Cordova [24] compared Spark Streaming and Storm Trident. He provided a
benchmark of both systems over different tasks and processing tuples of dif-
ferent sizes. The main conclusion was that Storm Trident was around 40% faster
than Spark, processing tuples of small size. However, as the tuple’s size increased,
Spark had better performance maintaining the processing times.

• Chintapalli et al. [25] designed and implemented a real-world streaming bench-
mark focusing on Storm, Flink and Spark Streaming and found that Storm and
Flink have much lower latency than Spark Streaming at fairly high throughput.
On the other hand, Spark Streaming is able to handle higher throughput and its
performance is quite sensitive to the batch duration setting.

• Perera et al. [26] compared Flink with Spark against two benchmarks, Intel
HiBench Streaming and Yahoo Stream. Both systems performed similarly under
different loads but Flink demonstrated a slightly better performance at lower
event rates, mainly because of Spark Streaming’s micro-batch technique. The
CPU utilization was similar in both systems but when it came to memory usage
Flink needed less amount of memory than Spark.

• Lu et al. [27] also proposed a benchmark definition named StreamBench. They
applied StreamBench to Spark Streaming and Storm. They found that Spark
tends to have larger throughput (even about 5 times that of Storm’s) and less
node failure impact compared to Storm. Storm, though, has much lower latency
(even 50 times less) than Spark, except with complex workloads under large data
scale, for which its latency may be multiple times of Spark’s. A mediator system
was used between the data source and the streaming system to decouple them.

• Karimov et al. [28] proposed a benchmark framework in which they separated the
system under test from the driver to avoid mediators and conducted experiments
with Storm, Spark and Flink. Both Flink and Spark were robust to fluctuations
in the data arrival rate in aggregation workloads while for join queries, Flink
behaved better. In case latency is a priority, Flink seemed to be the best choice
and had better overall throughput when tested in aggregation and join queries.

To provide accurate and customized recommendations, more real-world streaming
benchmarks on the aforementioned systems based on different use cases need to be
designed and implemented. Nevertheless, we can’t completely rely on benchmarking
in stream processing as even a small change in configuration or use case can com-
pletely change the numbers. Moreover, the above technologies may have established
themselves as leaders and have strong supporting communities, but are still evolving.
For instance, most of the aforementioned benchmarks do not take into consideration
the release of Spark Streaming 2.0 that overcomes several limitations with RDDs im-
proving its performance towards other systems. Consequently, it is not easy to make a
clear ranking with quantifiable results. Combining the above overview (Table 1) with
available benchmarks, though, some conclusions, arise:

16



• Storm works with very low latency but can deliver duplicates and cannot
guarantee ordering by default configuration. Since it does not provide implicit
support for state management, it does not fit in cases of complex event
processing. Nevertheless, it excels in case of non-complicated streaming use
cases, where latency is of crucial importance, due to its true streaming nature
and maturity.

• Samza has to be integrated tightly with Kafka and YARN to provide high
performance, flexibility, and state management. It is not easy to be used without
them in the processing pipeline, while deploying such a system would require
extensive testing to make sure that the topology is correct. Nevertheless, in case
these technologies are already incorporated, it is a mature, fault tolerant solution
providing high performance (both in matters of latency and throughput). At
least-once processing guarantee remains an issue but it is referred that is about
to be resolved in the next release.

• Spark is very popular, mature and widely adopted with a strong community
supporting it. It provides high throughput, it is fault tolerant because of its
micro-batch nature providing exactly one guarantee, and can be used in case
sub-latency is not required. Nevertheless, it lags behind Flink in many advanced
features. Its new release (Structured Streaming) is equipped with several good
features and promises to yield subsecond latency, but it’s early for this ambition
to be achieved.

• Flink provides true stream processing with batch processing support. It is heav-
ily optimized, incorporating several innovations like light weighted snapshots
and it seems that its the leader in the DSMS landscape. As we saw, most of
the wanted aspects (low latency, high throughput, exactly once guarantee, state
management) are provided. Nevertheless, there was lack of adoption initially
and its maturity is a matter of concern. Its community support is also smaller
than Spark’s. This seems to change rapidly, though, as it started to get widely
adopted in the business world.

Consequently, the best possible answer provided to users that want to learn which
is the best possible solution is that it depends on their needs. Future considerations
should also be taken into account. For instance, in simple cases Storm may seem
a good idea. Nevertheless, in case advanced requirements involving complex event
processing like aggregations and joins occur later, or batch-oriented tasks should also
be implemented, advanced streaming frameworks like Spark Streaming or Flink should
be preferred. Changes in existent infrastructure and re-training employees may lead
to huge costs in time and money.

Finally, we should keep in mind that coding in declarative systems is much easier
than in compositional as users are provided with higher level abstractions and imply
the DAG through their coding. Optimizations can be done by the system. Nevertheless,
in compositional systems the code is at the complete control of the developer. If there
is a need for fast and easy implementation, systems like Spark or Flink should be
preferred but if complete control over the applications graph is needed, then Storm or
Samza should be chosen.

As we see, the best fit for each situation depends upon several factors. Understanding

17



the mechanisms and characteristics of the aforementioned architectures makes it easier
to pick or at least filter down the available options. Work-in-progress evaluation can
then support users to make the best possible choice based on their needs. Changes in
configuration, tuning or available infrastructure can change results and lead to severe
improvements. Task scheduling strongly affects the performance and fault tolerance in
a stream processing system and is going to be examined in the next section.

5. Scheduling Approaches in Stream Processing

The aforementioned frameworks use special data processing mechanisms and architec-
tures to provide the necessary performance. The efficient resource allocation and task
scheduling of streaming applications is of great importance in data stream process-
ing. Resource allocation deals with the problem of gathering and assigning resources
to different requests. Inside an application, resources need to be carefully scheduled
to different components to ensure optimal utilization. Misplacing resources can cause
both poor resource utilization and instability of the system as a whole. Overprovi-
sioning resources to each operator can lead to resources waste, while load shedding
leads to incorrect results [63]. Task scheduling controls the order of job execution and
cares about which tasks and when to be placed on which previously obtained resources
[64]. Appropriate scheduling techniques can improve system’s performance and reduce
energy consumption and costs, especially when we move to the cloud. However, as we
have already seen, goals like low latency and high throughput are often in conflict.
Thus, a scheduler has to implement a suitable compromise, depending upon the user’s
needs and objectives.

As far as task scheduling is concerned, queries are passed to the data and Hadoop
has the ability to move the computation close to where the actual data is placed,
instead of moving large data to computation. This minimizes network congestion and
increases the overall system’s throughput. Data locality plays a role of crucial impor-
tance. Nevertheless, MapReduce is not effective on processing huge volumes of data
in real-time. It is a framework that is not efficient in executing interactive jobs and
real-time queries.

Scheduling approaches and resource allocation for real-time stream processing of
data basically differ from traditional batch processing. It is much more difficult due
to dynamic nature of input data streams. Unlike batch processing systems, stream
processing systems are designed to process unbound streams of data. A job in the
first case will eventually finish, while a job in the latter continues forever, unless the
user kills it. The objective of stream processing is to build a reliable, high-throughput
and low latency event processing that can continuously analyze and act on real-time
streaming data. In batch processing systems, computations are assigned to the nodes
where the required data is stored, while in streaming most communicating tasks are
placed together on one node or rack. Moreover, in memory computations used in
stream processing systems, are hundreds of times faster than computations running
on a disk as is traditional for systems like Hadoop.

Stream processing systems following the micro-batch approach have several advan-
tages over stream processing systems that process data by one record at a time, like fast
recovery from failures, better load balancing and scalability. Micro-batch systems are
optimized for throughput but have increased query response time, since each input has
to wait until a batch is formed. Extremely small batches could possibly minimize this
extra latency, but this would cost extra overhead. On the other hand, operator-based

18



stream processing works better when we have to deal with strict real-time constraints
but is prone to faults [63]. To provide the necessary system performance at high load
incoming data, additional processing mechanisms and efficient scheduling of streaming
applications are needed.

We divide scheduling decisions in offline (using static algorithms) and online (using
dynamic algorithms). Algorithms may rely on predefined characteristics of streaming
topologies (offline) or may gather information by monitoring systems (online). Offline
decisions rely on the knowledge a scheduler has before any task is placed and running.
Online decisions refer to information gathered during the execution of user’s applica-
tion, after the initial placement of its tasks over the cluster’s nodes. We are going to
further examine and categorize works proposing heuristic algorithms (or sometimes
even whole architectures) that try to choose the optimal placement of resources and
task executors to maximize their performance.

5.1. Static approaches using mini-batches

Spark Streaming [58] batches data in small time intervals (micro-batches) and passes
it through deterministic parallel operations. Jobs are applied on DStreams according
to users’ application’s action operations. Each job is portioned into tasks (the smallest
execution unit in Spark) and a Spark’s scheduler is responsible for their assignment
to available resources. Scheduling micro-batch jobs in Spark Streaming to maximize
performance and resource efficiency is quite cumbersome as a batch often involves
multiple jobs with complex and dynamic dependencies in a workload.

By default, Spark’s scheduler runs jobs in FIFO fashion and each application tries
to use all available nodes. Although job dependencies can be captured with FIFO, this
approach can result in increased latency when a long running job delays jobs behind
it. Users can limit the number of nodes that an application may use and set manually
the level of parallelism but this will remain the same during the entire application
execution. Low parallelism can cause inefficient resource utilization while high paral-
lelism can schedule more inter-dependent jobs and finally lead to poor performance.
This kind of scheduling is static as the overall scheduling decisions are determined be-
fore the system runs. Zaharia et al. ([58], [65]) compared Spark Streaming with Storm
reporting their throughput. Storm was negatively affected by smaller record sizes and
completed 115K records/s/node for 100 byte records compared to 670K of Spark’s.
Benchmarks between Spark Streaming and other DSMSs can be found in Subsection
4.3. A good scheduler, though, has to consider the dynamic resource demand between
jobs, and other factors in scheduling, like the batch size, or the level of parallelism to
be able to guarantee real-time restrictions in Spark Streaming. Default sequential job
scheduling in Spark is inefficient.

5.2. Static approaches in operator-based systems

Resource allocation and task scheduling in Storm involves real-time decision making
on how to replicate bolts and spread them across the nodes of a cluster. Storm has
much lower latency than Spark Streaming due to Spark’s micro-batch execution model
(even 50 time less based on Lu’s et al. benchmark [27]). User specifies the number of
concurrent tasks to run for each component. Each of these tasks that run in parallel
contain the same processing logic but work on different data and may be executed at
different physical locations. Thus, tasks from a single bolt or spout are likely placed

19



on different physical machines. The default scheduler uses a round-robin strategy to
assign tasks to node’s slots equally. Such a strategy is not optimal.

Aniello et al. [5] proposed two schedulers for Storm an offline and an online (see
Subsection 5.4). The first one, analyzes the topology graph and identifies possible sets
of bolts to be scheduled on the same node by looking at the way they are connected.
Communication patterns among executors are examined, to place the most commu-
nicating executors to the same slot. Finally, the slots are assigned to worker nodes
in a round-robin fashion. They tested their approach performance both on a general
topology and in a more realistic setting. The latency of processing an event was im-
proved by the offline scheduler with respect to the default one, around 20% and the
inter-node traffic 13%.

Storm’s default scheduling algorithms disregards resource demands and availability
and usually become inefficient. It provides a scheduler (IsolationScheduler) that lets
user specify topologies to run on a dedicated set of machines within the cluster but
the isolation setting is static [30]. Peng et al. [6] implemented R-Storm, a topology
and resource-aware scheduling approach within Storm. Given the Storm topology,
breadth first traversal (BFS) is used to create a partial ordering of components to
place adjacent components in close succession to each other and schedule their tasks
as close as possible. Having an ordered list of tasks to be scheduled, the candidate
node is determined by finding the closest Euclidian distance in 3-d space between
two points: task’s requirements and particular node’s available capacities. Scheduling
computed by R-Storm provided 30%-50% higher throughput than that computed by
Storm’s default scheduler. By co-locating tasks that communicate with each other on
the same machine or same server rack, minimizes network communication latency.
R-Storm’s CPU utilization was 70-350% higher compared to Storm as R-Storm used
fewer machines to produce to same level of performance.

While R-Storm yields better performance than the default round-robin, it cannot
control the performance when CPU sharing occurs. Smirnov et al. [7] proposed a
performance-aware strategy that is independent of resources utilization strategies em-
ployed by R-Storm and is based on a genetic algorithm (GA). The main part of a
genetic algorithm is its fitness function, whose aim is to build the schedule and eval-
uate its performance. Performance models of executors on specified nodes are needed
to estimate their throughput and are built either on statistical data which is gathered
during run or on historic data. Each executor’s performance depends not only on the
node to which it is assigned but also on its parent executor. In their experiments, they
allowed CPU-sharing between tasks and they proved that maximum tasks’ perfor-
mance can be achieved via minimum CPU sharing, consuming though the maximum
number of cores. Their benchmarks results showed up to 40% better topology per-
formance in terms of throughput of GA in comparison to R-Storm in heterogenous
clusters and 16% in homogenous. GA scheduler was able to handle the high workload
in several topologies, whereas R-Storm’s and Storm’s performance remained almost
equal and low.

Eskandari et al. [66] presented a hierarchical adaptive scheduling scheme called P-
Scheduler. The P-Scheduler is also a topology aware strategy that uses weights on the
graph edges, which store the data transfer rates. These rate values are obtained by ini-
tially submitting the known topology to the cluster and running it on the default Storm
scheduler. The number of nodes needed to run a topology is computed on the basis of
the topology load. These nodes share the entire topology and their communications
are determined. The algorithm assigns the highest communication pairs of the topol-
ogy to the same worker (JVM) and the other workers are loaded with a subdivision

20



of the entire topology. The topology is partitioned by METIS, a specialized software
for graph partitioning. By this arrangement, the inter-process and inter-worker traf-
fic is reduced. The P−scheduler is also a workload aware strategy, in the sense that
most of the Storm topologies have almost similar workload and generally, no load bal-
ancing issue exists. The authors implemented P-Scheduler in a homogeneous cluster
with 8 worker nodes and tested it on three topologies. The results have shown that
P-scheduler reduces the average tuple processing time be almost 50% as a result of
reducing the inter-node and inter-worker communications.

Rychly et al. [64] proposed a scheduling algorithm on heterogenous clusters that
employs design-time knowledge and benchmarking techniques. To deploy processors
to available slots while maintaining workload in an heterogenous cluster, the system
has to:

a. get knowledge of nodes’ performance characteristics for different types of com-
putations and

b. find a way to analyze computation characteristics of incoming tasks and input
data.

Detailed specification of a topology’s individual nodes is provided at the cluster
design-time by the user. As far as tasks’ characteristics are concerned, benchmarking
of every application on a particular cluster prior to its run in production is suggested
to evaluate tasks’ consumption profiles. To evaluate their approach, their prototype
was implemented as a pluggable scheduler for Apache Storm. The performance gain of
their scheduler in terms of all tuples processed by the whole application was 4.1% over
Storm’s standard scheduler and 17.5% over the worst possible scheduler. Applications
employing GPUs and FPGAs for some of their components can benefit the most from
their approach.

5.3. Dynamic Approaches Using Mini-Batches

As we already mentioned in Subsection 5.1, the default job scheduling in Spark Stream-
ing is not sufficient. There is an option available when Spark is used with Mesos [67],
which offers dynamic sharing of CPU cores. In this way, an application may give re-
sources back to the cluster if it does not need them and request them again later when
there is demand. This feature is useful when multiple applications share resources in
the cluster but it may take a while for an application to gain back cores when it has
work to do and cause less predictable latency.

Flink keeps track of distributed tasks, decides when to schedule the next task (or
set of tasks), and reacts to finished tasks or execution failures. Flink’s JVM processes
(TaskManagers) provide a number of execution threads in the cluster, spawned to run
one pipeline of parallel tasks. A pipeline consists of multiple successive tasks. The
parallelism of Flink applications is determined by the degree of parallelism of streams
and individual operators. Flink employs a schedule-once, long-running allocation of
tasks. It uses an immediate scheduling and a queued scheduling algorithm. The first
one returns a slot immediately when there is a request while the second one queues
the request and returns the slot whenever it is available. Thus, in a sense, Flink’s
scheduler works in an arbitrary fashion. Nevertheless, the system is flexible to recon-
figure pipelines to more or less workers and re-allocate application state on-demand.
This approach minimizes management overhead and allows adaptation to hardware or
software changes or partial failures that can potentially occur ([68], [69]). Benchmarks
between Flink and other stream processing systems can be found in Subsection 4.3.

21



Cheng et al. [8] proposed A-scheduler, an adaptive scheduling approach that dy-
namically schedules multiple jobs concurrently using different policies based on their
dependencies. The data dependency between jobs is identified by profiling the DAG
of an application while accepting a job submission (topology aware). A resource al-
locator applies Fair Scheduling for independent jobs and FIFO for dependent ones.
It also collects performance statistics like end-to-end latency for each job and system
throughput to automatically adjust the job parallelism settings and resource sharing
policies (done by the Adaptive Tuning Optimizer). The tuning problem was formulated
as a reinforcement learning process that uses a performance-aware approach. Their ex-
perimental results show that A-scheduler can reduce end-to-end latency by 42%, and
improve workload throughput by 21% and energy efficiency by 13% compared to Spark
Streaming.

Drizzle [70] is also a topology-aware strategy that uses the communication struc-
ture of a DAG. The main goal of this strategy is to decouple processing intervals from
coordination intervals used for fault tolerance. To achieve this, the strategy uses a
central scheduler that implements micro-batch groups scheduling, all groups at once.
This avoids central scheduling bottlenecks and data processing is completely decou-
pled from scheduling decisions. An adaptive group-size tuning algorithm inspired by
TCP congestion control is used. During the execution of a group, counters are used
to track the amount of time spent in various parts of the system and a policy analo-
gous to AIMD determines the coordination frequency for a job. The tuples are pro-
cessed within a range of milliseconds while coordinating functions take place within
a range of seconds. Add-on strategies are used to improve performance. Specifically,
pre-scheduling is used to let the worker machines track the data dependencies and
run the task when dependencies are met. Query optimization techniques are used to
achieve better throughput. The strategy was compared to Spark and Flink in terms
of end-to-end processing delay and failure recovery time and it was reported to have
3-4 times lower latency than Spark. Another comparison metric was failure recovery,
which is performed 4 times faster compared to Flink.

A pre-scheduling framework is also proposed by Chen et al. called Lever [71]. The
authors focus on the straggler problem; re-scheduling stragglers during the task exe-
cution period, increases the processing time of the micro-batches and causes expensive
data relocation, as the data have already been dispatched. Lever monitors and period-
ically collects and analyzes the historical job profiles of the recurring micro-batch jobs
and predicts stragglers. It then evaluates node capacity and chooses suitable helpers. It
also makes re-scheduling decisions before the batching module dispatches the data to
avoid increasing the processing time of the micro batch. Timely scheduling decisions
minimize the processing latency. Chen et al. implemented Lever in Spark Stream-
ing and when it was evaluated, it reduced job completion time by 30% to 40% and
outperformed traditional techniques significantly.

When it comes to micro-batch based systems, the matter of batch-sizing is a fac-
tor of crucial importance as it affects latency and can facilitate the scheduling and
rescheduling of tasks and data. Das et al. [72]’ online algorithm automatically adapts
the batch size to affect the system’s performance. By dynamically adjusting the batch
interval, fluctuations within operating conditions can be handled and the total delay
of every event can be controlled. Authors used a control module to gather information
from past job statistics (e.g. processing time, queuing delay, etc.) to learn the charac-
teristics of the workload and adapt online the batch size when changes in data rates,
workload and resources occur. Their control algorithm is based on the Fixed-point
Iteration optimization technique and their experiments indicate that system stability

22



can be ensured for a wide range of workloads (filter, reduce, join, window), despite
large variations in data rates and operating conditions. In evaluation, their approach
was able to ensure latency that was comparable to the minimum latency achieved
with any statically defined batch interval method. Nevertheless, it is vulnerable to
large loop delays. Sudden large changes in the workload can introduce large delays.

Liao et al. [73] also explored the effects of batch size on scheduling decisions and
the performance of streaming workloads in Spark Streaming. Their idea relies on
dynamically adjusting batch intervals, according to the number of events arrived in
current interval. Reducing the interval near data peaks proved to be a good choice to
smooth the overall delay time. Based on the existing scheduling framework of Spark
Streaming, a timer is used at the starting stage for batch division. They used typical
streaming benchmarks to demonstrate that their policy is effective in handling unstable
streaming inputs leading to limitation of the total delay of events.

5.4. Dynamic Approaches in Operator-based Systems

Storm’s default scheduling algorithm is static and remains far from optimal. Generic
scheduling solutions for provisioning to multiple applications competing for cloud re-
sources like Mesos and YARN assume that an application already knows the amount
of resources it needs, and how to distribute these resources internally. Fu et al. [63]
designed and implementedDRS, a dynamic resource scheduler that applies to operator-
based stream processing systems. Their algorithm takes into account the number of
operators in an application and the maximum number of available processors that
can be allocated to them and tries to find an optimal assignment of processors that
results in the minimum expected total sojourn time. They estimated the total sojourn
time of an input by modeling the system as an open queuing network (OQN). The
performance model is built based on a combination of one of Erlang’s models and
the Jackson network. The system monitors the actual total sojourn time and checks
if the performance falls, or if the system can fulfil the constraint with less resources
and reschedules if necessary. It repeatedly adds one processor to the operator with
the maximum marginal benefit, until estimated total sojourn time is no larger than
a real-time constraint parameter. DRS uses Storm’s streaming processing logic and
demonstrates robust performance, suggesting the best resource allocation configura-
tion, even when the underlying conditions of the queuing theory that it uses are not
fully satisfied. In general, DRS’ overhead is less than milliseconds in most of the cases
tested resulting in small impact on system’s latency.

Apart from using all available worker nodes, Storm’s scheduler does not consider
links between tasks that are about to be hosted in these nodes. Inter-node and inter-
process traffic are factors that make a significant impact on system’s performance.
Meng-meng et al. [74] proposed a dynamic task scheduling approach that considers
links between tasks and reduces traffic between nodes by assigning tasks that commu-
nicate with each other to the same node or adjacent nodes. The topology is obtained
by recording workload of nodes and communication traffic through switches a priori.
They used a matrix model to describe the real-time task scheduling problem. Their
processing procedure tries to reduce traffic between nodes through switches, cut off
bandwidth pressure and balance workload of nodes by selecting the appropriate host
node when a trigger (either node-driven or task-driven) occurs. They evaluated their
algorithm by deploying their own stream processing platform and compared their so-
lution with the algorithms that are built in Storm and S4 [75] using load balance and

23



communication traffic through switches as indicators. As the number of jobs running
in these platforms was growing the load balance in SpeedStream was better. More-
over, less stream data flowing through switches were detected and and this traffic was
reduced, relieving the bandwidth pressure of the cluster.

Aniello’s et al. [5] second scheduler is also a traffic-aware scheduler that works
dynamically and extends the topology-aware approach used in the first one. To do
so, it monitors the effectiveness of the schedule at runtime using a performance log
and adapts the allocation of executors to the evolution of the load and according to
the communication patterns of the application to reduce the inter-node and inter-slot
traffic in the cluster. Nevertheless, the scheduler does not check the whole commu-
nication pattern between executors and considers each pair in isolation. In this way,
some communicating pairs might end up in different nodes.The custom scheduler can
periodically check if a new more efficient schedule in terms of inter-node traffic can
be deployed. The latency of processing an event was below 20-30% and the inter-node
traffic below 20% with respect to the default Storm scheduler in both tested topologies
(the general one and the one based on the realistic set).

T-Storm [76] is another attempt that tries to minimize inter-node and inter-process
traffic. Workload and traffic load information are collected at runtime by load monitors
to estimate future load using a machine learning prediction method. A schedule gener-
ator periodically reads the above information from the database, sorts the executors in
a descending order of their traffic load, and assigns executors to slots. Executors from
one topology are assigned in the same slot to reduce inter-process traffic. The total
executors’ workload should not exceed worker’s capacity and the number of execu-
tors per slot is calculated with the help of a control parameter. T-Storm consolidates
workers and worker nodes to achieve better performance with even less number of
worker nodes, enables hot-swapping of scheduling algorithms and adjusts scheduling
parameters on the fly. T-Storm’s evaluation show that it can achieve over 84% and
27% speed-up of average processing time on lightly and heavily loaded topologies
respectively with 30% less number of worker nodes, compared to Storm.

System overload is also a matter of interest for Liu et al [77]. They proposed a
dynamic assignment scheduling (DAS) algorithm for big data stream processing in
mobile Internet services. The authors generate a structure called stream query graph
(SQG), based on the operators and the relations between the corresponding input and
output. SQG is a direct acyclic graph and an edge between two nodes represents a
task queue. The edge weight is the number of tasks in the queue. The minimum-weight
edge is selected to send tuples and a buffer list is set to store some tuples before next
scheduling. DAS’ scheduling strategy is updated continuously by every logic machine
separately. By splitting the general scheduling problem into the common sub-problem
of every operator, the overhead is reduced and accuracy is improved. The authors
compared DAS to SAMR [78], a dynamic scheduling algorithm based on MapReduce.
DAS was found to have has shorter response time and takes up less system resource,
mainly because SAMR needs continuously decompose tasks and read local history
information, thus more disk operations are involved.

Elasticity is a matter of crucial importance in online environments to determine
how to scale for data stream fluctuating with time and schedule resources according
to the current arrival rate of a stream. Dawei et al. [79] proposed an elastic online
scheduling framework (E-stream), that works with multiple DAGs, using the available
capacity of computing nodes and the input rate of data stream. E-stream quantifies
computation and communication cost, relationships between the input and output
stream of a vertex, and adjusts the degree of parallelism of vertices in the graph

24



that has to be scaled in our out. Subgraphs are further constructed to reduce the
communication cost between related vertices and DAG’s response time. Each subgraph
is substituted by a logically equivalent vertex and is treated as a “vertex” in the
scheduling phase. When it comes to scheduling, E-stream monitors whether DAGs
require more resources and reschedules them using a priority-based earliest finish time
first (EFT) strategy by keeping the system fairness degree guaranteed. The output is
a max-min fairness-based multiple DAGs scheduling sequence with makespan (total
elapsed time required to execute a graph) guaranteed. E-stream was developed based
on Storm. When compared to Storm, it yielded reasonable response time even when
50 DAGs were employed, which was shorter than that of the default Storm scheduler
(about 3 and 7 times faster for different applications). Moreover E-stream’s fairness
degree was better than that of Storm’s scheduler.

Floratou et al. [9] focus on service level objectives (SLO) that have to be main-
tained in case of unpredictable load variation and hardware or software performance
degradation. They introduced Dhalion, a system with self-regulating capabilities and
implemented it on top of Heron. Dhalion periodically invokes a policy that examines
the status of the streaming application collecting metrics from Heron’s metrics man-
agers, detects possible problems (e.g. slow processing, lack of resources etc), diagnoses
them, and perform appropriate actions. Two policies were designed. The first one pro-
visions resources dynamically for throughput maximization, taking into consideration
the input data load (workload variations). The second one takes as input a throughput
SLO, keeps tracking the observed throughput while the topology is running, and auto-
tunes the Heron application (adjusting the parallelism of spouts or bolts) or provide
necessary resources provision if needed. In their evalutaion experiments, they tested
both policies. The first policy adjusted the topology resources on-the-fly when work-
load spikes occurred and backpressure was observed. The second policy auto-tuned
the topology successfully as it reached steady state, when the throughput observed
was equal or higher to the throughput SLO.

Unlike most approaches, Cardellini et al. [80] did not use a clustered environment
but a distributed system, spread among multiple small data centers. They implemented
a distributed algorithm that actually adopts a network-aware scheduling algorithm
(proposed by Pietzuch et al. [81]) to Storm. The QoS attributes (latency, utilization
and availability) are considered known and they focus on modeling data processing
between each pair of nodes (cost space) and on placing operators (operator based)
in this cost space. The QoS awareness is provided by the QoSMonitor and Vivaldi’s
algorithm [82] provides accurate estimations between pairs of nodes. Finally, the Adap-
tiveScheduler acquires this information to identify which executors can be effectively
relocated to finally place them in the appropriate node (the MAPE reference model
[83]is used to support this procedure). Due to rearranging the operators to nodes with
higher availability, latency is reduced about 72% compared to Storm and almost 17%
less tuples had to be resent. Moreover, the proposed scheduler provides more efficient
load balancing.

Safaei [84] presented a whole architecture for a real-time streaming engine in a
multiprocessing environment, paying attention to the value of velocity. Queries and
some of their characteristics are assigned to the clusters but each query is accepted
for processing if its deadline can be satisfied. System’s response time to a query is
computed using a function (details about the function in [85]). This performance-
aware algorithm compares the execution time of each query to the query’s deadline.
The algorithm selects the highest priority query and allocates it to the proper cluster
of processors using a First-Fit algorithm based on a utilization factor (it needs the

25



execution time of each query to be computed). Each cluster selects from its waiting
queue of queries using the EDF (Earliest Deadline First) algorithm. The selected
query is then processed in parallel via a proposed deadline-aware dispatching method;
a tuple is processed by a processor and then forwarded to the best next processor to
continue its processing based on the job’s deadline. Several parameters were checked to
evaluate and compare this prototype to Storm. The results showed that this approach
outerperforms Storm in terms of proportional deadline miss ratio (a metric for the
evaluation of real-time stream processing systems, ∼50% of Storm), tuple latency
(∼66% of Storm) and throughput (∼1.4% of Storm) while had some penalties as far
as it concerns memory usage (∼1.2 of Storm) and tuple loss (∼1.9 of Storm).

Table 2 presents a classification of the aforementioned approaches and the addressed
issues.

5.5. Discussion

As we saw, in recent years, a lot of researchers presented different task scheduling
approaches and algorithms. The diversity of the clusters where the evaluation of the
aforementioned systems took place does not let us make safe comparisons between
them. Moreover, differences in applications’ inherent characteristics and in data
streams used (e.g. their transfer rate, their realistic nature etc.) are also major
impediments to safe comparisons. Our taxonomy reveals that there are more available
enhancements that use the operator based model in stream processing than the
micro-batch. However, there are enough scheduling approaches for batch processing
systems like Spark that might also fit in systems using the micro-batch model but
they are not included in our review, since they have not been tested in stream
processing. It also seems that most of the effective scheduling decisions in stream
processing are made online or at least are based on prior online knowledge. The
observed parameters that affect decisions of the presented scheduling techniques are
mainly topology, available resources and network, workload, and system’s performance.

Topological issues: Based on our review, when it comes to static approaches most
scheduling decisions in the systems studied rely on the topology that has to be
run. Topology plays also the second most important role in decision making in
dynamic approaches (it comes second after workload characteristics). When there is
not a large processing burden, the system throughput relies heavily on the network
communication latencies. Given the topology, communication patterns can be found,
inter-node and inter-process traffic can be reduced, and the throughput is then
expected to increase dramatically. For example, the linear and star topologies (tested
in R-Storm) necessarily involve larger number of communications and it is no surprise
that the throughput improvements are more significant compared to Storm, when
these topologies were tested, since Storm does not take into account the inter-node
and inter-process traffic. Assigning the most communicating tasks together on one
node or rack is a need that differentiates stream processing from batch processing,
which pays attention to data locality instead (assigning computations to the nodes
where the required data is stored).

Resources issues: The processing of big data requires a large amount of CPU cycles,
memory, network bandwidth, and disk I/O. Especially in stream processing, memory
becomes of crucial importance. It is essential to effectively schedule the tasks, in a

26



Table 2. An overview of scheduling approaches in stream processing big data frameworks.

System Execution Scheduling Awareness Tools Comparison Evaluation
Model Decisions with Metrics

Spark Micro-batches Offline - FIFO Storm Better:Throughput: 5x-6x
Streaming

Storm Operator Offline - Round Robin Spark Streaming Better:Latency:50x
based - - -

-
Aniello et al.(Static) Operator Offline Topology Round robin Storm Better:Latency:20%,

based Less:Inter-node traffic:13%

R-Storm Operator Offline Topology, BFS Storm Better:Throughput:30%-50%
based Resources Less:CPU Utilization:

70%-350%
GA Storm Operator Offline Topology Genetic algorithm, Storm Better:Throughput:16%-40% (R-Storm)

based Performance Monitoring R-Storm
system

P-Scheduler Operator Offline Topology, METIS, Storm Better:Throughput:50%
based Traffic, Monitoring log

Workload
Rychly et al. Operator Offline Resources, Round robin, Worst scheduler, Better:Tuples processed by

based Performance Benchmarking (with Storm’s Even Scheduler app: 4.1% (over Storm)-
monitoring component) 17%(Worst scheduler)

27



Table 2. (Continued)
System Execution Scheduling Awareness Tools Comparison Evaluation

Model Decisions with Metrics
Flink Operator based(Hybrid) Online Resources Spark Streaming, Better:Throughput,

Storm Less:Memory utilization

A-Scheduler Micro-batches Online Topology, Reinforcement Learning Spark Better:Latency:42%,
Performance Process, FIFO, Streaming Thoughput:21%,

FAIR Energy efficiency:13%
Drizzle Micro-batches Online Topology, TCP congestion control, Spark, Lower:Processing latency: 3.5x(Spark),

Performance AIMD policy Flink similar(Flink), Adaptability to
queues failures: 4x faster than Flink

Lever Micro-batches Online Resources monitors Spark Streaming Job completion time:
30%-40% less

Das et al. Micro-batches Online Resources Control module, Fixed-point Statically defined Stability, Latency:
Workload Iteration Optimization batch intervals methods equal to minimum value

Technique
Liao et al. Micro-batches Online Workload Timer Spark Streaming Better:Latency

DRS Operator based Online Resources, Erlang queuing model, Storm Rebalancing for optimal solution,
Performance Jackson network, Low:Computational overhead

Greedy
Meng-meng et al. Operator based Online Topology Matrix model, Storm Better:Load balance

Workload Monitor S4 Less:Communication traffic
Traffic

Aniello et al. (Dynamic) Operator based Online Workload Performance Storm Better:Latency: 20%-30%,
Traffic log Less:Inter-node traffic: 20%

T-Storm Operator based Online Workload, Load monitors, Storm Better:Throughput:27%, 84%
Traffic Macine learning Less: Number of worker nodes:30%

prediction method
DAS Operator based Online Topology, Queues, SAMR (MapReduce) Less:Number of resources,

Workload Buffer list Lower:Response time

E-stream Operator based Online Data stream rate, Earliest finish time first strategy, Storm Better:Response time:3-7x
Topology Max-min fairness-based strategy Better:Fairness degree
Resources

Dhalion Operator based Online Workload Heron metrics
SLO managers

Cardellini et al. Operator based Online Network, Pietzuch scheduling algorithm, Storm Better:Latency:72%,
QoS Vivaldi algorithm, Less:Tuples resent:17.7%,

MAPE reference model Better:Load balance
Safaei Operator based Online Performance System’s response time Storm Less:PDMR:50%, BetterLatency:66%,

function, First-Fit, Throughput:1.4%,
EDF More:Memory usage:1.2x, Tuple loss: 1.9x

28



manner that minimizes task completion time and increases utilization of resources.
Resource-awareness is a common need both in the static approaches and dynamic
approaches studied. Such strategies try to take advantage of node utilization. In
GA Storm, the authors have shown that their strategy performs better when the
tasks are shared between the maximum amount of cores, thus, we have the fewer
possible number of tasks per core. Maximum tasks’ performance can be achieved via
minimum CPU sharing, consuming though the maximum number of cores. This is an
obvious assumption, however it poses a question: How will a resource-aware strategy
fully utilize a CPU? As an answer to this question, most strategies presented above
(except GA Storm) have to fully assign one CPU per component of the topology. This
means that, in an heterogeneous environment, the CPUs with higher computational
power should be scheduled to process tasks that require heavier processing, while in
an homogeneous environment, scheduling is based on the assumption that the CPUs
available have enough capacity.

Cluster heterogeneity affects the static scheduling decisions. In the aforementioned
systems, authors usually indicate if the proposed schemes target at a homogeneous
or at a heterogeneous environment. In R-Storm, the nodes on which the tasks are
scheduled are determined by a distance function, that is based on the resource
availability. However, the scheduling strategy was implemented for homogeneous
clusters, where all the CPUs are assumed to have similar computational power. In
cases where different CPU architectures exist, resource-aware scheduling cannot be
easily applied. For the example of R-Storm, a CPU selected from a group of available
CPUs based on the “nearby” available resources criterion, is not guaranteed to
work as expected (complete processing), unless it is known in advance that all the
CPUs are identical. Smirnov et al. proved experimentally that throughput is highly
determined by the type of CPU. Aniello et al. have dealt with heterogeneous nodes
and considered the CPU speed in their predictions. Their strategy was based on
moving tuples across a chain of hops after they have been sent by a spout, until its
processing ends up in an ack bolt. As an example of moving tuples, if an executor is
taking 10% CPU utilization on a 1GHz CPU and migrates on a node with 2GHz CPU,
the CPU utilization would become 5%. With similar CPUs, such a scheduling would
require load balancing to increase utilization. However, load balancing necessarily
involves careful selection of the tuples assigned to each CPU and some a priori
knowledge regarding the size of the tuples. Moreover, Rychly et al. have shown
that their resource-aware, worst, standard, and best scheduling approach provide
the same results on an homogeneous platform while significant improvement of the
best scheduling over the worst and the average scheduling is shown with increasing
heterogeneity, because the best schedule fully utilizes the differences in hardware.
Another topology-aware strategy that could operate on an heterogeneous platform is
the P-Scheduler. In P-Scheduler, the authors use an homogeneous platform. However,
in this case, their main goal is to minimize the network latencies by assigning highly-
communicating tasks to the same nodes. In such a scheme, the CPU architecture is
not of the main importance, however, the authors suggest some type of heterogeneity
to the transfer rates of the available streams, so that they can use faster streams to
transfer tuples with higher speed when it is necessary. Although they try to reduce
the transfer time, they claim that this will also reduce the processing time of the tuples.

Workload issues: When it comes to dynamic approaches, workload seems to influ-
ence most scheduling decisions. Workload characteristics become of crucial importance

29



when it comes to micro-batch processing systems as they help to determine the appro-
priate batch size on scheduling decisions (Liao et al. and Das et al. systems). Generally,
the idea to deal with this issue is to try to adjust the stream sizes accordingly. When
smaller streams are used, there is a faster adaptation to system changes. In operator-
based systems, workload-aware approaches can help towards mitigating overloading
in a worker node. When a machine’s computational resources are not adequate to
handle the processing needs, its capacity can be set to a fraction of its actual capacity
to prevent overloading (just like T-Storm does) but this is not enough. Large load
spikes lead to bottlenecks, possible backpressures and the overall system throughput
decreases. Moreover, frequent load balancing and state migration techniques can in-
crease overhead and consequently latency. Nevertheless, the reduced rate of scheduling
can lead to inaccuracy. Workload fluctuations demand elaborate handling.

Elasticity refers to the ability of a cloud to allow a service to allocate additional
resources or release resources on demand to match the application workload. Nev-
ertheless, without adjusting the parallelism of components, a topology’s throughput
reaches a ceiling above which adding more machines will not improve performance.
Scheduling a topology among unnecessary number of machines can cause an increase
in communication latency. Much effort and several configurations are usually needed
by users to determine the degree of parallelism at each stage of a streaming pipeline as
users have limited knowledge about the runtime behavior of the system. Systems like
E-Stream monitor the rate of stream and in case it increases, they create some new
instances for a number of vertices. Self-regulating streaming systems like Dhalion also
help towards this direction, as they take into account the specifications of streaming
applications like the input data rate, as well as policies defining the users objective
to heal the problem dynamically. Another interesting approach refers to splitting the
general scheduling problem into sub-problems of each operator (just like DAS does),
to reduce overhead and improve accuracy.

Two more stream-oriented approaches that could be proposed are: (1) Use of pri-
orities: When there is some mechanism to assign priorities to certain streams, then
we keep on processing these streams (thus their processing is not deferred) and we
move less important streams to the newly incoming nodes for later processing, and
(2) Dropping less important streams: In such a solution, the less important tuples can
be dropped to reduce latencies. The challenge here is to decide how many tuples to
drop in order to maintain accuracy. This problem can be reduced to an optimization
problem of what is the optimal number of tuples to be dropped in order to maintain
a certain level of accuracy.

Elasticity becomes even more challenging in stream processing environments where
computations are generally stateful. Guaranteeing fault-tolerance and dynamic load
balancing for stateful operators demands state transfer which is quite cumbersome.
As we saw, Flink uses special mechanisms for state handling (the interested reader
can refer to Hoffman et al [86] and Del Monte et al. [87] for more details on state
migration).

Performance issues: A system’s performance can be either monitored during runtime
or derived from old executions’ or benchmarks’ statistics. Monitoring performance
characteristics like total sojourn time (DRS), query execution time (Safaei’s approach)
or throughput (A-Scheduler), can help systems either adjust their behavior accordingly
online or construct models for effective decision making. The GA Storm scheduler is
also an example of performance aware strategy, but its scheduling is static. CPU shar-
ing is used to maximize performance but for performance-aware strategies, there is a

30



high dependence on the environment’s homogeneity. In homogeneous environments,
the GA Storm strategy fails to improve performance, because the estimated through-
put of all the executors seems to be similar while evolving executors are generated
from their parents.

Monitoring of a system’s performance becomes of critical importance in the
presence of faults. Different fault tolerance techniques are important for the efficient
utilization of provided resources. Streams should be able to recover from failures
to keep streaming applications running with no problems. In stream processing
systems, fault tolerance is a wide area of research and it is attracting more
and more attention. In this paragraph we only make some useful remarks
with regard to fault recovery of the DSMSs under study, using appropriate
scheduling techniques. Especially, when it comes to dynamic strategies, where
decisions are taken during runtime, the failure recovery strategies are of primary
importance. As shown in the literature, the choice of a strategy is greatly affected by
the resources and the time required for recovery. Generally, the scheduling strategies
described above handle fault recovery in one of the following ways:

(a) Checkpoint-based recovery. In this strategy, a vertex periodically checkpoints its
stream. When the vertex fails, it will load the most recent checkpoint and resume
execution. Checkpointing introduces overheads in normal execution and it is not an
ideal solution for nodes with high load. This is due to the fact that the existence
of many checkpoints necessarily requires large data structures, thus increasing its
total cost. One way to reduce the cost is to place checkpoints only at the end of the
streams. However, when the stream is large, too many records need to be reproduced
in case of failure. Another option is to handle failures in pre-scheduling, but there is
no guarantee that such a solution is optimal in a real-time system.

(b) Replication-based recovery. Another strategy is to have multiple instances of the
same node run at the same time: they can be connected to the same input streams
and output streams. When one instance fails, recovery is achieved by getting the same
snapshot from another instance. Apparently, there is no need to use large databases
in this case, but there are three drawbacks: a) the existence of multiple instances, b)
the choice of the proper nodes that run these instances, which sometimes requires
careful selection depending on issues like distance, and c) difficulty in predicting the
streams that would have to be replicated beforehand, thus scheduling of replicas is
another issue that needs to be considered. In such cases, efficient approaches should be
developed for calculating the minimum replication, so that the reliability requirement
is met.

As we see, the performance of a DSMS depends on multiple factors. Stream schedul-
ing seems to be more efficient when it is online, including continuous, incremental
scheduling decisions that account for changes in the streams’ arrival rate and cluster
resource utilizations. The capacity and the capabilities of the underlying cluster en-
vironment in which processing is taking place will always limit its performance. It’s
certainly clear that task scheduling constitutes a critical factor for systems’ perfor-
mance. Achieving low-latency, high-throughput processing of streams when resources
may be scaled up or down, requires an effective task scheduling that reduces the num-
ber of task migrations, allocates the number of dependent and independent tasks in a
near optimal manner to decrease the overall computation time of a job, and improves
the utilization of cluster resources.

31



6. Conclusions

Data that is received in real-time can become way too valuable at the time it ar-
rives and support valuable decision making. Several cloud-based systems emerged
to enable distributed processing of streams of big data. Mechanisms used by promi-
nent DSMSs to face the challenges posed by stream processing in the context of big
data were presented in this work. We also described a taxonomy that could facilitate
the comparison of different features offered by stream processing frameworks. Based
on this taxonomy, we provided an overview of four open-source stream processing
frameworks. Our study provides an insight of factors that have to be considered when
selecting a platform, given a specific use case. For example, Flink is a good choice
if complex stream processing is needed. However, Spark Streaming is a more mature
project and has a bigger community. Storm is also a mature project and can provide
better latency with fewer restrictions, but cannot guarantee state consistency. It also
offers just basic building blocks for composing a topology to users, whereas Spark
and Flink expose a higher level API as declarative systems. Near real-time streaming
systems compete against each other on several factors but there is not a clear winner
yet. Each of the platforms mentioned here have their advantages and disadvantages.
Understanding strengths and limitations of the aforementioned frameworks in tan-
dem with users’ needs, makes it easier to pick an appropriate solution. Complexity of
stream computing and diversity of workloads expose challenges to benchmark these
systems, but small changes in configuration’s parameters or in the available infras-
tructure can change the results. Consequently, further research is needed to test and
evaluate distributed stream processing platforms in different cloud experiments using
not only criteria referring to performance but also to security or integration with other
tools. Large and active communities, that support these processing projects, continue
to innovate but could benefit from further suggestions and improvements on these
tools.

The performance of a stream processing system depends on multiple factors. Task
scheduling has evolved to a critical factor that can significantly affect the performance
of cloud frameworks. The mechanisms used by the aforementioned systems are not
very sophisticated and do not consider the underlying available infrastructure which
can be heterogeneous in some cases. Thus, task scheduling has become a matter of
interest for a lot of researchers. However, to the best of our knowledge, there is no
extensive study on task scheduling approaches for big data stream processing frame-
works that classifies and discusses the presented approaches. We analyzed 22 different
approaches and identified the most important factors affecting the decisions of the pro-
posed schedulers, namely topology, resources, system’s performance, and workload. We
showed how decisions based on these factors affect the systems under consideration.
Our survey allowed us to classify the scheduling issues in different categories. Most
static approaches aim at providing an initial placement strategy to ensure minimal la-
boring in the cluster. However, the changes in workload and system conditions enforce
the need for runtime scheduling techniques that help in reducing the imbalances in
resource utilization and improves the performance of the stream processing system.

Our survey reveals some limitations, and we can outline some possible future direc-
tions. The current taxonomy does not include commercially available stream processing
platforms and relies only on open-source stream processing platforms with documen-
tation and source code freely available. There are also more promising frameworks
like Apache Apex, a Hadoop YARN native platform that unifies stream and batch
processing. Lately there is an initiative to bring different batch and stream process-

32



ing engines on a common ground. For example, Apache Beam can be used to write
APIs independent of the framework, and then can run the same code on any engine.
Such initiatives and their mechanisms could be considered for future research. More-
over, most of the approaches presented are evaluated based on metrics like latency,
throughput and fault-tolerance but as far as fault-tolerance is concerned extensive re-
search is still conducted. There are only a few papers that calculate just the number
of tuples lost. A risk and cost analysis of stream processing platforms using different
scheduling techniques could also be a matter of interest in the future, as cost has an
important role in service-level agreements (SLA) between service providers and clients.

References

[1] Chen M, Mao S, Liu Y. Big Data: A Survey. Mobile Networks and Applications. 2014;
19(2):171-209

[2] Hashem, Yaqoob, Anuar, Mokhtar S, Gani A, Khan S. The rise of “big data” on cloud
computing: Review and open research issues. Information Systems. 2015; 47:98-115

[3] Talia D. Clouds for Scalable Big Data Analytics, ACM Computer. 2013; 46(5):98-101
[4] Stonebraker M, Cetintemel U, Zdonik U. The 8 requirements of real-time stream process-

ing, ACM SIGMOD. 2005; 34(4):42-47
[5] Aniello L, Baldoni R, Querzoni L. Adaptive Online Scheduling in Storm. In: Proceed-

ings of the 7th ACM international conference on Distributed event-based systems; 2013;
Arlington, Texas. p. 207-218

[6] Peng B, Hosseini M, Hong Z, et al. R-Storm: Resource-Aware Scheduling in Storm. In:
Proceedings of the 16th ACM Annual Middleware Conference; 2015; Vancouver, CA. p.
202-215

[7] Smirnov P, Melnik M, Nasonov D. Performance-aware scheduling of streaming applica-
tions using genetic algorithm. Procedia Computer Science. 2017; 108:2240-2249

[8] Cheng D, Chen Y, Zhou X, et al. Adaptive Scheduling of Parallel Jobs in Spark Streaming.
In: Proceedings of the IEEE INFOCOM 2017- IEEE Conference on Computer Commu-
nications; 2017; Atlanta, GA. p. 1-9

[9] Floratou A., Agrawal A., Graham B., et al. Dhalion: self-regulating stream processing in
heron. In: Proceedings of the VLDB Endowment; 2017; Munich, Germany. 10(12):1825-
1836

[10] Liu X., Iftikhar N, Xie X. Survey of Real-Time Processing Systems for Big Data. In:
Proceedings of the 18th International Database Engineering & Applications Symposium
(IDEAS), ACM; 2014; Porto, Portugal. p. 356-361

[11] Ranjan R. Streaming Big Data Processing in Datacenter Clouds. IEEE Cloud Computing.
2014; 1(1):78-83

[12] Hesse G, Lorenz M. Conceptual Survey on Data Stream Processing Systems, In: Pro-
ceedings of the IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS); 2015; Melbourne, VI. p.797-802

[13] Georgiadis, C. An evaluation and performance comparison of different ap-
proaches for data stream processing (Dissertation). 2016; Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-307214

[14] Assuncao MD, Veith AD, Buyya R. Distributed data stream processing and edge com-
puting: A survey on resource elasticity and future directions. Journal of Network and
Computer Applications. 2018; 103:1-17

[15] Kamburugamuve S, Fox G. Survey of Distributed Stream Processing. 2016;
10.13140/RG.2.1.3856.2968.

[16] Singh M, Hoque M, Tarkoma S. A survey of systems for massive stream analytics. 2016;
arXiv:1605.09021v2

[17] Singh D, Reddy C. A survey on platforms for big data analytics. Journal of Big Data.

33



2014; 2(1):8
[18] The Apache Software Foundation. Welcome to Apache Hadoop [Internet]. 2014. Available

from:http://hadoop.apache.org/
[19] The Apache Software Foundation.Apache Spark [Internet]. 2018. Available from:

http://spark.apache.org/
[20] Cugola G, Margara A. Processing flows of Information: From data stream to complex

event processing. ACM Computing Surveys. 2012; 44(3):15
[21] Shahrivari S. Beyond Batch Processing: Towards Real-Time and Streaming Big Data.

Computers. 2014;(3):117-129
[22] Namiot D. On Big Data Stream Processing. International Journal of Open Information

Technologies. 2015; 3(8):48-51
[23] Apache Software Foundation. Introduction to Apache Flink [Internet]. 2016. Available

from: https://flink.apache.org/introduction.html
[24] Cordova P. Analysis of Real Time Stream Processing Systems Consid-

ering Latency. Data Science Association [Internet]. 2015. Available from:
http://www.datascienceassn.org/content/analysis-real-time-stream-processing-systems-
considering-latency

[25] Chintapalli S, Dagit D, Evans B, et al. Benchmarking Streaming Computation Engines:
Storm, Flink and Spark Streaming. In: Proceedings of the IEEE International Parallel and
Distributed Processing SymposiumWorkshops (IPDPSW); 2016; Chicago, Il. p. 1789-1792

[26] Perera S, Perera A, Hakimzadeh K. Reproducible Experiments for Comparing Apache
Flink and Apache Spark on Public Clouds. 2016; arXiv:1610.04493

[27] Lu R, Wu G, Xie B, et al. StreamBench: Towards Benchmarking Modern Distributed
Stream Computing Frameworks. In: Proceedings of the IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC); 2014; London, UK. p. 69-78

[28] Karimov J, Rabl T, Katsifodimos A, et al. Benchmarking Distributed Stream Data Pro-
cessing Systems. In: Proceedings of the IEEE 34th International Conference on Data
Engineering (ICDE); 2018; Paris, France. p. 1507-1518

[29] The Apache Software Foundation. Spark Streaming-Apache Spark [Internet]. 2017. Avail-
able from: http://spark.apache.org/streaming/

[30] The Apache Software Foundation. Apache Storm [Internet]. 2017. Available from:
http://storm.apache.org/

[31] The Apache Software Foundation. Apache Heron-A realtime, distributed,
fault-tolerant stream processing engine from Twitter [Internet]. 2017.
https://apache.github.io/incubator-heron/

[32] The Apache Software Foundation. Samza-What is Samza? [Internet]. 2016. Available
from: http://samza.apache.org

[33] The Apache Software Foundation. Apache Kafka-A distributed streaming platform [In-
ternet]. 2017. Available from: https://kafka.apache.org/

[34] Li R, Hu H, Li H, et al. MapReduce Parallel Programming Model: A State-of-the-Art
Survey, International Journal of Parallel Programming. 2014; 44(4):832-866

[35] Rajeshwari U., Babu B.S. Real-time credit card fraud detection using Streaming Ana-
lytics. In: Proceedings of the 2nd International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT); 2016; Bangalore, India. p. 439-
444

[36] Peng C-Z, Jiang Z-J,Cai X-B, et al. Real time analytics processing with MapReduce. In:
Proceedings of the International Conference on Machine Learning and Cybernetics; 2012;
Xian, China. 4:1308-1311

[37] Carbone P, Gevay G.E, Hermann G, et al. Large-Scale Data Stream Processing Systems.
In: Zomaya A., Sakr S. Handbook of Big Data Technologies. Springer, Cham; 2017

[38] Bhartia R. Amazon Kinesis and Apache Storm.Building a Real-Time Sliding-
Window Dashboard over Streaming Data. Amazon Web Services [Internet]. 2014.
Available from: https://d0.awsstatic.com/whitepapers/building-sliding-window-analysis-
of-clickstream-data-kinesis.pdf

34



[39] IBM. InfoSphere Streams [Internet]. 2016. Available from: http://www-
01.ibm.com/software/data/infosphere/streams/

[40] Philip Chen CL, Zhang CY. Data-intensive applications, challenges, techniques and tech-
nologies: A survey on Big Data. Information Sciences. 2014; 275: 314-347

[41] SQLStream [Internet]. 2018. Available from: https://sqlstream.com
[42] Begoli E, Camacho-Rodrguez J, Hyde J, et al. Apache Calcite: A Foundational Framework

for Optimized Query Processing Over Heterogeneous Data Sources. In: Proceedings of the
International Conference on Management of Data (SIGMOD ’18); 2018; New York, NY.
p. 221-230

[43] Owens T. Survey of Event Processing [Internet]. 2007. Available from:
http://www.dtic.mil/dtic/tr/fulltext/u2/a475386.pdf

[44] Patroumpas K, Sellis T. Maintaining consistent results of continuous queries under diverse
window specifications, Information Systems. 2011; 36(1): 42-61

[45] Akidau T, Bradshaw R, Chambers C,et al. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. In: Proceedings of the VLDB Endowment; 2015; Kohala Coast, Hawaii.
p.1792-1803

[46] Affetti L, Tommasini R, Margara A. Defining the execution semantics of stream processing
engines. Journal of Big Data. 2017; 4:12

[47] Yang H. Solving Problems of Imperfect Data Streams by Incremental Decision Trees.
Journal of Emerging Technologies in Web Intelligence. 2013; 5(3): 322-331

[48] Gudivada V, Apon A, Ding J. Data Quality Considerations for Big Data and Machine
Learning: Going Beyond Data Cleaning and Transformations. International Journal on
Advances in Software. 2017;(1)

[49] Hwang J-H, Balazinska M, Rasin A, et al. High-Availability Algorithms for Distributed
Stream Processing. In: Proceedings of the 21st International Conference on Data Engi-
neering (ICDE); 2005; Tokoyo, Japan. p. 779-790

[50] Zaharia M. An Architecture for Fast and General Data Processing on Large Clusters.
USA: ACM book series; 2016

[51] The Apache Software Foundation. Welcome to Apache ZooKeeper [Internet]. 2014. Avail-
able from: http://zookeeper.apache.org

[52] Rodriguez-Mazahua L, Rodriguez-Enriquez C-A, Sanchez-Cervante J-L, et al. A general
perspective of Big Data: applications, tools, challenges and trends. The Journal of Super-
computing. 2016; 72(8):3073-3113

[53] Karau H, Konwinski A, Wendell P, Zaharia M. Learning-Spark. O’Reilly Media; 2015
[54] Friedman E, Tzoumas K. Introduction to Apache Flink. O’Reilly Media [Internet].

2016. Available from: https://mapr.com/ebooks/intro-to-apache-flink/chapter-5-stateful-
computation.html

[55] Simonassi D, Eisbruch G, Leibiusky J. Getting Started with Storm. O’Reilly Media; 2012
[56] Nasir M. Fault Tolerance for Stream Processing Engines. 2016; arXiv:1605.00928v2
[57] Hagedorn S, Gitze P, Saleh O, et al. Stream processing platforms for analyzing big dy-

namic data. Information Technology. 2016; 58(4):195-205
[58] Zaharia M, Das T, Li H, et al. Discretized streams: an efficient and fault-tolerant model

for stream processing on large clusters. In: Proceedings of the 4th USENIX conference on
Hot Topics in Cloud Computing (HotCloud); 2012; Boston, MA. p. 10-10

[59] Vavilapalli VK, Murthy AC, Douglas C, et al. Apache Hadoop YARN: yet another re-
source negotiator. In Proceedings of the ACM 4th annual Symposium on Cloud Comput-
ing (SOCC ’13); 2013; New York, NY, No. 5

[60] Carbone P, Ewenz S, Haridiy S, et al. Apache Flink: Stream and Batch Processing in
a Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering; 2015; 38(4):28-38

[61] Tzoumas K, Metzger R, Ewen S (2015) High-throughput, low-latency, and
exactly-once stream processing with Apache Flink. Artisans [Internet]. Available
from: https://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-

35



processing-with-apache-flink/
[62] Chandy M, Lamport L. Distributed Snapshots: Determining Global States of Distributed

Systems. Transactions on Computer Systems. 1985; 3(1):63-75
[63] Fu TZ, Ding J, Ma RT, et al. DRS: Dynamic Resource Scheduling for Real-Time Ana-

lytics over Fast Streams. In: Proceedings of the IEEE 35th International Conference on
Distributed Computing Systems; 2015; Columbus, OH. p. 411-420.

[64] Rychly M, Skoda P, Smrz R. Scheduling Decisions in Stream Processing on Heterogeneous
Clusters. In: Proceedings of the Eighth International Conference on Complex, Intelligent
and Software Intensive Systems (CISIS ’14); 2014; Washington, DC. p. 614-619

[65] Zaharia M, Das T , Li H , et al. Discretized Streams: A Fault-Tolerant Model for Scalable
Stream Processing. In: Proceedings of the 4th USENIX Workshop on Hot Topics in Cloud
Computing; 2012; Boston, MA

[66] Eskandari L, Huang Z, Eyers D. P-Scheduler: adaptive hierarchical scheduling in apache
storm. In: Proceedings of the Australasian Computer Science Week Multiconference; 2016;
Canberra, Australia. no 26

[67] The Apache Software Foundation. Apache Mesos [Internet]. 2018. Available from:
http://mesos.apache.org/

[68] Assuncao MD, Veith AS, Buyya R. Distributed Data Stream Processing and Edge Com-
puting: A Survey on Resource Elasticity and Future Directions. 2017; arXiv:1709.01363v2

[69] Carbone P, Ewen S, Fora G, et al. State management in Apache Flink: consistent stateful
distributed stream processing. In: Proceedings of the VLDB Endowment; 2017; Munich,
Germany. 10(12):1718-1729

[70] Venkataraman S, Panda A, Ousterhout K, et al. Drizzle: Fast and Adaptable Stream Pro-
cessing at Scale. In: Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP’17); 2017; Shanghai, China. p. 374-389

[71] Chen F, Gu L, Jin H, et al. Lever: towards low-latency batched stream processing by pre-
scheduling. In: Proceedings of the ACM Symposium on Cloud Computing (SoCC ’17);
2017; Santa Clara, CA

[72] Das T, Zhong Y, Stoica I, et al. Adaptive Stream Processing using Dynamic Batch Sizing.
In: Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14); 2014; Seattle,
WA. p. 1-13

[73] Liao X, Gao Z, Ji W, et al. An enforcement of real time scheduling in Spark Streaming.
In: Proceedings of the Sixth International Green and Sustainable Computing Conference
(IGSC); 2015; Las Vegas, NV. p. 1-6

[74] Meng-meng C, Chuang Z, Zhao L, et al. A Task Scheduling Approach for Real-Time
Stream Processing. In: Proceedings of the IEEE International Conference on Big Data
and Cloud Computing (BdCloud); 2014; Wuhan, China. p. 160-167

[75] The Apache Software Foundation. S4-distributed stream computing platform [Internet].
2013. Available from: http://incubator.apache.org/s4/

[76] Xu J, Chen Z, Tang J, et al. T-Storm: Traffic-Aware Online Scheduling in Storm. In: Pro-
ceedings of the IEEE 34th International Conference on Distributed Computing Systems
(ICDCS ’14 ); 2014; Madrid, Spain. p. 535-544

[77] Liu Y, Wang K, Yu Y, et al. A dynamic assignment scheduling algorithm for big data
stream processing in mobile Internet services. Personal and Ubiquitous Computing. 2016;
20(3):373-383

[78] Chen Q, Zhang D, Guo M, et al. SAMR: A Self-adaptive MapReduce Scheduling Al-
gorithm in Heterogeneous Environment. In: Proceedings of the 10th IEEE International
Conference on Computer and Information Technology; 2016; Bradford, UK. p. 2736-2743

[79] Dawei S, Hongbin Y, Shang G, et al. Rethinking elastic online scheduling of big data
streaming applications over high-velocity continuous data streams. Journal of Supercom-
puting. 2017; 74(4)

[80] Cardellini V, Grassi V, Presti F, Nardelli M. Distributed QoS-aware scheduling in storm.
Poster Session presented at: 9th ACM International Conference on Distributed Event-
Based Systems (DEBS ’15 ); 2015; Oslo, Norway

36



[81] Pietzuch P, Ledlie J, Shneidman J, et al. Network-Aware Operator Placement for Stream-
Processing Systems. In: Proceedings of the 22nd International Conference on Data Engi-
neering (ICDE’06); 2006; Atlanta, GA. p. 49-49

[82] Dabek F, Cox R, Kaashoek F, et al. Vivaldi: A Decentralized Network Coordinate System.
In: Proceedings of ACM SIGCOMM ’04; 2004; Taormina, Sicily. 34(4):15-26

[83] Kephart J.O, Chess D.M. The Vision of Autonomic Computing. Computer. 2003;
36(1):41-50

[84] Safaei A. Real-time processing of streaming big data. Real-Time Systems. 2017; 53(1):1-44
[85] Mohammadi S. Continuous query response time improvement based on system conditions

and stream features [M.Sc. Thesis], Iran: University of Science and Technology; 2010
[86] Hoffmann M, McSherry F, Lattuada A. Latency-conscious data flow reconfiguration. In:

Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapRe-
duce and Beyond (BeyondMR’18); 2018; New York, NY. No. 4

[87] Del Monte B. Efficient Migration of Very Large Distributed State for Scalable Stream
Processing. In: Proceedings of the VLDB 2017 PhD Workshop; 2017; Munich, Germany

37


