
Decision Support for GPU Acceleration by Predicting Energy Savings and

Programming Effort

Charalampos Marantosa,∗, Lazaros Papadopoulosa, Angeliki-Agathi Tsintzirab, Apostolos Ampatzogloub, Alexander

Chatzigeorgioub, Dimitrios Soudrisa

aSchool of Electrical and Computer Engineering, National Technical University of Athens, Greece
bDepartment of Applied Informatics, University of Macedonia, Greece

Abstract

As the number of heterogeneous embedded systems used in IoT applications increases, there is a lack of software tools

to assist developers to meet the challenge of reducing energy consumption. Indeed, there are only few performance

prediction tools for heterogeneous systems in the literature and they typically focus on the prediction of speedup

by acceleration. In this work, we propose a methodology for analysing CPU applications in order to estimate the

potential Energy gains by offloading a piece of code on an embedded GPU. The proposed methodology provides

several features beyond the state of the art of existing predictors, including the combination of static analysis and

dynamic instrumentation approaches and the prediction of the programming effort of developing the CUDA kernel of a

CPU code, using advanced metrics. The methodology is supported by a tool-flow and it is demonstrated and evaluated

on modern heterogeneous embedded systems (Nvidia), where shows classification accuracy above 75%. The results

show that the proposed methodology can assist application developers in the early design choice of investing effort to

acceleration considering the expected Energy Savings and the Effort required to develop acceleration-specific code.

Keywords: Energy consumption, Embedded systems, GPU acceleration, Software Design

1. Introduction

The continued growth of Internet of Things (IoT) net-

works and the ever-increasing number of sensors and

mobile devices are expected to lead to 41.6 billion con-

nected devices by 2025 [9]. The interconnected devices

are predicted to contribute to the transmission of 79.4

zettabytes of data over the Internet, further increasing

the demands for more electric power and having nega-

tive impact on the CO2 emissions generated by electric-

ity production [9][21].

Accelerators integrated to edge computing devices

target not only to performance improvements, but also

energy efficiency [6]. Indeed, the growth of embedded

applications enabled by image processing and machine

∗Corresponding author

Email addresses: hmarantos@microlab.ntua.gr

(Charalampos Marantos), lpapadop@microlab.ntua.gr (Lazaros

Papadopoulos), angeliki.agathi.tsintzira@gmail.com

(Angeliki-Agathi Tsintzira), ampatzoglou@uom.edu.gr

(Apostolos Ampatzoglou), achat@uom.edu.gr (Alexander

Chatzigeorgiou), dsoudris@microlab.ntua.gr (Dimitrios

Soudris)

learning algorithms, contributed to the evolution of em-

bedded system architectures towards multiprocessing

and heterogeneity. Acceleration units, such as GPUs

and FPGAs enable efficient execution of computation-

ally demanding algorithms, thus avoiding data transmis-

sion to other layers of IoT networks (e.g. Fog, Cloud),

to further improving the energy efficiency of the whole

network. Typical examples include Nvidia Tegra, which

integrates an embedded GPU [19], Intel/Movidius Myr-

iad [11] and CEVA [4] which integrate DSP cores along

with various accelerators, tailored to image processing

and neural network applications. Since these platforms

are very low power they target markets in which auton-

omy is important, such as drones, mobile devices and

wearables.

More and more tools and services are being intro-

duced in order to properly use these devices from the

software level and without the need for specialized hard-

ware knowledge. Typical examples include high level

languages like CUDA and OpenCL, that are used by

software engineers in order to use the acceleration capa-

bilities of the targeted heterogeneous devices. However,

software developers still need advice about how and

Preprint submitted to 12th International Green and Sustainable Computing Conference September 30, 2021

when to use these features, while a significant program-

ming effort is required to effectively exploit the avail-

able accelerators and bring the computational load of

such complex algorithms within their power envelope.

As a result, bringing the design principles of energy ef-

ficient development closer to the software engineering

perspective is becoming an active research topic [8].

Several tools and frameworks have been proposed to

address the challenges of heterogeneity, by assisting ap-

plication developers in the tedious process of exploit-

ing accelerators. A promising approach enabled by ma-

chine learning techniques is the performance prediction:

Tools that fall into this category estimate the potentiality

of a piece of CPU code to exploit an accelerator. More

specifically, the tools predict the performance of a piece

of CPU code on an acceleration unit, by analyzing the

CPU code only. Thus, they guide application develop-

ers in the early design choice of offloading a piece of

code to an accelerator without requiring tedious rede-

velopment effort for testing and/or access to the actual

hardware.

Predictors proposed in the literature mainly rely on

dynamic instrumentation of application binaries to ex-

tract features that feed a machine learning model that

provides predictions. Dynamic instrumentation requires

the execution of the application and normally induces

significant time overhead. One possible solution might

be to use static analysis of source code to extract fea-

tures faster than the dynamic instrumentation, however,

the accuracy of the prediction may be much lower or

the granularity of the prediction extremely coarse (even

binary). The choice of one approach over the other de-

pends on whether tool developers prioritize prediction

accuracy over user friendliness and prediction speed, or

vice versa.

Porting CPU applications to accelerators usually re-

quires significant programming effort. Often, the pro-

gram needs to be restructured, the organization of data

structures should be rearranged and memory manage-

ment issues impose significant challenges. This is es-

pecially true when developing CUDA code for accel-

erating parallel parts of applications. However, non of

the existing available predictors considers the effort re-

quired to develop the accelerated version of a piece of

CPU code.

This work describes a methodology supported by a

tool-flow that contributes to addressing the limitations

of existing prediction approaches related to GPU ac-

celeration. By proposing and combining both static

and dynamic analysis techniques, the introduced ap-

proach leverages the advantages of both techniques and

compromises prediction granularity and time required

to generate a prediction. Additionally, instead of pro-

viding predictions for speedup by GPU acceleration,

it focuses on energy consumption gains, which is an

equally important quality, especially in the context of

heterogeneous embedded systems [25], however usu-

ally neglected by the existing predictors on the applica-

tion’s software level. In particular, this work proposes

the use of performance-related features for building en-

ergy consumption prediction models. Finally, it pro-

vides predictions about the programming effort required

to develop CUDA code by analyzing the correspond-

ing CPU code, based on sophisticated metrics. More

specifically, the estimation relies on the effort indica-

tor based on the Halstead metrics, which more accu-

rately expresses the programming effort than the (typ-

ically used) Lines-of-Code (LOC). The proposed ap-

proach is expected to significantly assist application de-

velopers in decision making with respect to accelerating

CPU code and in allocating programming time and ef-

fort efficiently.

Summarizing, the proposed methodology:

• Combines multiple approaches for energy con-

sumption prediction (both static and dynamic) and

exploits the advantages of both of them by com-

promising prediction granularity and time over-

head to generate a prediction, while relying only on

static analysis when feasible. Extensions of previ-

ous works are combined with the proposal of new

methods into a single tool-flow.

• Provides results in multiple dimensions, by offer-

ing predictions in qualities other that execution

time: Energy consumption and programming ef-

fort, useful for reducing application design time.

• Estimates the programming effort required to de-

velop CUDA code based only on the analysis of

the initial corresponding CPU code, by using well-

established indicators.

The rest of the paper is organized as follows: Section

2 presents the related work. The proposed methodology

is described in Section 3 and it is evaluated in Section 4

in terms of prediction accuracy. Finally, in Section 5 we

draw conclusions.

2. Related Work

The most recent performance prediction tools (i.e. af-

ter 2015) directly related to the proposed approach are

depicted in Table 1. They analyze CPU code to pre-

dict potential performance gains by GPU acceleration.

2

Table 1: Comparison against related recently designed approaches

Approach XAPP [1] CGPredict [26] [2] Proposed

Analysis Type Dynamic instrumentation Dynamic instrumentation Static Analysis Combination (advantages of both)

Predicted value Speed-up Speed-up Speed-up Energy Gain & Progr. Effort

Provide results only based on

static analysis
No No

No, dynamic

info also needed
Yes

Training Dataset Benchmarks Benchmarks Benchmarks Benchmarks & Synthetic

Ability to reproduce the analysis No No No Dataset and models provided on git repo

Software Engineering Perspective No No No Effort Prediction

XAPP [1] and CGPredict [26] analyze CPU code based

on dynamic instrumentation. However, XAPP lever-

ages machine learning techniques for prediction, while

CGPredict is based on analytical models. A first step

towards a static analysis approach using random for-

est classification with two output classes has also been

proposed recently to trade accuracy for fast and user

friendly predictions [2]. Other recent works that be-

long to the broad category of performance predictors are

the Compass and Automatch tools [14, 10]. Compass

includes a static analysis framework, which analyzes

C code and generates application performance models,

while Automatch detects application characteristics and

through the generation of analytical modeling predicts

performance of execution in various accelerators.

It is observed that most predictors rely on dynamic

instrumentation techniques for extracting features that

feed a machine learning model that generates predic-

tions. Although dynamic instrumentation is a well es-

tablished analysis and profiling technique, which is sup-

ported by many widely-used tools (e.g. Valgrind [18],

Pin [22]), it suffers from large execution time over-

head. Additionally, the predictors that entirely rely on

dynamic instrumentation inherit the limitations and the

constraints of the instrumentation tools that integrate,

such as specific configurations and required source code

modifications. Therefore, some first approaches to de-

sign predictors that rely on static analysis of source code

have recently been proposed [2], requiring some dy-

namic information, such as the number of loop itera-

tions by the user. They trade prediction accuracy or pre-

diction granularity level for user friendliness and short

analysis time overhead. However, the methodology de-

scribed in this work proposes combination of static with

dynamic analysis approaches to a single tool-flow, to ex-

ploit the advantages of both approaches, to provide flex-

ibility to application developers and to use static analy-

sis only, when feasible, to avoid large time overhead.

Although the existing approaches provide predictions

in terms of execution time, they do not consider energy

consumption predictions. Indeed, energy efficiency is

an important quality especially in embedded systems

domain and a critical design constraint. Therefore, in

this work, we extend existing approaches towards the

prediction of energy consumption gains by acceleration

on heterogeneous embedded devices. This is performed

by investigating the potential use of machine learning

features already proposed in the literature for building

energy consumption (instead of performance) predic-

tion models.

Finally, the existing tools predict only execution time

gains without considering the programming effort that

is required to achieve the predicted gains. Few attempts

to quantify the programming effort of accelerating ap-

plications can be found in the literature, which are ei-

ther based on empirical investigations [16], or rely on

relatively simple metrics. A typical example of such

a metric, is the Lines-of-Code (LOC) of accelerator-

specific code (i.e. CUDA, OpenCL) versus the LOC

of the corresponding CPU code [17]. However, using

LOC may not be a good indicator of programming ef-

fort [24]. In addition, these approaches measure effort

of existing code, while it is very important to know the

effort required before writing the new code.

The advantages of the present work over the relevant

approaches are summarized below:

• The proposed approach combines both static and

dynamic analysis approaches and exploits the ad-

vantages of both of them into a single tool-flow.

• The proposed static analysis component relies en-

tirely on analysing source code using text analyt-

ics techniques. Existing works that leverage static

analysis techniques (e.g. [2]) require parameters

related to dynamic information (such as the num-

ber of loop iterations or the direction of branches).

• Regarding the dynamic estimation component, we

extend the existing approaches ([1, 3]) that analyze

CPU code to provide speedup predictions, towards

estimating the potential energy gains too. This is

achieved by studying the correlation of the used

features with energy consumption.

• To the best of the authors’ knowledge this is a first

3

approach towards designing a tool that estimates

programming effort of developing GPU code using

the CPU code as input.

3. Proposed Methodology

This section provides an overview of the proposed

methodology for predicting the energy consumption

gains and the programming effort by acceleration. Then,

it describes each one of the components of the method-

ology in detail.

3.1. Overview

Application source code

Hotspot identification

Static analysis for energy gains

estimation

Dynamic analysis for energy gains

estimation

Programming

effort estimation

Moderate gains

High gains

No gains

Moderate

& no gains

Prog. effort

M
o

d
e
ra

te

e
n

e
rg

y
 g

a
in

s

application

Output

2x

1x

Output Output

Energy gains

1x or lower

Energy gains

higher than a

threshold

...

threshold

Figure 1: Overview of the proposed methodology

The proposed methodology is depicted in Figure 1.

The input of the methodology is the source code of the

CPU application and the output is the predicted energy

gains by acceleration, as well as the programming effort

needed to develop the CUDA version of the CPU appli-

cation code. The methodology consists of the following

steps:

• Hotspot identification: The most computationally

intensive source code blocks in terms of CPU cy-

cles are identified.

• Prediction of acceleration gains by static analy-

sis: It classifies hotspots into the ”High gains” or

”Moderate/no gains” categories based on the ex-

pected energy consumption gains by offloading on

the GPU. For hotspots classified into the ”High

gains”, no further analysis is performed.

• Prediction of acceleration gains by dynamic

analysis: Hotspots classified into the ”Moder-

ate/no gains” category by static analysis are fur-

ther analyzed by leveraging the dynamic instru-

mentation approach. A classification step identi-

fies hotspots for which no gains by acceleration are

expected. Then, a regression step provides a fine-

grained prediction of expected energy gains (i.e.

prediction of gains by acceleration, as a percentage

of energy consumed on the CPU) for the remaining

hotspots.

• Programming effort prediction: Hotspots classi-

fied into the moderate gains category by dynamic

analysis are analyzed to predict the programming

effort needed to develop the acceleration-specific

code based on the corresponding CPU code.

The output of the methodology is shown in Figure 1. A

CPU application under analysis is classified into one of

the three categories: ”No gains”, ”Moderate” or ”High

gains” with respect to the predicted energy consump-

tion gains by GPU acceleration. Fine-grained energy

consumption prediction, along with programming effort

prediction is provided for the applications classified into

the ”Moderate gains” category.

The methodology predicts the programming effort

required to develop CUDA code, only for the appli-

cations classified into the ”Moderate gains” category.

We make the assumption that for applications classified

into ”High gains”, the CUDA version will be developed

no matter how much programming effort is required.

However, for applications classified into the ”Moderate

gains”, programming effort may affect developers’ de-

cision about developing CUDA or not, especially if the

predicted energy gains by the regression step are rela-

tively low.

3.2. Hotspot identification

In the context of the proposed methodology, hotspot

is defined as block of CPU source code, in which sig-

nificant number of CPU cycles are spent, compared to

the application’s total. Each identified hotspot is con-

sidered a candidate to be offloaded on the accelerator.

Therefore, each hotspot should be analyzed to predict

energy gains by acceleration and the programming ef-

fort to develop the accelerator-specific code.

The hotspot identification flow is shown in Figure 2.

By generating the Abstract Syntax tree (AST) of the ap-

plication using CLANG, for and while code blocks are

identified in the application source code. Then, the ap-

plication is dynamically analysed to monitor CPU cy-

4

Application source code

Compiler

Code blocs identification

Dynamic instrumentation

Hotspots

Hotspot 1: File: … Start line:… end line:… %CPU cycles:...

Hotspot 2: File: … Start line:… end line:… %CPU cycles:...

...

AST

Valgrind

LLVM/

Clang

Figure 2: Hotspot identification flow

cles, by leveraging a widely used dynamic binary instru-

mentation profiler, such as Callgrind by the Valgrind

suite. By combining the information generated by the

dynamic analysis (i.e. Callgrind output) and the static

analysis (i.e. statements identified by the AST process-

ing), the number of CPU cycles spent in each statement

is calculated. The code blocks defined by for and while

statements in which the number of CPU cycles spent is

above a threshold are considered hotspots. The thresh-

old can be configured by developers.

Although this approach is independent of the physi-

cal platform that the application is executed, the execu-

tion time overhead due to binary instrumentation may

be a limitation for large and complex applications. An

alternative approach is the execution of the application

on the actual embedded platform and the monitoring of

the values of performance counters such as CPU cycles,

if available. Tools such as Linux perf can be used to

automate the monitoring (e.g. perf annotation mode).

The overhead of this approach is negligible, however it

is limited by the availability of performance counters on

the physical platform.

Finally, developers familiar with the application un-

der analysis, are often aware of the code blocks that are

candidates for acceleration. Therefore, they may skip

the hotspot identification step entirely and proceed di-

rectly to the static analysis step of the proposed method-

ology.

3.3. Prediction of energy gains by acceleration

This subsection describes the flow for the prediction

of energy gains by offloading a hotspot to a GPU accel-

erator. The flow is depicted in Figure 3. The hotspots

identified by the previous step of the methodology are

further analyzed for monitoring the values of features,

which are inputs to the prediction models for energy

consumption estimation.

Hotspots

preprocessing

encoding

Classification

 model

Dynamic

instrumentation

Classification

 model

No gains Moderate gains

Regression model:

Predicting energy

gains quantity

Moderate & no gains

S
ta

ti
c

 a
n

a
ly

s
is

D
y
n

a
m

ic
 a

n
a

ly
s

is

High gains

Energy gains

higher than a

threshold

Energy gains

1x or lower

R
e
g

re
s
s
io

n
 m

o
d

e
l:

P
re

d
ic

tin
g

 p
ro

g
r. e

ffo
rt

Output Output Output

Prog. effort

M
o

d
e
ra

te

e
n

e
rg

y
 g

a
in

s

application

2x

1x

...

threshold

Figure 3: Estimation of energy gains by acceleration

The proposed tool-flow is based on the combination

of static source code analysis and on dynamic instru-

mentation techniques to exploit the advantages of each

approach. We first analyze the process we followed for

building the dataset we used to train the estimation mod-

els of the static and dynamic approaches. Then, we de-

scribe the details of each approach.

Initially, the hotspots are statically analyzed (Sec-

tion 3.3.2) using text analytics methods, which provide

a coarse grained estimation of potential energy gains.

The hotspots are classified into one of the following two

categories: ”High-gains” or ”Moderate/no gains”. The

hotspots for which ”Moderate/no gains” are predicted

are further analyzed using analysis based on dynamic

instrumentation approach for fine grained predictions,

as described in Section 3.3.3.

3.3.1. Building the dataset

A major challenge when designing the introduced es-

timation models is the building of a high quality dataset.

This is acknowledged by several related works [1, 26].

The main difficulty relies on the fact that the dataset

must contain CPU source code, as well as the corre-

sponding GPU kernel (i.e. the accelerated version of

5

Get featuresSeparate

CPU loops –
GPU kernels

Generate

random

CPU/GPU

kernels

Target

devices

Static

analysis

Dynamic

analysis
Clustering

Data

set

Validate

PolybenchRodinia

Compile

Features

</>

</>
.

Figure 4: Dataset building

the specific CPU code). Apparently, there is a rela-

tively small number of available benchmark suites that

provide both CPU and the corresponding accelerated

code. Therefore, in this work, we built a dataset that

combines an equal number of synthetic benchmarks and

real-world applications (i.e. non-synthetic and taken

from existing benchmark suites) to reduce the danger

over-fitting caused by a small dataset size that could

lead to biased results. Figure 4 shows the steps we fol-

lowed to build the dataset, which are detailed in the next

paragraphs.

With respect to the synthetic part of the dataset, we

developed a script that generates for loops that perform

matrix and vector operations. The number of the ma-

trices, the data types and the operations were randomly

generated. CUDA kernels were generated including the

same loop body as the CPU loops. Finally, to keep only

valid datapoints in the dataset, after the execution of

both the CPU and the GPU version, a test phase that per-

forms cross-checking to all data structure values after

executing the GPU kernel and the CPU loop was imple-

mented. This validation mechanism checks if the matrix

values are equal, meaning that no errors were occurred

due to data conflicts in the parallel execution because of

the inherent random characteristics of the code.

The real-world (i.e. non-synthetic) application data-

points of the dataset include kernels from the Poly-

bench [20] and Rodinia benchmark suites [5]. These

suites include a set of CPU applications, as well as the

corresponding GPU version of each application. Fol-

lowing a similar approach for dataset building with

other predictors [1], we increased the size of the dataset

by modifying the input of some kernels (or the amount

of data processed), resulting in a total number of 100

data-points (for the real-world part of the dataset). It is

worth mentioning that, since the dataset includes same

kernels with different inputs or a single application may

include very similar kernels, we made sure that data-

points that belong to the same application will not be in

training and test sets consequently.

The synthetic part of the dataset is further refined

by eliminating very similar data-points that may cause

overfitting. This process is performed through a k-

means clustering pre-processing of the data-points and

the selection of one data-point from each cluster. The

number of generated and selected data-points is config-

ured to be equal to the real-world data-points (i.e. 100),

resulting in a training dataset of 200 data points in to-

tal. The whole dataset, which as stated earlier consists

of 50% of synthetic benchmarks and 50% of real-world

applications is publicly available 1.

Obviously, the quality of the CUDA code is expected

to affect the quality of the dataset and, subsequently, the

accuracy of the predictions. This is true for the real-

world part of the dataset, since the CUDA synthetic part

are relatively simple. Rodinia and Polybench are two

benchmark suites that are widely used in many research

works, both in the embedded and HPC domains and

they are constantly maintained and improved. There-

fore, it is reasonable to assume that the code quality of

the CUDA code is relatively high, or at least, that it is

close the code quality that experienced developers gen-

erate. Although the study of the impact of the quality of

CUDA code on the accuracy of predictions is an inter-

esting issue, it is beyond the scope of this work.

3.3.2. Proposed Static analysis approach

Source

code

</>

Pre-

processing
Encoding

CNN

[12]

Dataset for acceleration gains

Energy

gains

class

sequence

[7]

Figure 5: Flow of prediction of energy savings by acceleration based

on static analysis

The static analysis flow receives as input the C/C++

CPU source code that is a candidate to be offloaded to

a GPU by developing the corresponding CUDA kernel.

The static analysis classifies the blocks of source code

into one of the two categories, with respect to the ex-

pected gains by acceleration: ”High gains” and ”Mod-

erate/No gains”. The goal of this first layer of analysis

is to identify with negligible time overhead, the hotspots

for which ”High gains” are energy expected (i.e. they

will benefit a lot by GPU acceleration). The thresh-

old between ”Moderate/No gains” and ”High gains”

classes is selected so that the accuracy of the static anal-

ysis is maximized (i.e. the misclassifications are min-

1https://git.microlab.ntua.gr/hmar/Decision_

Support_for_GPU_Accelerator_dataset

6

imized). This is demonstrated in the evaluation sec-

tion. The accuracy of the static analysis significantly de-

creases when more that two output classes are defined.

As a result, discrimination between ”Moderate gains”

and ”No gains” is not possible by using static analysis.

Therefore, the dynamic analysis is used for identifying

hotspots for which ”No gains” are expected and to pro-

vide find-grained predictions for ”Moderate gains”.

From technical perspective, the static analysis ap-

proach is based on text analytic approaches. It is in-

spired by existing work in the literature that analyses

source code but for different purposes [7]. As shown

in Figure 5, after pre-processing of the source code to

remove information irrelevant to the code’s structure

such as comments, the source code is encoded into se-

quences of integers. Giving as a vocabulary all the

source code derived from the given training dataset, a

tokenizer mechanism is used in which each character

corresponds to a vocabulary item, with the exception of

common language words such as if, for, while etc. The

encoded source code (word embeddings) is then pro-

vided as input to a classification model, which is trained

based on a given dataset of pre-analyzed blocks of code.

The prediction model used is a Convolutional Neural

Network (CNN) for sequence classification [12]. The

sequences retrieved from the aforementioned procedure

have a maximum length of 500. The CNN includes 250

hidden neurons and uses filter sizes of 12. In contrast to

related works that leverage static analysis (e.g. [2]) tech-

niques, we use a more sophisticated approach that relies

only on source code without any dynamic information

(such as the number of loop iterations or the direction of

branches). This choice may reduce the prediction accu-

racy, as the actual gains in absolute values are affected

a lot by such execution-context metrics. However, con-

sidering that the orders of magnitude of the gains are not

usually affected by execution-context metrics, we pre-

ferred to provide a coarse-grain classification based on

static analysis, having the source code as the only input

of the prediction model.

An interesting and potentially promising direction

worth investigating is the enhancement of the static

analysis approach with information obtained earlier by

dynamic instrumentation. For example, during the

hotspot identification, the CPU cycles are calculated for

each code block that is a candidate for acceleration.

This information could improve the classification accu-

racy of the static analysis step. However, in the context

of this work, we decided to use a purely static analy-

sis approach for coarse grained prediction and to pro-

vide as input the application source code, only. The rea-

son is the fact that application developers familiar with

the application under analysis are already aware of the

hotspots, therefore, they are expected to skip the entire

hotspot identification step.

3.3.3. Dynamic instrumentation

In this paragraph we describe the dynamic instrumen-

tation techniques based sub-component of the proposed

method for predicting the potential energy savings by

acceleration. The goals of the dynamic analysis are i)

to identify the hotspots for which ”No gains” are ex-

pected using a classification model and ii) to perform a

fine grained analysis to the hotspots classified into the

”Moderate gains” using a regression model.

The CPU code blocks provided by the hotspots iden-

tification phase, are analyzed by profiling tools, such

as Intel Pin tools, to monitor the values of accelerator-

specific indicators. These indicators capture the extent

by which the code behaviour can exploit the architec-

tural features of the GPU accelerator. The selected sub-

set of the most widely used indicators for GPU accel-

erators, as defined in the literature [1, 3] contains the

following metrics:

• Total number of instructions in the code block

• Instruction level parallelism

• Number of cold memory references

• Number of single precision floating point ops

• Number of integer operations

• Number of control operations

• Number of memory operations

• Number of memory accesses with zero stride

• Branch divergence

• Data reuse

• Number of blocks that belong to the same page

The role of the dynamic analysis step is to provide

fine grained acceleration gains prediction for hotspots

classified into the ”Moderate/No gains” category by the

previously performed static analysis. The dynamic anal-

ysis is obviously more time consuming and this is the

reason that it is applied only when fine grained predic-

tions are required (e.g. prediction of gains by accelera-

tion, as percentage of CPU energy consumption).

To select the features used in dynamic instrumenta-

tion estimation models, we must investigate whether

they are suitable for predicting potential energy savings.

7

For this purpose, we used the stepAIC method. StepAIC

is an automated method that identifies an optimal set of

features by selectively adding and removing features in

each step and using regression methods to evaluate the

importance of each one. AIC stands for Akaike Infor-

mation Criteria and quantifies the amount of informa-

tion loss when a feature is removed. AIC estimates the

prediction error and thus, the quality of each model.

Table 2: Importance of features in terms of relation to energy

Features p-value

Instruction Level Parallelism 2.12e-06

Number of instructions 1.44e-07

Number of cold memory references 0.033269

Number of single precision floating point operations 0.035817

Number of integer operations 0.006868

Number of control operations 0.039069

Number of memory operations 5.14e-05

Number of memory accesses with zero stride 1.41e-06

Branch divergence 2.84e-11

Number of division operations 0.061380

Number of blocks accessed in the same page 2.75e-05

Table 2 shows the output of the StepAIC method.

It presents the features with the highest relation to the

energy consumption of the accelerated version, which

are the ones for which the p-value is less or close to

0.05. For a typical statistic analysis, the null hypothesis

(i.e. removing a feature from the features vector as it is

not related with energy consumption) is rejected when

p < 0.05 and not rejected when p > 0.05.

During an analysis of a hotspot, the values of the fea-

tures presented in Table 2 are forwarded to the classi-

fication model. If the hotspot is classified into the ”No

gains” class, no further analysis is required. However,

if the hotspot is classified into the ”Moderate gains”,

the values are forwarded to a regression model, as it

is important to predict the expected gains as accurate

as possible. Therefore, the acceleration gains are pre-

dicted as a percentage of corresponding CPU energy

consumption. For example, energy gains by accelera-

tion 3× means that the accelerated code will consume 3

times less energy during execution, compared to the cor-

responding CPU code. Fine grained predictions, along

with the corresponding information about programming

effort will assist developers to decide if it worth devel-

oping CUDA code for the hotspots for which moderate

energy consumption gains are predicted.

3.4. Programming Effort Quantification and Proposed

Estimation method

The importance of quantifying and predicting the

programming effort required to develop CUDA kernels

based on corresponding CPU code was highlighted in

Section 2. Furthermore, the need of having more reli-

able quantification of the effort creates the need of using

more complex metrics for programming effort quantifi-

cation than the lines of code (LOC).

LoC increase %
10 20 30 50 70 100

x10

E
n

e
rg

y
 g

a
in

x4

x2

x1

High Energy Gain

Low LoC increase

Low Energy Gain

High LoC increase

Figure 6: Energy gains vs LOC increase by GPU acceleration in ap-

plications of the Rodinia Benchmark Suite

Figure 6 shows the impact of GPU acceleration on a

set of applications of the Rodinia suite [5], in terms of

energy consumption, as well as the old (for demonstra-

tion and motivation purposes) metric of LOC increase of

the CUDA version compared to the corresponding CPU

version. The vertical axis is the energy gains by GPU

acceleration measured in NVidia Jetson TX1 embedded

heterogeneous platform [19], while the horizontal is the

percentage of LOC increase. As stated earlier, the LOC

has been used in the literature as a programming effort

indicator [16, 17]. We notice that there are applications

that require minor effort to be accelerated, however, the

energy gains are very high. On the other hand, there are

applications that require significant effort to be acceler-

ated, however the energy gains are relatively trivial. For

these applications, developers may decide not to invest

in acceleration. Therefore, tool support for predicting

both energy gains and programming effort will signifi-

cantly assist decision making for application developers

and contribute to an effective investment of program-

ming time and effort.

However, related studies conclude that for the pur-

pose of effort estimation, using LOC may underesti-

mate the amount of programming effort required and

that more sophisticated metrics should be used [24].

Halstead’s metrics quantify both the number of distinct

operators and distinct operands (their sum corresponds

to the program’s Length (N)), as well as the total num-

ber of occurrences of operators and operands (their sum

corresponds to the program’s Vocabulary (n)). The Vol-

ume of a Program, is obtained as V = N ∗ log2n and ex-

presses (in an abstract manner) the size in bits, since the

logarithm yields the minimum number of bits required

8

to represent all operators and operands.

Any piece code, could be theoretically written in its

most abstract form, by invoking a hypothetical function

that would deliver the same functionality. This com-

pact form of the program would contain the name of the

function and a grouping operator in terms of operators,

and all unique operands (to be passed as arguments to

that function). Thus, the minimal volume for any pro-

gram can be defined as V∗ = (2 + n∗
2
)log2(2 + n∗

2
). As

a result, the ratio of the minimal volume over the ac-

tual volume is called Level L = V∗/V and expresses the

abstractness of a program. Program Difficulty is the in-

verse of the program level, while the ratio of volume

over the level represents a measure of Effort, E = L/V ,

to write or understand a program as it considers both its

size and abstractness.

According to a highly-acclaimed systematic litera-

ture review by Riaz et al. [23] Halstead’s Effort (among

other measures) are considered successful maintainabil-

ity predictors. Halstead metrics have been also used to

measure the development effort in a comparison of high-

level parallel programming approaches [15]. They are

specifically designed to estimate the time spent on writ-

ing an existing source code. Therefore, they are deemed

suitable to compare programs providing the same func-

tionality. Since the notion of maintainability captures

the ease with which a software component can be mod-

ified to adapt to a changed environment, Effort can act

as programming effort estimates for transforming CPU

to accelerator-specific code.

In contrast to related approaches that quantify the

programming effort of already written code, in the pro-

posed methodology, the Effort is estimated using only

the initial CPU code as input, in order to support design-

decision for developers with respect to acceleration.

Hotspots classified into the ”Moderate gains” cate-

gory are analyzed in terms of programming effort that is

required to develop the corresponding GPU code (e.g.

CUDA, OpenCL). For hotspots classified into ”High

gains”, this may not be considered necessary, since de-

velopers are expected to develop accelerator-specific

code no matter how much effort is required.

To predict the programming effort required to trans-

form a hotspot to the corresponding accelerator-specific

code, we use the following indicator: Having as a base-

line the Halstead’s Effort required to develop a part of

the CPU code, we predict the percentage of extra effort

required to develop the accelerator-specific code. This

metric will serve as indicator of the programming effort

required to develop the accelerator-specific version of a

CPU code. The metrics used as features in the regres-

sion prediction model are the following:

• number of hotspots

• LOC of application

• number of hotspots’ LOC

• number of hotspots’ statements

• distinct and total operators of CPU version

• CPU-code Complexity, Volume, Length, Difficulty

Table 3: Importance of features in terms of relation to Progr. Effort

Features p-value

Number of hotspots 0.0707

LOC of application 0.0219

Number of hotspot’s LOC 0.0219

Number of hotspot’s statements 0.0129

Distinct operations (CPU) 0.0238

Total operations (CPU) 0.0308

Complexity (CPU) 0.069

Volume (CPU) 0.0362

Length (CPU) 0.0231

Difficulty (CPU) 0.0289

Table 3 quantifies the importance of the selected fea-

tures with regards to the programming effort, after ap-

plying the stepAIC method.

The programming effort predictions are made by a

regression model, which predicts the increased Effort

for developing the accelerator-specific code in compar-

ison with the CPU Effort. The model receives as in-

put the values of the features listed above. The tools

that have been used to collect the aforementioned source

code metrics are the SonarQube open-source platform 2

for cyclomatic complexity and non-commented lines of

code (NCLOC), the Halstead Metrics tool 3 for program

Length, Vocabulary, Volume, Difficulty and Effort and a

custom made tool for determining the dependencies of

each C file on other system files (coupling).

It’s worth mentioning here that the main contribution

of this manuscript is not based on the use and monitor-

ing of the Halstead metric itself, but rather on the de-

sign of a tool that predicts the effort required to develop

a new (accelerated) version of the code, before devel-

opment. To the best of the authors’ knowledge, this is

a first approach towards using the increase of Halstead

effort to create a model that predicts the effort of devel-

oping GPU-accelerated code using the CPU-version as

the only input, while other metrics could be also used.

2https://www.sonarqube.org/
3https://sourceforge.net/projects/halsteadmetricstool/

9

4. Evaluation

Maxwell 256 core GPU

Encoder /

Decoder

Memory

controller

4x ARM

Cortex-

A57

4x ARM

Cortex-

A57

4x ARM

Cortex-

A57

4x ARM

Cortex-

A57

I/O

Figure 7: High-level schematic diagram of Tegra X1

The evaluation of the proposed methodology is based

on the level of prediction accuracy of each compo-

nent: The static analysis, the dynamic analysis and the

programming effort prediction. The evaluation results

are analysed for an heterogeneous embedded platform:

NVidia Jetson Tegra X1 that integrates a MAXWELL

embedded GPU. A high-level schematic diagram is

shown in Figure 7. Energy consumption was measured

using the installed power monitor (INA3221). Finally,

the proposed tool is extended to support and provide

results for two more Nvidia SoC embedded devices,

namely Nvidia Jetson Nano and Nvidia Xavier NX in

Section 4.3.

62%

66%

70%

74%

78%

10x 12x 14x 16x 18x 20x

S
ta

ti
c

m
o

d
el

 a
cc

u
ra

cy

"High" and "Moderate/No" gains class boundary

Highest accuracy

Figure 8: Selection of class threshold between ”High gains” and

”Moderate/No gains” so that the static model accuracy is maximized

After training the estimation models using the dataset

described in Section 3.3.1, we defined the boundary be-

tween the ”High gains” and the ”Moderate/no gains”

classes. As mentioned earlier, the boundary is selected

so that the misclassifications of the static analysis model

are minimized. Figure 8 shows the accuracy of the static

prediction model for different boundary values. Ac-

curacy is maximized for boundary value 16×, where

it reaches 76%. Therefore, hotspots for which energy

gains above 16× are predicted, are classified into the

”High gains”, while the rest of the hotspots are classi-

fied into the ”Moderate/No gains” class. This threshold

is only recalculated when the dataset changes in order to

support additional platforms or to optimize the accuracy

for the specified platform. As a result, this procedure

takes place rarely, only when the models are retrained.

4.1. Demonstration of methodology

Below, we summarize the evaluation setup:

• Models: The static and dynamic models were

introduced in Sections 3.3.2 and 3.3.3, respec-

tively. Detailed model selection experiments are

presented in Section 4.2.2 and 4.2.4.

• Features: The input of the static model is encoded

C/C++ source code (3.3.2). The input of the dy-

namic model is features presented on Table 2.

• Test dataset and evaluation process: The test

dataset consists of a total number of 100 applica-

tions hotspots from Rodinia and Polybench bench-

mark suites [5, 20]. For the accuracy evaluation,

we followed the same approach with similar works

in the literature (e.g. [2, 1]): When predicting the

energy consumption gains for a single datapoint

(i.e. a specific hotspot), we re-train the models

with the a training dataset including all datapoints

that belong to the rest of the applications (i.e. the

remaining applications hotspots). This approach,

which is based on a modified leave-one-out cross-

validation (LOOCV) is widely used in the analysis

of small dataset [2, 1, 13].

• Evaluation platform: NVidia Tegra X1 with an in-

tegrated power monitor (INA3221 sensor) [19].

x0

x16

x0 x2 x4 x6 x8

E
n
er

g
y
 g

ai
n

Effort increase

High gains

Moderate

gains

No gains

x8

x14

x12

x10

x6

x2

x4

Figure 9: Output of the methodology for the Polybench and Rodinia

hotspots that are classified into the ”Moderate gains” category.

The output of the proposed methodology for the mod-

erate gains is shown in Figure 9. The Figure shows the

predicted energy gains on Tegra X1 vs. the predicted

Effort required to develop the GPU version of each ap-

plication in comparison to the corresponding CPU ver-

sion. Each point corresponds to a single hotspot. 53

10

High

 Moderate

(<16x)

 High

(>16x)

57

11

83.8%

16.2%

13

19

59.3%

40.6%

81.4%

18.6%

63.3%

36.7%

76.0%

24.0%

Actual Gains

P

re
d
ic

te
d

 G
ai

n
s

 /No

 Moderate
 /No

Figure 10: Predicted vs. actual energy gains class: Static analysis

hotspots were classified into the ”Moderate gains” cate-

gory, while 30 were classified into ”High gains” and for

15 hotspots ”No gains” were predicted.

4.2. Accuracy evaluation

In this subsection we evaluate the accuracy of the pre-

diction models of the proposed methodology.

4.2.1. Static analysis component accuracy

As shown earlier in Figure 8, the accuracy of the

static analysis component is 76%. The accuracy is fur-

ther demonstrated in the confusion matrix of Figure 10.

The rows represent the instances in a predicted class,

while the columns represent the instances in an actual

energy gains class. It shows that the model correctly

classifies 76 datapoints (i.e. hotspots) out of 100.

Considering the fact that the static analysis receives

as input only the hotspot source code, this level of accu-

racy is reasonable. As stated earlier, the accuracy of the

static analysis component can be potentially improved

by receiving as input, apart from the source code, infor-

mation obtained by dynamic analysis. However, in this

work we developed a purely static analysis component

and traded classification accuracy for user friendliness.

4.2.2. Dynamic analysis component accuracy

The dynamic analysis component includes a classifi-

cation step, to identify the hotspots for which no gains

are predicted and a regression step to predict the en-

ergy gains by acceleration for the hotspots classified

into the ”Moderate gains” category. The classification

step is based on ensemble method that combines Ex-

tra Trees, Bagging Trees and Gradient Boosting (Fig-

ure 12). As shown in the confusion matrix of Figure 11,

accuracy reaches 85.3%, which means that misclassifi-

cation probability is lower than 15%.

The values of the dynamic analysis indicators (see

Section 3.3.3) are forwarded to a classification model,

which is used to identify the proper energy gains class

Actual Gains

No Moderate

No

Moderate

13

8

61.9%

38.1%

2

45

95.7%

 4.3%

86.7%

13.3%

84.9%

15.1%

85.3%

14.7%

P
re

d
ic

te
d
 G

a
in

s

Figure 11: Predicted vs. actual energy gains class: Dynamic analysis

50 55 60 65 70 75 80 85 90

K-nearest neighboors

Quadratic Discriminant

Decision Tree

Random Forest

Gradient Boosting

Bagging Trees

Extra Trees

Ensemble Method

Accuracy (%)

Figure 12: Comparison of accuracy of various classification models

for dynamic analysis based estimation

for each given block of CPU code. The model pre-

dicts the number of times that the energy consumption is

lower when the code is offloaded on the GPU, compared

to the corresponding CPU execution. Thus, the model

assigns each piece of CPU code to the proper class.

In order to select a suitable classification model, we

compare the classification accuracy of various models.

The accuracy of the evaluated models is depicted in Fig-

ure 12. Then, we utilize an Ensemble Voting technique

that incorporates the best 3 models (Extra Trees, Bag-

ging Trees and Gradient Boosting) achieving an energy

gains prediction accuracy level of 85%.

For the regression step, we evaluated several algo-

rithms in terms of accuracy, as shown in Figure 13,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

K-nearest neighboors

Decision Tree

Bayesian Ridge

SVR

Gradient Boosting

Bagging Trees

Random Forest

Energy gains error

Figure 13: Energy gains prediction accuracy comparison of various

regression models

11

0x
2x
4x
6x
8x

10x
12x
14x

2
m

m
_
1

_
m

in
i

2
m

m
_
1

_
sm

al
l

2
m

m
_
2

_
m

in
i

3
m

m
_
2

g
em

v
er

_
1

_
la

rg
e

g
em

v
er

_
1

_
ex

tr
a

S
y
r2

k
_
sm

al
l

S
y
r2

k

S
y
rk

_
sm

al
l

S
y
rk

D
o

it
g

en

co
n
v

o
lu

ti
o
n
2

d

co
n
v

o
lu

ti
o
n
2

d
_
la

rg
e

co
n
v

o
lu

ti
o
n
2

d
_
ex

tr
a

co
n
v

o
lu

ti
o
n
3

d

co
n
v

o
lu

ti
o
n
3

d
_
la

rg
e

co
n
v

o
lu

ti
o
n
3

d
_
ex

tr
a

fd
td

-2
d
_

m
in

i

fd
td

-2
d

ja
co

b
i-

2
d

ja
co

b
i-

2
d

_
la

rg
e

ja
co

b
i-

2
d

_
ex

tr
a

C
o
rr

el
at

io
n
_

4
_
m

in
i

C
o
v

ar
ia

n
ce

_
3
_
m

in
i

b
fs

N
w

_
1
_

la
rg

e

N
w

_
1
_

sm
al

l

N
w

_
2
_

la
rg

e

N
w

_
2
_

sm
al

l

P
ar

ti
cl

ef
il

te
r

h
ea

rt
w

al
l_

la
rg

e

h
ea

rt
w

al
l_

sm
al

l

L
u

d
_
la

rg
e

L
u

d
_
sm

al
l

B
ac

k
p
ro

p
_
1

B
ac

k
p
ro

p
_
2

la
v

aM
D

_
sm

al
l

st
re

am
cl

u
st

er

h
o

ts
p
o
t3

D

h
o

ts
p
o
t

b
+

tr
ee

_
1

b
+

tr
ee

_
2

C
fd

sr
ad

v
1
_
2

sr
ad

v
1
_
2

_
la

rg
e

sr
ad

v
2
_
1

sr
ad

v
2
_
1

_
la

rg
e

Predicted Actual

E
n
e
rg

y
 g

a
in

Figure 14: Predicted vs. actual energy gains using regression analysis for hotspots assigned into the ”Moderate gains” category (Nvidia TX1)

which shows the mean error of the 7 most accurate mod-

els. We selected the Random Forest regression method,

which provides the highest accuracy.

The actual and the predicted energy gains regarding

the hotspots (denoted as {application name} {hotspot

id} {input size}) classified into the ”Moderate gains” cat-

egory are shown in Figure 14. The average error, which

is defined as the difference between actual and predicted

energy gains gains is 2.6×. However, mispredictions

can be more costly for low energy gains, than for higher.

As an example, predicting energy gains 4×, while the

actual is 2× may affect decision making to a higher de-

gree, than in the scenario of predicting 10×, while the

actual is 8×. Based on the results of Figure 14, there

are 28 hotspots with actual energy gains below 6×. 22

out of 28 predictions can be considered accurate, since

the average error is 1.4× only. However, there are few

mispredictions which are attributed to the following rea-

sons:

• Hotspots with relatively small instruction level par-

allelism may lead to overestimations of energy

gains. As an example, Nw (for large input) falls

into this category: Actual energy gains for Nw are

around 3×, while the model predicts more than 9×.

• High branch divergence often leads to mispredic-

tions. This was observed for example in Heartwall:

the model predicts a energy gains below 6×, while

the actual gains are more than 10×.

Very few real-world applications and synthetic bench-

marks had similar behavior with respect to branch diver-

gence and instruction level parallelism. Therefore, the

models are not trained to provide accurate predictions

for such cases. However, enhancement of the dataset

with more real-life and synthetic applications with be-

havior similar to the above is expected to improve the

energy consumption predictions.

Fine-grain regression analysis is only applied to the

estimation of potential energy gains for hotspots classi-

fied in the ”Moderate Gains” class. As mentioned be-

fore, this is a design choice of the proposed framework,

as we can consider the expected gains of hotspots clas-

sified in the ”High gains” class as high enough to con-

vince the developer of the need for acceleration. The

quality of a regression process that applies in these cases

also lead to higher absolute error as the real values of

energy gains are significantly higher.

4.2.3. Motivation for Combining Dynamic and Static

Analysis

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
 (

%
)

2 classes 3 classes 4 classes

(a) Accuracy of static analysis ap-

proach

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
 (

%
)

2 classes 3 classes 4 classes

(b) Accuracy of dynamic instrumenta-

tion approach

Figure 15: Energy gains classification accuracy (Nvidia Jetson TX1)

In this paragraph we present our first results that mo-

tivated us to select a hybrid approach. If we increase

the number of classes in the classification step to three

or four, the prediction accuracy results of static and dy-

namic analysis based approaches are shown in Figure 15

(The classes divide hotspots into equal parts. For ex-

ample, in the case 3 classes, the boundaries are set so

that each 1/3 of the dataset is classified into a different

class). According to these results, we might conclude

that the classification accuracy of the static analysis ap-

proach significantly reduces for more than 2 classes.

This shows that the static analysis can be effectively

12

0x

500x

1000x

1500x

2000x

1 10 19 28 37 46 55 64 73 82 91 100

T
im

e
o

v
er

h
ea

d

Application

Figure 16: Execution time overhead of the dynamic instrumentation

used for coarse-grained predictions (i.e. up to 2 classes).

However, for more fine grained predictions using three

or more classes, analysis based on dynamic instrumen-

tation should be employed, as shown in Figure 15b. In-

deed, predictions based on the dynamic instrumentation

technique provide correct classification with 75% accu-

racy even for 4 classes.

The overhead of the dynamic instrumentation ap-

proach in terms of execution time is shown in Figure 16.

The dynamic instrumentation is performed by analyz-

ing each one of the applications of the dataset with Intel

Pin tools, (as stated in 3.3.3), in order to extract the fea-

tures for performing classification. Figure 16 shows that

the dynamic instrumentation adds a large time overhead,

making the execution more than 2000 times slower in

some cases, compared to running the application with-

out dynamic instrumentation profiling. The reason, is

the fact that instrumentation process adds extra instruc-

tions in application binaries in order to extract the re-

quired information. Static analysis, on the other hand,

takes only the source code as input without running the

application. This means that the time required is fixed,

making it easy to implement as part of a software de-

velopment/analysis toolkit. The static analysis process

takes less than 1 second to make a prediction (using a

CPU of a personal computer, eg. Intel i7-6400).

These results motivated us to combine the two ap-

proaches. The applications hotspots are statically ana-

lyzed using text analytic methods, to provide a coarse

grained prediction of potential energy gains by accel-

eration. Applications for which the static approach is

not adequate and need a fine-grained classification are

further analyzed using dynamic instrumentation.

4.2.4. Programming effort accuracy evaluation

In terms of programming effort, the test dataset in-

cludes hotspots from Polybench and Rodinia bench-

mark suites. We discarded synthetic applications, since

only for applications developed by programmers makes

sense to evaluate the programming effort. With respect

0 0.5 1 1.5 2 2.5 3

K-nearest neighboors

Decision Tree

Bayesian Ridge

SVR

Gradient Boosting

Bagging Trees

Random Forest

Effort increase error

Figure 17: Effort prediction accuracy comparison of various regres-

sion models

to the selected estimation model, Figure 17 shows that

Random forest regression yields the highest accuracy.

The prediction accuracy of the programming effort in-

crease of developing CUDA code compared to the cor-

responding CPU is shown in Figure 18. The average

absolute error (i.e. Effort increase difference between

predicted and actual values) is 1.4×. The accuracy

is very high for the applications from the Polybench

benchmark suite (about 93%). Few inaccurate predic-

tions are observed in the Rodinia applications, which

are much larger and more complex than the Polybench

applications. Inaccurate predictions are attributed to the

fact that the CPU versions of these applications pro-

vide functionality that is not present in the correspond-

ing GPU version. However, we decided to maintain the

original structure of the applications, without making

any source code modifications.

Figure 19 presents the accuracy of using the proposed

models to predict the CUDA code development effort

expressed in the more traditional LOC increment. The

accuracy is considered high (87.3%). However, as we’ll

also analyse in Section 4.4, LOC may not be a good

estimator of the programming effort.

4.3. Extension - Adding more Devices

The detailed experiments, presented above, were per-

formed on Nvidia Jetson TX1 device, highlighting the

accuracy of each component. In this paragraph, we eval-

uate the extensibility of the proposed tool and the ability

to support more (similar) devices. A prerequisite for be-

ing able to support the new device is that it must include

an energy sensor. The step-by-step guidelines provided

below show how to add predictions for new devices:

- Step 1: Download the dataset from git repository

- Step 2: Build the dataset in the new device.

- Step 3: Run the dataset. The developer has to update

the paths of power sensors of the new device.

- Step 4: The final dataset is added in the tool. The

models are re-trained in the new data (transfer learning).

13

0x

1x

2x

3x

4x

5x

6x

7x

8x

2
m

m

3
m

m

g
em

v
er

g
es

u
m

m
v

m
v

t

sy
r2

k

sy
rk

at
ax

b
ic

g

d
o
it

g
en

g
em

m

co
rr

el
at

io
n

co
v

ar
ia

n
ce ad

i

co
n
v
o
lu

ti
o
n
-2

d

co
n

v
o

lu
ti

o
n

-3
d

fd
td

-2
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

b
fs

N
w

P
ar

ti
cl

ef
il

te
r

h
ea

rt
w

al
l

L
u

d

B
ac

k
p
ro

p

la
v
aM

D

st
re

am
cl

u
st

er

m
y

o
cy

te

L
eu

k
o
cy

te

h
o
ts

p
o
t3

D

h
o
ts

p
o
t

p
at

h
fi

n
d

er

b
+

tr
ee

C
fd

k
m

ea
n
s

sr
ad

_
v

1

sr
ad

_
v
2

Predicted Actual
E

ff
o

rt
 I

n
c
re

a
s
e

Polybench Rodinia

Figure 18: Predicted vs. actual programming effort increase using regression analysis

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x

2
m

m

3
m

m

g
em

v
er

g
es

u
m

m
v

m
v
t

sy
r2

k

sy
rk

at
ax

b
ic

g

d
o

it
g
en

g
em

m

co
rr

el
at

io
n

co
v

ar
ia

n
ce ad

i

co
n

v
o

lu
ti

o
n
-2

d

co
n
v
o
lu

ti
o
n
-3

d

fd
td

-2
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

b
fs

N
w

P
ar

ti
cl

ef
il

te
r

h
ea

rt
w

al
l

L
u
d

B
ac

k
p

ro
p

la
v

aM
D

st
re

am
cl

u
st

er

m
y

o
cy

te

L
eu

k
o
cy

te

h
o
ts

p
o
t3

D

h
o
ts

p
o
t

p
at

h
fi

n
d

er

b
+

tr
ee

C
fd

k
m

ea
n
s

sr
ad

_
v
1

sr
ad

_
v
2

L
O

C
 i

n
cr

ea
se

Predicted Actual

Figure 19: Predicted vs. actual LOC increase using regression analysis

4.3.1. Evaluation on Nvidia Jetson Nano

Nvidia Jetson Nano is very similar to TX1. It in-

corporates a version of the SoC (Tegra X1) with the

same CPU ARM Cortex-A57 at a maximum frequency

of 1.48GHz (MaxN power mode is used) instead of

1.73GHz of TX1 and a smaller 128-core Maxwell GPU

at 921MHz instead of TX1’s 256-core GPU at 994MHz.

It should be noticed here, that we used the default power

modes for the two platforms (without custom frequency

scaling) and the dataset was build with keeping this con-

figuration constant in all measurements, as the method-

ology aims to use the application software as input.

For Nano, Rodinia/Polybench hotspots are classified

slightly differently, as we have 4 more hotspots in the

”Moderate gains” category and 1 more in the ”No gains”

category, while the values of energy gains differ in most

cases. The accuracy of each component is similar to the

results for TX1. More precisely, the static analysis clas-

sification reaches 78% accuracy, while the accuracy of

the dynamic analysis classification is around 82%. The

results of the fine-grain regression analysis for ”Moder-

ate gains” hotspots are presented in Figure 20. Based on

these results, we observe a similar performance, as the

average error is 2.9×, while the proposed model miss-

predicts the energy gains of the same benchmarks de-

scribed in 4.2.2 (eg. the Nw app). In terms of program-

ming effort, the results are the same as shown in 4.2.4,

as the developed source code (CUDA) is the same.

4.3.2. Evaluation on Nvidia Jetson Xavier NX

NVIDIA Jetson Xavier NX is a high performance

edge device that focuces on AI applications. It incor-

porates a different architecture (Nvidia Volta) includ-

ing 384 CUDA cores and a 6-core NVIDIA Carmel

ARMv8.2 CPU, with 2-level cache and 8 GB of RAM.

For Xavier NX, Rodinia/Polybench hotspots are clas-

sified differently. 28 hotspots show no gains, while 39

hotspots are expected to have high Energy gains (more

than 16x). The increased capabilities of this device in

both CPU and GPU compared to the Tegra X1 offer bet-

ter CPU performance and much faster but more more

power consuming GPU usage. These characteristics in-

crease the energy gains of some hotspots, such as 2mm

and 3mm from the Polybench suite due to the higher ef-

ficiency that exceeds the higher power consumption and

reduces the energy gains for kernels that do not bene-

fit from the increased number of GPU cores. Classifi-

cation accuracy decreases to 78% for dynamic analysis

and 75% for static analysis. This is due to the fact that

we maintain the same boundary between the ”Moder-

ate Gains” and ”High Gains” classes, which is based on

accuracy optimization for TX1. Figure 21 presents the

regression results for ”Moderate gains” hotspots. Based

on these results, we observe a similar performance to

the other devices, as the average error is 2.7×. In terms

of effort, the results are again the same as the developed

source code (CUDA) is the same.

14

0x
2x
4x
6x
8x

10x
12x
14x

2
m

m
_
1
_
m

in
i

2
m

m
_
2
_
m

in
i

3
m

m
_
2

_
st

an
d
ar

d

g
em

v
er

_
1

_
st

an
d
ar

d

g
em

v
er

_
1

_
la

rg
e

g
em

v
er

_
1

_
ex

tr
a

S
y
r2

k
_
sm

al
l

S
y
r2

k
_
st

an
d
ar

d

S
y
rk

_
sm

al
l

S
y
rk

_
st

an
d
ar

d

B
ic

g
_

st
an

d
ar

d

B
ic

g
_

la
rg

e

B
ic

g
_

ex
tr

a

D
o

it
g

en
_
st

an
d

ar
d

co
n
v

o
lu

ti
o
n
-2

d
_
st

an
d

co
n
v

o
lu

ti
o
n
-2

d
_
la

rg
e

co
n
v

o
lu

ti
o
n
-2

d
_
ex

tr
a

co
n
v

o
lu

ti
o
n
-3

d
_
st

an
d

co
n
v

o
lu

ti
o
n
-3

d
_
la

rg
e

co
n
v

o
lu

ti
o
n
-3

d
_
ex

tr
a

fd
td

-2
d
_

m
in

i

fd
td

-2
d
_

st
an

d
ar

d

ja
co

b
i-

2
d

_
st

an
d
ar

d

ja
co

b
i-

2
d

_
la

rg
e

ja
co

b
i-

2
d

_
ex

tr
a

C
o
rr

el
at

io
n
_

4
_
m

in
i

C
o
rr

el
at

io
n
_

4
_
sm

al
l

C
o
rr

el
at

io
n
_

4
_
st

an
d

C
o
v
ar

ia
n

ce
_

3
_
m

in
i

C
o
v

ar
ia

n
ce

_
3
_
sm

al
l

C
o
v

ar
ia

n
ce

_
3
_
st

an
d

b
fs

N
w

_
1
_

la
rg

e

N
w

_
1
_

sm
al

l

N
w

_
2
_

la
rg

e

N
w

_
2
_

sm
al

l

P
ar

ti
cl

ef
il

te
r

h
ea

rt
w

al
l_

la
rg

e

h
ea

rt
w

al
l_

sm
al

l

L
u

d
_
la

rg
e

L
u

d
_
sm

al
l

B
ac

k
p
ro

p
_
2

la
v

aM
D

la
v
aM

D
_

sm
al

l

st
re

am
cl

u
st

er

h
o

ts
p
o
t3

D

b
+

tr
ee

_
1

b
+

tr
ee

_
2

C
fd

sr
ad

_
v
1
_

2

sr
ad

_
v
1
_

2
b

Predicted Actual

E
n
e
rg

y
 g

a
in

Figure 20: Energy Gains Prediction results for Nvidia Jetson Nano

0x

2x

4x

6x

8x

10x

12x

14x

g
em

v
er

_
1
_

ex
tr

a

S
y

r2
k

_
st

an
d

ar
d

S
y

rk
_

st
an

d
ar

d

B
ic

g
_

st
an

d
ar

d

D
o

it
g

en
_
st

an
d

ar
d

co
n
v

o
lu

ti
o

n
-2

d
_

la
rg

e

co
n
v

o
lu

ti
o

n
-3

d
_

la
rg

e

co
n
v

o
lu

ti
o

n
-3

d
_

ex
tr

a

fd
td

-2
d
_

m
in

i

fd
td

-2
d
_

st
an

d
ar

d

ja
co

b
i-

2
d

_
st

an
d
ar

d

ja
co

b
i-

2
d

_
la

rg
e

ja
co

b
i-

2
d

_
ex

tr
a

C
o
v

ar
ia

n
ce

_
3

_
st

an
d
ar

d

N
w

_
1

_
la

rg
e

N
w

_
1

_
sm

al
l

N
w

_
2

_
la

rg
e

N
w

_
2

_
sm

al
l

P
ar

ti
cl

ef
il

te
r

L
u

d
_

la
rg

e

L
u

d
_

sm
al

l

B
ac

k
p

ro
p

_
1

B
ac

k
p

ro
p

_
2

la
v

aM
D

m
y

o
cy

te

p
at

h
fi

n
d

er

b
+

tr
ee

_
1

b
+

tr
ee

_
2

sr
ad

_
v
1

_
2

sr
ad

_
v
1

_
2
b

sr
ad

_
v
2

_
1
b

sr
ad

_
v
2

_
1
c

E
n

er
g
y
 g

ai
n

Predicted Actual

Figure 21: Energy Gains Prediction results for Nvidia Jetson Xavier NX

4.4. Discussion

In this subsection, we summarize our observations

with respect to the evaluation of the proposed method.

The prediction of energy consumption gain by ac-

celeration in heterogeneous embedded devices is fea-

sible. Existing works focus on the prediction of speedup

by offloading a piece of CPU code on GPGPUs [1, 26].

However, in the area of embedded heterogeneous sys-

tems, energy efficiency is an equally important quality

that affects design decisions. Based on the presented

results, we conclude that the existing approaches that

analyze CPU code to provide speedup predictions can

be extended towards predicting the energy gains by ac-

celeration. One may argue that energy consumption can

usually be estimated based on the prediction of execu-

tion time by using the power delay product or an an-

alytical model. However, the effort required to design

an accurate model that correlates execution time with

energy consumption is very high, particularly for het-

erogeneous systems such as CPU-GPU devices that we

target in the context of this study. Indeed, power is not

constant because it depends on a wide range of param-

eters (memory transactions, cache behavior, number of

cores used, CPU utilization, etc.), which significantly

increases the complexity of designing a relatively accu-

rate analytical model that relates the two metrics. This

is also indicated in Figure 22. Figure 22a shows the

power consumption of the CPU, GPU, and the entire

module unit to run the convolution-3d application from

the Polybench benchmark suite, while Figure 22b shows

the same power consumption modules for the GPU ver-

sion. Based on this experiment, we observe that the

additional power of the GPU leads to a higher instan-

taneous module power consumption compared to the

CPU-only version, while the power consumption can

not be considered stable at all. Based on these results,

we can expect that the performance gains should be

more than the energy savings in most cases. Therefore,

the correlation between the two metrics is not straight-

forward. Although an analytical model that relates per-

formance with energy consumption for heterogeneous

systems would be very useful and practical for applica-

tion developers, it is beyond the scope of this work.

The overhead of dynamic instrumentation can be

avoided in cases in which high energy gains by accel-

eration are predicted. In contrast with existing works

([1, 26]), the fact that the proposed methodology, pre-

dicts the cases for which relatively high gains are ex-

15

Table 4: Comparison against related tools

Estimated Metric Method Targeted platform Accuracy Extensibility/Usability

[1] Speed-up Dynamic CPU-GPGPU 76% - 88% regression Medium

[26] Speed-up Dynamic CPU-GPGPU 81% regression Medium

[2] Speed-up Partially Static CPU-GPGPU 62-85% classification Medium

Proposed
Energy gain Both Static and Dynamic Embedded

Static classification 76%

Dynamic classification 85.3%

Regression 63% (median)

High (guidelines and scripts provided)

Effort (LOC, Effort increase) Static - Regression 87% High

0

2000

4000

6000

8000

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

P
o
w

er
 C

o
n
su

m
p
ti

o
n
 (

m
W

)

Time (x10ms)CPU power

GPU power

module power

Start End

(a) CPU version power consumption

0

2000

4000

6000

8000

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

P
o
w

er
 C

o
n
su

m
p
ti

o
n
 (

m
W

)

Time (x10ms)CPU power

GPU power

module power

Start End

(b) GPU version power consumption

Figure 22: Convolution3d power consumption on Nvidia TX1

pected using only static analysis is a significant advan-

tage for application developers. The time required to

reach a prediction by using dynamic analysis reached

even 10 hours for some applications included in the

dataset. However, in the case of applying static anal-

ysis, prediction results are instantly generated. There-

fore, the combination of both techniques compromises

granularity and time overhead to reach a prediction.

The quantification and the prediction of program-

ming effort is important, especially in cases in which

the predicted energy gains are relatively low. For such

applications, we observe that it is feasible to predict

the effort that is required to develop the acceleration-

specific code using only the CPU code as input. Such

a solution can contribute significantly in assisting de-

velopers in deciding whether to invest in acceleration.

Using advance metrics, such as the Effort, the program-

ming labor required for developing CUDA code is cap-

tured more accurately than using LOC. Figure 23 shows

the actual LOC and Effort increase between the CPU

vs. GPU versions for the Polybench and Rodinia ap-

plications. We notice that Effort ranges from x1 and

x8, while LOC ranges from x1 to x2. However, in sev-

eral cases the increase in LOC can be safely attributed

to statements such as definitions and variable initializa-

tion, which cannot be directly related to programming

effort. On the other hand, Effort is mainly affected by

the number of operands, operators and function calls.

Therefore, programming effort is more accurately ex-

pressed through Effort. Indeed, in Figure 23 we notice

that there are applications in which there is a very small

x0.5

x1

x2

x4

x8

2
m

m

3
m

m

g
em

v
er

g
es

u
m

m
v

m
v

t

sy
r2

k

sy
rk

at
ax

b
ic

g

d
o

it
g

en

g
em

m

co
rr

el
at

io
n

co
v
ar

ia
n

ce ad
i

co
n
v

o
lu

ti
o

n
-2

d

co
n
v

o
lu

ti
o

n
-3

d

fd
td

-2
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

b
fs

N
w

P
ar

ti
cl

ef
il

te
r

h
ea

rt
w

al
l

L
u

d

B
ac

k
p

ro
p

la
v

aM
D

m
y

o
cy

te

L
eu

k
o

cy
te

h
o

ts
p

o
t3

D

h
o

ts
p
o
t

p
at

h
fi

n
d

er

b
+

tr
ee

C
fd

k
m

ea
n

s

sr
ad

_
v
1

sr
ad

_
v
2

Effort increase LOC increase

RodiniaPolybench

Figure 23: LOC and Effort actual increase of GPU version in compar-

ison to CPU for Polybench and Rodinia benchmarks

increase in LOC, however the effort increases by more

than x4. This observation is inline with Shihab et al.

that state that relying in LOC often leads to underesti-

mation of programming effort [24]. Interestingly, there

are some applications for which the effort seems to de-

crease. These applications are from the Rodinia bench-

mark suite, as shown in Figure 23. The reason, as ex-

plained in Sec 4.2.4, is the fact that the CPU versions

of these applications provide functionality that is not

present in the corresponding GPU version.

Extending the methodology for providing predic-

tions in other embedded platforms is straightfor-

ward. There are no constraints in the proposed method-

ology with respect to portability. When accurate en-

ergy consumption measurement is feasible, the pro-

posed methodology can be easily applied not only to

typical CPU-GPU architectures, but also to domain spe-

cific accelerators, as well as to data flow architectures.

Comparison against related tools: Although we fo-

cus on energy instead of performance gains, a compari-

son against related tools is summarized in Table 4. We

should mention that our main purpose is to provide an

extensible tool that makes the prediction of energy gains

as well as estimating the effort of developing GPU-

accelerated code prior development feasible and not to

increase the accuracy of models as much as possible.

5. Conclusions

This work proposes a methodology for Energy Con-

sumption and Programming Effort estimation of ac-

16

celerating CPU applications on heterogeneous devices.

It relies on both static and dynamic analysis of CPU

source code to provide a compromise between predic-

tion granularity and time overhead. It shows that ap-

proaches focusing on speed-up can be extended towards

Energy Consumption predictions for heterogeneous em-

bedded systems. The methodology, supported by a

tool-flow, aims to assist application developers to de-

cide whether to invest in accelerating CPU applications,

considering not only speed-up but Energy Consumption

and programming effort for developing CUDA code, as

well. Accuracy evaluation performed in well-known

(Nvidia GPU based) heterogeneous platforms, where

energy measurements are feasible and enabled by sen-

sor, shows that the proposed methodology is able to pro-

vide accurate predictions and that a future increase of

the size of the dataset has the potential to further im-

prove the accuracy of the models.

6. Acknowledgements

This work is partially funded by the EU Horizon

2020 research and innovation program, under project

EVOLVE, grant agreement No 825061.

References

[1] Ardalani, N., Lestourgeon, C., Sankaralingam, K., and Zhu, X.

(2015). Cross-architecture performance prediction (xapp) using

cpu code to predict gpu performance. In Proceedings of the 48th

International Symposium on Microarchitecture, pages 725–737.

ACM.

[2] Ardalani, N., Thakker, U., Albarghouthi, A., and Sankar-

alingam, K. (2019). A static analysis-based cross-architecture

performance prediction using machine learning. arXiv preprint

arXiv:1906.07840.

[3] Baldini, I., Fink, S. J., and Altman, E. (2014). Predicting gpu

performance from cpu runs using machine learning. In 2014 IEEE

26th International Symposium on Computer Architecture and High

Performance Computing, pages 254–261. IEEE.

[4] CEVA XM6 (2018). Specifications of CEVA XM6:.

https://www.ceva-dsp.com/wp-content/uploads/2017/

01/CEVA-XM6-Product-Note.pdf.

[5] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee,

S.-H., and Skadron, K. (2009). Rodinia: A benchmark suite for

heterogeneous computing. In 2009 IEEE international symposium

on workload characterization (IISWC), pages 44–54. Ieee.

[6] Chen, Y., Chen, T., Xu, Z., Sun, N., and Temam, O. (2016). Di-

annao family: energy-efficient hardware accelerators for machine

learning. Communications of the ACM, 59(11):105–112.

[7] Cummins, C., Petoumenos, P., Wang, Z., and Leather, H. (2017).

End-to-end deep learning of optimization heuristics. In 2017 26th

International Conference on Parallel Architectures and Compila-

tion Techniques (PACT), pages 219–232. IEEE.

[8] Georgiou, S., Rizou, S., and Spinellis, D. (2019). Software devel-

opment lifecycle for energy efficiency: techniques and tools. ACM

Computing Surveys (CSUR), 52(4):1–33.

[9] Hamm, A., Willner, A., and Schieferdecker, I. (2019). Edge

computing: a comprehensive survey of current initiatives and a

roadmap for a sustainable edge computing development. 15th In-

ternational Conference on Wirtschaftsinformatik.

[10] Helal, A. E., Feng, W.-c., Jung, C., and Hanafy, Y. Y. (2017).

Automatch: An automated framework for relative performance es-

timation and workload distribution on heterogeneous hpc systems.

In 2017 IEEE International Symposium on Workload Characteri-

zation (IISWC), pages 32–42. IEEE.

[11] Intel/Movidius Myriad (2019). Specifications of Intel/Movidius

Myriad:. https://www.movidius.com/myriadx.

[12] Kim, Y. (2014). Convolutional neural networks for sentence

classification. arXiv preprint arXiv:1408.5882.

[13] Lachenbruch, P. A. and Mickey, M. R. (1968). Estimation of

error rates in discriminant analysis. Technometrics, 10(1):1–11.

[14] Lee, S., Meredith, J. S., and Vetter, J. S. (2015). Compass: A

framework for automated performance modeling and prediction.

In Proceedings of the 29th ACM on International Conference on

Supercomputing, pages 405–414.

[15] Legaux, J., Loulergue, F., and Jubertie, S. (2014). Development

effort and performance trade-off in high-level parallel program-

ming. In 2014 International Conference on High Performance

Computing & Simulation (HPCS), pages 162–169. IEEE.

[16] Li, X., Shih, P.-C., Overbey, J., Seals, C., and Lim, A. (2016).

Comparing programmer productivity in openacc and cuda: an em-

pirical investigation. International Journal of Computer Science,

Engineering and Applications (IJCSEA), 6(5):1–15.

[17] Memeti, S., Li, L., Pllana, S., Kołodziej, J., and Kessler, C.

(2017). Benchmarking opencl, openacc, openmp, and cuda: pro-

gramming productivity, performance, and energy consumption. In

Proceedings of the 2017 Workshop on Adaptive Resource Manage-

ment and Scheduling for Cloud Computing, pages 1–6.

[18] Nethercote, N. and Seward, J. (2007). Valgrind: a framework

for heavyweight dynamic binary instrumentation. In ACM Sigplan

notices, volume 42, pages 89–100. ACM.

[19] Nvidia Tegra X1 (2017). Specifications of Nvidia

Tegra X1:. https://shield.nvidia.com/blog/

tegra-x1-processor-and-shield.

[20] Pouchet, L.-N. et al. (2012). Polybench: The poly-

hedral benchmark suite. URL: http://www. cs. ucla.

edu/pouchet/software/polybench.

[21] Ramprasad, B., da Silva Veith, A., Gabel, M., and de Lara, E.

(2021). Sustainable computing on the edge: A system dynamics

perspective. In Proceedings of the 22nd International Workshop

on Mobile Computing Systems and Applications, pages 64–70.

[22] Reddi, V. J., Settle, A., Connors, D. A., and Cohn, R. S. (2004).

Pin: a binary instrumentation tool for computer architecture re-

search and education. In Proceedings of the 2004 workshop on

Computer architecture education: held in conjunction with the

31st International Symposium on Computer Architecture, pages

22–es.

[23] Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic

review of software maintainability prediction and metrics. In 2009

3rd International Symposium on Empirical Software Engineering

and Measurement, pages 367–377. IEEE.

[24] Shihab, E., Kamei, Y., Adams, B., and Hassan, A. E. (2013).

Is lines of code a good measure of effort in effort-aware models?

Information and Software Technology, 55(11):1981–1993.

[25] Silvano, C., Fornaciari, W., and Villar, E. (2014). Multi-

objective design space exploration of multiprocessor SoC archi-

tectures. Springer.

[26] Wang, S., Zhong, G., and Mitra, T. (2017). Cgpredict: Em-

bedded gpu performance estimation from single-threaded appli-

cations. ACM Transactions on Embedded Computing Systems

(TECS), 16(5s):146.

17

