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Abstract Code Technical Debt (TD) is intentionally or unintentionally cre-
ated when developers introduce inefficiencies in the codebase. This can be at-
tributed to various reasons such as heavy workload, tight delivery schedule, or
developers’ lack of experience. Since a software system grows mostly through
the addition of new code, it is interesting to study how TD fluctuates along
this process. Specifically, in this paper we investigate: (a) the temporality of
code TD introduction in new code, i.e., whether the introduction of TD is sta-
ble across the lifespan of the project, or if its evolution presents spikes; and (b)
the relation of TD introduction to the development team’s workload in a given
period, as well as to the experience of the development team. To answer these
questions, we have performed a case study on 47 open source projects from
two well-known ecosystems (Apache and Eclipse) as well as additional isolated
projects from GitHub (not selected from a specific ecosystem) and inspected
the number of TD issues introduced in 6-month sliding temporal windows.
The results of the study suggested that: (a) overall, the number of TD issues
introduced through new code is a stable measure, although it presents spikes;
and (b) the number of commits performed, as well as developers’ experience
are not strongly correlated to the number of introduced TD issues.
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1 Introduction

Technical Debt (TD) at the code level refers to inefficiencies introduced in the
source code of an application during the implementation or the maintenance
phase [20]. These inefficiencies manifest themselves as violations of coding
standards, complex and hard to understand code, code duplicates, etc. [19].
According to Alves et al. [2] code technical debt is the most studied type
of technical debt, and based on Ampatzoglou et al. [4] it is one of the most
important in industry.

One of the certainties in software development is continuous change [18],
and code technical debt is no exception to this. In fact, there has been signif-
icant work on how code technical debt evolves and how it accumulates over
time. However, existing studies have looked at technical debt evolution as a
whole, without distinguishing between technical debt that is added as new
code, and technical debt incurred through the modification of existing code.
In this paper, we focus only on the introduction of new code technical debt,
i.e., TD inserted in the system in the form of new Technical Debt issues. More
specifically we study new methods (our scope is object-oriented systems) that
contain technical debt and we look at the introduction of new technical debt
as a temporal phenomenon. This can shed light on whether technical debt is
introduced in an almost flat rate, whether large volumes of technical debt are
introduced in infrequent timestamps, or whether large volumes of TD are fre-
quently introduced along evolution; examples of these three cases are presented
in Figure 1. Consequently, in the second and third case, we need to revise our
technical debt management techniques to focus on those times where large
TD is introduced to prevent or limit the phenomenon. Broadly speaking, the
introduction of TD items in new code can either depend on the capabilities of
the development team or be associated with external factors such as feature
requests in short time, lack of sufficient time for testing, etc. The former would
be reflected in a uniform introduction of TD along evolution, whereas the lat-
ter would be recognized by fluctuations in the introduction of TD. Knowing
the particular circumstances can help towards self-improvement of the devel-
opment process so as to address the root causes of TD accumulation.

Focusing on technical debt that is introduced by new code, as opposed
to technical debt that is introduced by modifying existing code, can provide
a unique insight. Specifically, the new Technical Debt issues introduced by
new methods at each commit (either new methods in existing classes or new
methods in entirely new classes) reflect more accurately the type of problems
and the timepoint at which they are introduced. In other words, new methods
are more representative of the developers’ practices and knowledge level, com-
pared to method modifications whose type and timeliness is often dictated by
the need to fix a bug or to extend an already existing functionality. Thus, we
study the temporality of technical debt through a clearer source. Furthermore,
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in our previous work we established that through the systematic introduction
of ‘clean’ new code, a software system can gradually be freed of its technical
debt [10].

In this paper, we answer two high-level questions: (Q1) if the number
of introduced Technical Debt issues is uniformly spread across evolution, or
whether there are time windows in which more Technical Debt issues are in-
serted; and (Q2) if the number of Technical Debt issues that is introduced
along evolution is related either to the activity (intensity of commits) of de-
velopers in different time windows, or to the experience of the developers.
Projects could exhibit either a stability in the introduction of code Techni-
cal Debt issues across evolution or experience fluctuations with isolated or
repeating spikes of introduced code Technical Debt issues. In the former case
one could assume that accumulation of technical debt is most probably due
to factors that are constantly present in the entire lifetime of the project,
such as used processes, tools, management practices, etc. In the latter case,
one could postulate that the insertion of new code Technical Debt issues is
a highly temporal phenomenon depending on volatile factors such as feature
requests, changing schedules, pressure to fix bugs, or human factors (such as
team composition, developers’ involvement and experience).

To achieve this goal, we explore the evolution of 47 open source projects
from two well-known ecosystems, namely: Apache Software Foundation (ASF)
and Eclipse Foundation (EF). However, since ecosystems exhibit particular
habits and regulations, we have included additional OSS projects from GitHub
to increase the generalizability of the findings. In particular, we track the
number of new Technical Debt issues inserted in each commit. Next, we create
a 6-month sliding window (the duration of the time window has been set to 6
months as in the study by Hassan on predicting faults using the complexity
of code changes [15]), and we calculate the cumulative number of inserted
Technical Debt issues for each window, as well as the number of commits in
the same window and the weighted (by the contribution of each developer)
average experience of the development team. To answer the first question
(Q1), we use a metric property (termed SMF—see Section 3) that is able to
assess metrics’ fluctuation along time and characterize them as either stable

Fig. 1: TD Introduction Temporality
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or sensitive. To answer the second question (Q2) we correlate the number of
inserted Technical Debt issues with a) the number of commits for each window
and b) the weighted experience of the development team. The reporting and
interpretation of the results is performed at the project level.

This study is an extended and revised version of our previous work [9] in
which we also explored the temporality of Technical Debt issues introduction.
The main differences of this work compared to the previous one, are as follows:

– Sample size. It explores a significantly larger dataset of 47 instead of
27 projects, resulting into the exploration of (approx.) 2.5K instead of
(approx.) 2K time windows.

– Generalizability. It strengthens the generalizability of our results, since
it performs the analysis on two software ecosystems (Apache and Eclipse
projects), compared to only one. In addition, we now explore isolated
projects, i.e., not related to a specific ecosystem.

– Accuracy of data analysis. The analysis of spikes along evolution (i.e.,
the timestamps with large introductions of technical debt amounts) is per-
formed through statistical analysis (extreme values detection), instead of
visual observation.

– Exploration of additional evolution parameters. We explore also the
relation between developers’ experience and Technical Debt issues intro-
duction through an additional research question. In the original paper, we
had only looked into the relation between Technical Debt issues introduc-
tion and development effort intensity.

The rest of the paper is organized as follows: in Section 2 we present related
work and in Section 3 background information important for understanding
the study. In Section 4, we present the design of the case study, while Sec-
tion 5 elaborates on the results. Section 6 interprets the results and provides
implications for researchers and practitioners. Finally, in Section 7 we present
threats to validity and in Section 8, we conclude the paper.

2 Related Work

Since this paper focuses on the introduction of technical debt over time, we
organize this sub-section into causes of technical debt introduction (see Section
2.1) and technical debt evolution (see Section 2.2).

2.1 Causes of Technical Debt Introduction

Quite recently the research consortium of the InsighTD project1 has explored
the causes and effects of technical debt accumulation in various countries along
the globe (e.g., Brazil, Chile, Colombia, Serbia, USA, etc.) through a family
of surveys [23,25,26]. Through these research efforts they have identified in

1 http://www.td-survey.com/

http://www.td-survey.com/
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total 78 causes and 66 effects. Among the identified causes of technical debt,
close deadline, inappropriate planning, and lack of knowledge/experience have
proven to be the most prolific ones. Additionally, Tufano et al. [29] studied the
evolution of code smells with the goal of understanding when and why code
smells are introduced and observed the life cycle of five code smells. The results
indicate that: (a) in the majority of the cases code smells are introduced with
the creation of the corresponding classes or files; (b) while projects evolve,
“smelly” code artifacts tend to become more problematic; (c) new code smells
are introduced when software engineers implement new features or when they
extend the functionality of the existing ones; (d) the developers who introduce
new code smells, are the ones who work under pressure and not necessarily
the newcomers; and (e) the majority of the smells are not removed during the
project’s evolution and few of them are removed as a direct consequence of
refactoring operations.

According to Kazman et al. [16] who conducted a case study on the roots
of architecture debt (ATD), is extremely common and probably the most im-
portant type of technical debt because it consumes the largest percentage of
maintenance effort. Their findings suggest that architectural debt is extremely
easy to introduce: programmers typically want to introduce new features or fix
bugs; however, by changing the code they often undermine the architectural
structure leading to the accumulation of ATD. Finally, Martini et al. [21] con-
ducted a case study on five software companies to understand the causes that
introduce ATD. Large software companies try to deliver as fast as possible
in order to satisfy their customers’ needs, usually taking shortcuts, thereby
introducing ATD. If the debt is not paid-off, it starts to accumulate and this
makes feature development more difficult. However, we clarify that the current
study does not deal with ATD but rather focuses on code-level TD.

2.2 Evolution of Technical Debt

Although technical debt is a multifaceted concept, one of the key constituents
of code technical debt is the presence of code smells. One of the first stud-
ies that investigate the evolution of code smells was conducted by Olbrich et
al. [22]. They investigated the evolution of two code smells, God Class and
Shotgun Surgery, on two OSS projects. The results show that along software
development, there are phases where the number of code smells can either
increase or decrease and those phases are not affected by the size of the sys-
tems. Chatzigeorgiou and Manakos [7] have investigated the evolution of the
Long Method, Feature Envy, State Checking, and God Class smells in two
open-source software projects. The results suggested that as projects evolve
the number of smells tends to increase. Another interesting finding is that a
significant percentage of smells was not due to software ageing, since some
smells were present right from the first version of the code in which they re-
side. Peters and Zaidman [24] studied the lifespan of the God Class, Feature
Envy, Data Class, Message Chain Class, and Long Parameter List smells. The
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analysis of eight open-source software projects, confirmed that the number of
smells increases, as projects evolve.

Digkas et al. [11] tracked the evolution of technical debt in sixty-six open-
source Java projects by the Apache Software Foundation, over a period of
5 years. In order to detect issues that incur technical debt, they relied on
SonarQube. The results show that on the one hand, there is a significant
increasing trend on the size, complexity, number of Technical Debt issues,
and the total technical debt over time, which seems to confirm the software
aging phenomenon. But on the other hand, when technical debt is normalized
over the non-commented lines of code, an evident decreasing trend over time
is present for many of the projects. This could possibly be attributed to:
(a) developers that perform refactoring activities and fix some of the open
Technical Debt issues; or (b) developers that introduce better quality code in
each commit (compared to the project’s existing code base). We summarize
the key findings of the related work in Table 1.

Table 1: Causes and Evolutionary Patterns of TD/smells

Causes Study

Close deadlines, inappropriate plan-
ning, lack of knowledge/experience

Pérez et al. [23], Ramač et al. [25],
Rios et al. [26]

Pressure Tufano et al. [29]
Architecture flaws Kazman et al. [16]
Pressure to deliver Martini et al. [21]

Evolutionary Patterns Study

Smells tend to increase and decrease in
different phases

Olbrich et al. [22]

Smells increase monotonically Chatzigeorgiou and Manakos [7]
Smells increase monotonically Peters & Zaidman [24]
TD increases monotonically (Normalized
TD decreases for some projects)

Digkas et al. [11]

3 Background Information

Prior to the presentation of the case study design and results we discuss back-
ground material related to the identification of technical debt in new code and
the fluctuation of software metrics. While more details can be found on the
references we provide, here we present an overview that is necessary to under-
stand our data collection and analysis and keep this publication self-contained.

Identifying Technical Debt issues on new code. SonarQube is one of the
most widely used tools for assessing the level of code technical debt present
in a software system [3,10]. According to a recent overview of TD tools [6]
SonarQube is by far the most popular tool based on its trace in the scientific
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literature and online media channels. We have relied on version 7.9.2 to identify
and quantify technical debt in individual commits throughout the history of
the examined projects. SonarQube estimates technical debt principal using a
set of predefined rules2 such as Methods should not be too complex, Inheritance
tree of classes should not be too deep, or Classes should not be coupled to
too many other classes. Each identified issue is assigned a remediation cost
corresponding to the time required to fix the corresponding rule violation. The
sum of the remediation costs for all issues yields the reported TD principal.

As new code we consider the new methods which are introduced in each
commit. Such methods can be added either in existing classes or in entirely new
classes. We do not consider new code in the form of new instructions in existing
methods (i.e. modifying methods). The reason is that, beyond the complexity
of tracking changes at the instruction level, an entirely new method conveys
better the programming habits of a developer as it refers to a complete, self-
standing piece of functionality. To distinguish the newly inserted methods for
each commit from the deleted, modified, renamed, and unchanged methods,
we rely on the Gumtree Spoon AST Diff tool [13]. Our approach identifies all
changes per commit at the file-level, i.e. we detect files which have been added,
modified, renamed, and deleted. For the added files or classes, we consider all
of their methods as new. For the modified and renamed files we compare
their representation in the form of an Abstract Syntax Tree with the one of
the previous revision; subsequently we identify the newly inserted methods in
existing classes.

We then proceed with identifying all Technical Debt issues in newly added
methods, by running a technical debt analysis with SonarQube. The identi-
fied issues are obtained through SonarQube’s API from which we retain only
Technical Debt issues found within the line range of new methods.

Assessing the fluctuation of Technical Debt issues. Observing the evo-
lution of a metric value throughout the history of a software project can be
considered as the analysis of a time series. The time series can exhibit volatil-
ity depending on the metric itself and on the nature of changes throughout
the history. In previous work, we have defined Software Metrics Fluctuation
(SMF) as “the degree to which a metric score changes from one version of
the system to the other” [5]. According to the SMF property a metrics can
be characterized as sensitive (changes induce high variation on the metric
score) or stable (changes induce low variation).

As this study focuses on the evolution of the quality of new code, in terms
of its TD, we make use of the SMF property. In particular we employ the
mf measure [5] which is defined as: “the average deviation from zero of the
difference ratios between every pair of successive versions”. We adapt the mf

measure for the case of Technical Debt issues, resulting in formula (1). TDis-
sues(i) refers to the number of Technical Debt issues identified at version i
of the history, while n is the total number of analyzed time snapshots (e.g.
versions). A zero deviation of the number of Technical Debt issues from that

2 https://rules.sonarsource.com/

https://rules.sonarsource.com/
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of the previous version implies no fluctuation. The squared root of the second
power of the ratio of the difference between any two successive versions yields
a measure similar to the standard deviation.The closer to zero mf gets, the
more stable the number of Technical Debt issues is.

mf =

√√√√∑n
i=2

(
TDissuesi−TDissuesi−1

TDissuesi−1

)2
n− 1

(1)

4 Case Study Design

Case study is an observational method that is used for studying a phenomenon
in its real-life context. In our study, the phenomenon is the temporality of TD
in new code, while the context refers to the evolution of open-source software
projects. In this section, we present the design of the case study, organized
based on the linear-analytic structure as described by Runeson et al. [27].

4.1 Research Questions

The high-level goal of this study is the identification of temporal patterns in
the introduction of code technical debt, along software evolution. To explore
this goal, we need to investigate two sub-goals. First, we look at the fluctu-
ation of the number of Technical Debt issues introduced by new code along
the evolution of software projects. Second, we explore the relation between the
number of Technical Debt issues introduced by new code and two factors: (i)
the number of commits that occurred in the same period; and (ii) the devel-
opers’ experience. These sub-goals lead to the following two research questions.

RQ1: Does the number of Technical Debt Issues introduced by new code fluc-
tuate along evolution?

The answer to this research question will unveil if in different time peri-
ods, different amounts of technical debt are introduced. The answer reflects
the main goal of this study, i.e., to investigate the temporality of the techni-
cal debt phenomenon. Specifically, this answer will enable us to characterize
Technical Debt issues introduction as either stable, or sensitive to temporal
influence. In addition, we will study any possible spikes in the evolution of
new code technical debt, which might be indicators of “extra-ordinary” events
along evolution. The frequency and the timing (early, middle, or late in the
project) of such spikes will also be explored and reported.

RQ2: Does the amount of Technical Debt introduced by new code correlate to
the activity or the experience of the developers?

To increase the confidence in the results of the previous research ques-
tion, we study two potentially important confounding factors for this empirical
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setup: i.e., developers’ activity (RQ2.1) and developers’ experience (RQ2.2).
Considering that we are not analyzing at the individual commit level, but over
periods of time, there is a non-negligible chance that in these periods the de-
velopers’ activity (number of commits) is not stable; therefore, spikes in new
code Technical Debt issues could be due to more intense programming activity
in the corresponding periods. Additionally, we explore if the experience of a
team as an aggregation of the experience of the team members plays a role
in the introduction of TD; in other words, we explore if the technical debt
introduction in projects correlates with the experience of its team members.

4.2 Cases and Units of Analysis

This study is characterized as a multiple, embedded case study [27], in which
the cases are open-source software (OSS) projects, while the units of analysis
are the source code commits (per project) over different time periods. Specif-
ically, for each project, we analyse the number of code Technical Debt issues
added over 6-month time periods across the project history (see Section 4.3 for
more details). The reason for selecting to perform this study on open-source
software systems is the vast amount of data that is available in terms of re-
visions and classes. The long history that is available for each project enables
researchers to observe overall trends in the evolution of their quality. To re-
trieve data from high-quality projects that evolve over a period of time, we
looked into ASF and EF projects [12] as well as additional OSS projects and
investigated the projects presented in Table 2. The demographics of Table 2
include the number of classes, number of non-commented lines of code, the
number of analyzed revisions, the date of the first commit, number of issues
in the corresponding GitHub issue tracker as well as the number of developers
per project. The two ecosystems have been selected since they are well-known
in the software engineering community for their quality, and structured devel-
opment processes. On the one hand, Eclipse is an industry-driven initiative
involving around 100 companies, universities, and contributors who deliver
OSS based on the Eclipse environment. On the other hand, Apache Software
Foundation is a highly successful initiative, made up of individuals, that pro-
vides popular, high quality, OSS–providing support for over half of the world’s
websites. Both communities follow a mature approach in developing software,
having established processes to face the problems inherent to software devel-
opment. However, to reduce generalizability threats from the study of projects
belonging to well known and systematically maintained ecosystems, we con-
sidered twelve additional OSS projects.
The selection of projects was based on the following criteria:

– The software is actively maintained. To ensure this, we sorted projects
based on the date of their last commit.

– The software is written in Java and uses Maven as a build tool. This en-
sures that the project can be built and allows the retrieval of the project’s
language version from the corresponding pom.xml file.
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Table 2: Selected Projects’ Demographics

Project Classes NCLOC Revs 1st Commit Issues Devs

A
p

a
ch

e
S

o
ft

w
a
re

F
o
u

n
d

a
ti

o
n

Atlas 932 87637 1454 11/20/2014 134 104
Beam 3757 176663 2780 12/13/2014 14733 763
Calcite 2606 186633 1448 04/20/2012 2408 253
Cayenne 2615 164170 2116 01/21/2007 449 34
Commons IO 132 10500 1059 01/25/2002 224 71
CXF 4111 353085 5079 04/23/2008 787 160
DeltaSpike 951 46182 513 12/22/2011 114 57
Drill 4655 316552 1316 09/03/2012 2216 163
Dubbo 943 61865 728 10/20/2011 4230 386
Flink 5632 341149 5329 12/15/2010 15837 870
Flume 790 51897 789 08/02/2011 333 54
Giraph 1414 72972 668 10/29/2010 149 26
Jackrabbit 2883 273574 4260 09/13/2004 73 23
jclouds 5687 227459 4323 04/11/2009 94 237
Knox 1083 51429 1033 10/24/2012 435 57
Kylin 1658 128531 3205 05/13/2014 1637 187
Metron 1433 72579 548 12/08/2015 1582 62
MyFaces 1843 174158 1211 01/17/2006 200 30
NiFi 4256 371031 1490 12/08/2014 5046 356
oozie 1082 97597 587 08/19/2011 57 16
OpenWebBeans 561 44299 1583 11/22/2008 32 18
PDFBox 1279 136916 3758 02/10/2008 3326 6
Pulsar 1837 147182 1503 09/07/2016 109 393
SIS 1948 181588 828 03/20/2010 20 7
Storm 3958 243574 738 09/16/2011 3396 341
TinkerPop 1698 95652 5178 09/02/2013 1413 142
Zeppelin 1209 89193 1562 06/19/2013 4109 344

E
cl

ip
se

F
o
u

n
d

a
ti

o
n Hono 554 43697 1977 02/08/2016 1076 38

JGit 1314 100973 1747 09/29/2009 114 140
JNoSQL 521 21285 1384 07/14/2016 111 15
Kapua 2275 98005 1912 10/14/2016 1610 32
Leshan 389 27378 808 02/07/2015 494 38
Milo 1618 114581 261 05/06/2016 446 18
Tycho 872 56552 290 09/19/2011 66 56
Vorto 599 29011 1051 03/02/2015 1334 42

O
th

er
O

S
S

apollo 604 31642 2487 03/04/2016 2438 75
gson 91 8085 1485 09/01/2008 1378 106
hutool 1052 80819 1937 08/14/2019 1210 101
jedis 157 28215 1801 06/11/2010 1384 175
litemall 583 59588 1121 03/22/2018 324 50
mybatis-3 414 21864 3726 05/17/2010 1075 176
seata 1646 126362 1230 01/09/2019 2058 208
spring-boot-admin 239 8964 40 06/04/2014 1338 117
spring-cloud-alibaba 479 20855 1748 12/01/2017 1384 103
webmagic 199 7970 1118 04/23/2013 843 40
xxl-job 119 8666 1676 11/28/2015 2115 52
zheng 484 30220 1241 10/04/2016 95 8

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng
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– The software contains more than 90 classes to ensure the inclusion of sys-
tems with a substantial size, functionality and complexity.

– The software has more than 1000 commits. This criterion is used for sim-
ilar reasons to the previous one, and to be able to observe trends in the
evolution of their quality. Moreover, this number of revisions provides an
adequate set of repeated measures as input to the statistical analysis.

4.3 Data Collection

To build the dataset for our analysis, we relied on the process described in
Section 3. In particular, for each project, we have been able to build a dataset
containing: (a) the commit SHA; (b) the committer; (c) the experience of
the committer at the current timestamp; and (d) the number of introduced
Technical Debt issues by the new code of this commit. Next, starting from
the first commit timestamp, we created a 6-month time-window that slides
monthly, along the evolution of the project. Based on these time-windows,
we have created our units of analysis, as shown in Fig. 2. For example, by
considering a project that spans across 22 months (M1-M22), we are able to
create 16 units of analysis.

Fig. 2: Demarcating Units of Analysis (sliding temporal windows)

For each period captured by the time-window, we summed the number
of Technical Debt issues that were introduced in all commits included in the
time-frame. Therefore, the final data-set consists of four variables: [V1] time-
window (in months/year); [V2] number of Technical Debt issues introduced by
new code in the time-window; [V3] number of commits in the time-window;
and [V4] the development team experience in the time-window.

With regards to the developers experience it should be highlighted that
experience is not a directly observable construct [28]. As a result, experience
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can be operationalized through multiple variables and be measured in differ-
ent ways. For example, experience has been measured in terms of years of
programming [8], volume of commits [17,1], years of experience expressed in
Likert-scale codes [28], etc.

In this study we need to capture the collective experience of an entire team
combining both years of experience and volume of commits. The development
team experience is a weighted average of developers’ experience, over the con-
tributions of a committer in the specific period, as explained in equations (2)
- (4). In particular, first we calculate for each developer his/her experience in
days at the beginning of each sliding window. This is obtained by measuring
the time from their git registration according to eq. 2. Next, for each time
window, we calculate the contribution rate of each developer as the number of
commits that a developer has contributed to the project over the total commits
in that time window as shown in eq. 3. The weighted development experience
for each developer is obtained by multiplying the contribution rate with the
experience in days. Finally, the entire team’s experience is the sum of each
developer’s experience (eq. 4). To enable the easy replication of this study, a
replication package is available online3.

Experience(days)devi = CommitT imestamp−GitRegistrationdevi (2)

ContributionRatedevi =
numberOfCommitsdevi

totalCommits
(3)

TeamExperience =

developers∑
i=1

ContributionRatedevi ∗ Experiencedevi (4)

4.4 Data Analysis

Data analysis was performed on the aforementioned raw dataset. To answer
RQ1, for each project, we first assess fluctuation by calculating SMF and basic
descriptive statistics of the dependent variable [V2]. Next, to visualize extreme
projects (the most stable and most sensitive), we use a line chart representing
the evolution of Technical Debt issues introduced by new code. To identify
spikes, along evolution we have used a standard method for identifying extreme
outliers in SPSS, as defined in equations (5) or (6). As a final step, we explore,
if these spikes are concentrated in the beginning, middle, or end of the project.

value > Quartile3 + 3 ∗ InterquartileRange (5)

value < Quartile1 − 3 ∗ InterquartileRange (6)

3 https://zenodo.org/record/5082041

https://zenodo.org/record/5082041
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To answer RQ2, we performed Spearman correlation analyses between vari-
ables [V2] and [V3], and between [V2] and [V4]. The choice of a non-parametric

Table 3: SMF of TD issues on New Code

Project Mean Min Max Std. Dev. SMF

A
p

a
ch

e
S

o
ft

w
a
re

F
o
u

n
d

a
ti

o
n

Atlas 475.551 91 1548 407.787 0.538
Beam 786.081 174 1499 300.519 0.509
Calcite 470.737 7 2736 692.867 11.902
Cayenne 94.931 9 353 89.289 1.019
Commons IO 7.417 0 51 11.638 1.344
CXF 270.382 0 1008 250.760 0.762
DeltaSpike 23.936 0 60 16.195 1.396
Drill 499.488 219 779 158.141 0.335
Dubbo 98.047 0 447 139.982 1.900
Flink 973.857 0 3444 725.942 4.080
Flume 140.952 7 827 208.945 0.340
Giraph 100.333 0 473 124.362 1.174
Jackrabbit 351.917 0 2723 611.492 1.639
jclouds 205.800 6 1265 301.562 0.467
Knox 123.043 25 375 79.353 0.301
Kylin 917.702 164 1822 413.281 0.343
Metron 254.000 71 538 124.613 0.162
MyFaces 153.248 0 695 183.245 2.992
NiFi 806.361 0 2985 887.572 0.286
oozie 171.073 0 1551 380.715 0.451
OpenWebBeans 71.133 0 760 166.517 0.492
PDFBox 119.748 0 640 142.110 3.505
Pulsar 612.500 223 1339 380.892 0.456
SIS 366.990 0 1340 349.143 9.558
Storm 598.019 155 1449 323.889 0.389
TinkerPop 606.025 167 1320 347.057 0.156
Zeppelin 351.933 0 850 161.070 0.320

E
cl

ip
se

F
o
u

n
d

a
ti

o
n Hono 129.609 47 241 44.706 0.297

JGit 156.904 0 683 160.817 0.544
JNoSQL 103.133 0 377 122.967 1.867
Kapua 322.047 24 1013 296.027 1.972
Leshan 48.159 3 157 37.433 0.554
Milo 529.947 1 1479 617.112 44.313
Tycho 20.610 0 133 35.420 2.441
Vorto 172.983 14 428 117.235 1.837

O
th

er
O

S
S

apollo 106.393 0 508 145.291 0.700
gson 5.180 0 26 7.311 0.537
hutool 861.571 250 1695 540.626 0.020
jedis 54.864 0 302 77.539 0.795
litemall 237.387 0 879 246.261 0.646
mybatis-3 23.071 0 97 27.852 0.696
seata 568.409 111 1265 437.546 2.273
spring-boot-admin 25.844 1 117 25.167 5.144
spring-cloud-alibaba 1211.273 274 2031 626.828 0.378
webmagic 34.189 0 216 61.224 0.020
xxl-job 80.228 0 275 54.595 0.506
zheng 309.737 0 979 458.321 0.353

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng


14 George Digkas et al.

test, was based on the fact that for some projects, the pre-conditions of para-
metric tests were not met. For extreme sensitive cases we visualize the relation
through scatter-plots, and present the co-evolution of the number of commits
and the number of Technical Debt issues in a single line chart. For extreme
stable cases, we visualize the relation between the average development team
experience and the number of Technical Debt issues in a single line chart.

5 Results

5.1 Fluctuation of TD introduction along evolution (RQ1)

In Table 3, we present the fluctuation analysis for the number of TD issues
introduced by new code. Based on this, for 28 out of 47 projects the number
of TD issues introduced by new code can be considered as stable (dark cells),
whereas for the rest 19 as sensitive (light grey cells). For ASF, the percentage
of stable projects is 55%, for EF 38%, and for isolated projects 83%; whereas
the mean values do not differ in a statistically significant manner (ANOVA
F: 1.811 and sig: 0.17). By comparing the SMF of the two ecosystems, we
observe that the percentage of stable and sensitive projects is similar, whereas
the one for isolated projects is substantially larger. A tentative explanation
of this is the existence of specific development guidelines in large OSS ecosys-
tems (like Apache or Eclipse), which limit the “Bazaar” effect of collaborative
development in “random” open-source projects.

(a) Metron - “Stable” (b) SIS - “Sensitive”

Fig. 3: Indicative project evolution

To provide a visual insight on the discussed fluctuations, in Fig. 3, we present
the evolution of one stable project, namely Metron, and a sensitive one, namely
SIS. We note that even for the most “stable” projects, some spikes still exist;
however, the spikes are small in height. To study the spikes in more depth,
we first calculate their frequency – see Figure 4a. Based on the bar chart, for
51% of the projects the spikes appear in less than 5% of the commits; whereas
23% of the projects produce fluctuations in more than 10% of their commits.
We note that the classification of the projects in the three groups (i.e., [0% -
5%],(5% - 10%], and more than 10%) was data-driven. The spikes percentage
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Table 4: Correlation of Commit Activity and TD Introduction

Project No. of Commits Corr. Coef. Sig. Level
A

p
a
ch

e
S

o
ft

w
a
re

F
o
u

n
d

a
ti

o
n

Atlas 1454 0.62 0.00
Beam 2780 0.44 0.01
Calcite 1448 0.53 0.00
Cayenne 2116 0.45 0.00
Commons IO 1059 0.50 0.00
CXF 5078 0.56 0.00
DeltaSpike 513 0.70 0.00
Drill 1316 0.65 0.00
Dubbo 728 0.91 0.00
Flink 5329 0.44 0.00
Flume 789 0.70 0.00
Giraph 668 0.73 0.00
Jackrabbit 4143 0.82 0.00
jclouds 4323 0.89 0.00
Knox 1033 0.42 0.00
Kylin 3205 0.57 0.00
Metron 502 0.69 0.00
MyFaces 1210 0.61 0.00
NiFi 1490 0.64 0.00
oozie 587 0.82 0.00
OpenWebBeans 1583 0.79 0.00
PDFBox 3758 0.23 0.02
Pulsar 1503 0.72 0.00
SIS 828 0.67 0.00
Storm 738 0.03 0.86
TinkerPop 5178 0.85 0.00
Zeppelin 1562 0.13 0.31

E
cl

ip
se

F
o
u

n
d

a
ti

o
n Hono 1977 0.79 0.00

JGit 1747 0.47 0.00
JNoSQL 1384 0.89 0.00
Kapua 1912 0.31 0.04
Leshan 808 0.52 0.00
Milo 261 0.80 0.00
Tycho 290 0.42 0.00
Vorto 1051 0.33 0.01

O
th

er
O

S
S

apollo 2487 0.75 0.00
gson 1485 0.57 0.00
hutool 1937 0.93 0.00
jedis 1801 0.73 0.00
litemall 1121 0.83 0.00
mybatis-3 3726 0.58 0.00
seata 1230 0.47 0.03
spring-boot-admin 1540 0.39 0.00
spring-cloud-alibaba 1748 0.95 0.00
webmagic 1676 0.93 0.00
xxl-job 1676 0.20 0.14
zheng 1241 0.93 0.00

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng
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for the analyzed projects was less than 15% for 46 out 47 projects in our
dataset. Based on this, we split equally the margin of values to three equal
ranges [0% - 5%], (5% - 10%], and (10% - 15%]. Since the number of projects
with spikes more than 15% was quite low, we have merged those to the last
class.
Additionally, in Figure 4b, we observe that fluctuations of TD are distributed
across the entire project lifetime (as early, we consider the first third of the
studied time windows, as middle the second third, and as late the most recent
third). Fluctuations are reduced along evolution, and this decrease is statis-
tically significant, based on the results of performing Friedmans’ ANOVA (F:
4.91 and sig: 0.008). The aforementioned observations are first indications that
these spikes might be relevant to the time period that they appeared, con-
firming the relation between Technical Debt issues introduction and project
maturity. Nevertheless, this finding needs further investigation.

(a) Frequency of Spikes in Commits
(b) Distribution of Spikes along Evo-
lution

Fig. 4: Project Fluctuations

5.2 Correlation of Fluctuation vs. Activity (RQ2.1) and Experience (RQ2.2)

Developers’ Activity : One of the first tentative interpretations on the ex-
istence of high spikes as those presented in Fig. 3, would be that in the cor-
responding time windows, lots of code has been committed. To explore the
existence of this confounding factor, in Table 4 we highlight with light-gray
cell shading (in column Corr. Coef.) the cases in which the correlation is strong
(>0.7 [14]) and at the same time statistically significant (p<0.05).The find-
ings suggest that only in 33% of the projects this correlation is strong for ASF,
42% for EF, and 66% for isolated projects. Based on the above, overall, only
in 42% of the projects, the commit activity could explain the fluctuations in
the number of TD issues that is added by new code. To visualize this result,
we present the scatter plot and the evolution of both variables in a single line
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chart, in Figs. 5a-5b for Dubbo (i.e. a project with a high correlation), and in
Figs. 6a-6b for PDFBox (i.e. a project with a low correlation). In the scatter
plots, each dot represents a 6-month period, mapping the values of the two
variables for which we seek correlation. For strong correlations, dots would be
near to the central diagonal suggesting that a high number of TD issues is
observed when the number of commits in a period is also high.

(a) Scatter plot (b) Line chart of co-evolution

Fig. 5: Activity vs. TD Introduction – Dubbo project

(a) Scatter plot (b) Line chart of co-evolution

Fig. 6: Activity vs. TD Introduction – PDFBox project

Developers’ Experience : Next, we replicate the same correlation process,
focusing this time on developers’ experience. Similarly to Table 4, in Table 5,
we present the correlation coefficient, along with the significance of the corre-
lation between developers’ experience and the amount of TD issues introduced
in new code. The results suggest that this relation is strong in 14% of the cases
for ASF and 0% of the cases for EF, and 16% for isolated projects. This result
implies that developers’ experience can be ‘blamed’ only for a limited number
of cases of heavy TD introduction. Fig. 7 visualizes cases of strong positive
and negative correlations. Finally, we note the sign of the correlation is nega-
tive in 66% of the cases, suggesting that experienced teams are producing less
TD issues. However, 50% of strong correlations are positive, implying that the
cases in which experienced teams are introducing heavy technical debt are not
negligible.
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Table 5: Correlation of Developers’ Experience and TD Introduction

Project AVG Dev. Experience Correl. Coeff. Sig. Level

A
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a
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o
n

Atlas 825.36 −0.20 0.17
Calcite 1428.35 0.16 0.16
Cayenne 1504.98 0.15 0.16
Commons IO 1391.29 0.01 0.95
CXF 1280.04 −0.45 0.00
DeltaSpike 2112.66 −0.58 0.00
Drill 1134.51 0.06 0.72
Dubbo 663.85 0.74 0.00
Flink 1040.61 0.37 0.00
Flume 1351.80 −0.69 0.00
Giraph 1230.38 −0.57 0.00
Jackrabbit 1288.87 −0.52 0.00
jclouds 1569.23 −0.83 0.00
Knox 1158.23 −0.33 0.00
Kylin 1102.61 −0.63 0.00
Metron 2195.25 −0.92 0.00
MyFaces 1105.78 −0.16 0.08
NiFi 1875.56 0.48 0.00
oozie 845.07 0.69 0.00
OpenWebBeans 1455.61 −0.28 0.00
PDFBox 765.44 −0.20 0.04
Pulsar 2605.61 0.69 0.00
SIS 1194.91 −0.13 0.22
Storm 1331.29 −0.22 0.11
TinkerPop 1833.53 −0.93 0.00
Zeppelin 1441.31 0.09 0.51

E
cl

ip
se

F
o
u

n
d

a
ti

o
n Hono 1542.89 0.52 0.00

JGit 1194.92 −0.57 0.00
JNoSQL 2573.29 −0.31 0.09
Kapua 1528.83 0.66 0.00
Leshan 2246.96 −0.45 0.00
Milo 2395.93 −0.54 0.02
Tycho 2349.21 −0.38 0.00
Vorto 799.71 0.38 0.00

O
th

er
O

S
S

apollo 2483.87 −0.77 0.00
gson 2298.10 −0.03 0.85
hutool 2889.89 0.97 0.00
jedis 1185.25 −0.45 0.00
litemall 2308.54 −0.50 0.00
mybatis-3 1526.35 −0.43 0.00
seata 719.72 0.20 0.38
spring-boot-admin 1093.75 −0.01 0.96
spring-cloud-alibaba 1915.31 −0.07 0.83
webmagic 1630.11 −0.24 0.05
xxl-job 1160.15 −0.27 0.05
zheng 1371.94 −0.40 0.09

https://github.com/apache/atlas
https://github.com/apache/calcite
https://github.com/apache/cayenne
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https://github.com/apache/cxf
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https://github.com/apache/sis
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https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng
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Fig. 7: Experience vs. TD Introduction–Left: Dubbo, Right: TinkerPop

6 Discussion

6.1 Interpretation of Results

The high-level goal of this study was to investigate if the introduction of
Technical Debt issues (by adding new code) is a temporal phenomenon, that
diverges over time. Based on the findings, some temporality can be claimed
only for a number of projects. In particular, based on the fluctuation of Tech-
nical Debt issues due to the introduction of new code (see Section 5.1), we
can classify the projects in three categories through visual inspection of the
evolution graphs: (a) stable projects without any temporality—i.e., negligible
fluctuations (spikes in less than 5% of commits); (b) stable projects that are
not sensitive, but some “extra-ordinary” spikes occur (spikes in 5% - 10% of
commits); and (c) sensitive projects (spikes in more than 10% of commits).

Based on the findings of RQ1, we can claim that the introduction of Tech-
nical Debt issues due to the insertion of new code is independent of time, for
more than half of the projects (36 out of 47). This can be interpreted as an
indication of project maturity, in the sense that consistent quality is achieved
throughout evolution. However, even for these stable projects, the absence of
fluctuations does not necessarily imply the absence of any trend. For example,
in Fig. 3 we can see that the evolution of project Metron does not exhibit any
spikes; however, its trend is clearly a decreasing one.

On the other hand, for a subset of the analyzed projects (12 out of 47), the
introduction of new code Technical Debt issues is a temporal phenomenon,
since many spikes exist in their evolution. For these projects, the number of
introduced Technical Debt issues in each period is not stable, and it is reason-
able to assume that it is influenced by some external parameters. This can be
interpreted as a consequence of the dynamic nature of software development
environments, where many factors change along time. This finding is contra-
dicting previous research on the evolution of smells (summarized in Table 1)
implying that smells tend to increase monotonically over time. Consequently,
it is important to study potential confounding factors that drive the accumu-
lation of Technical Debt issues along the evolution of a software project. A
starting point for such factors can be the causes of TD outlined in the studies
of Table 1). To some extent, this has been addressed in RQ2.
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The second research question lead to rather unexpected findings: i.e., the
number of commits made in a time period as well as the experience of devel-
opers, are not correlated to the number of introduced Technical Debt issues
into the system (for the majority of the cases). Intuitively, one would expect
that these variables would be related, in the sense that: (a) the more code
is added, the more Technical Debt issues are expected to be introduced; and
(b) inexperienced developers would introduce more TD. However, these two
factors do not appear to play a key role in the introduction of technical debt.
Instead, other confounding factors may be more relevant, such as: (a) the ma-
turity of the project; (b) the developers’ habits; or (c) the specific type of
tasks performed in each time period. These observations are more evident for
the projects that come from the ASF or EF ecosystems, rather than isolated
projects. We discuss these directions for further investigation in Section 6.2.

6.2 Implications to Researchers and Practitioners

Based on the results we are able to provide some first implications to both
researchers and practitioners. Regarding researchers, we can claim that the
accumulation of new code Technical Debt issues reflects (at least to some ex-
tent) the characteristics of the development process: by being stable in most
cases, the introduction of new code technical debt is probably less related to
external factors, and primarily dependent on the capabilities of the team. How-
ever, for a non-negligible number of projects, timing seems to be an important
factor for studying the accumulation of technical debt: Technical Debt issues
do not seem to be uniformly introduced along evolution, but rather behave as
a temporal phenomenon, with multiple and (in some cases) large fluctuations.
Therefore, we propose:

– For stable projects, researchers can further investigate the relation between
the stable rate of introduction of new code Technical Debt issues with the
practices followed by the developers. It would also be valuable to compare
stable projects, but with different trends (increasing vs. decreasing), with
respect to their key properties.

– For sensitive projects, researchers can perform explanatory studies to unveil
the reasons for which spikes occur in the evolution of the introduced techni-
cal debt. Such studies could identify possible reasons (e.g., changes in used
libraries or frameworks, impact of business goals) that lead teams/projects
with a rather stable accumulation of technical debt, to perform worse un-
der certain circumstances. Furthermore, TD fluctuation can be studied in
relation to the number of bugs and issues of an evolving software project,
investigating whether spikes in TD introduction cause an excessive num-
ber of defects. Based on the findings of our study, such questions would
be more easily answered in ASF or EF projects, since for their case the
correlation of fluctuation and commit density is lower, leaving more space
for exploring other parameters.
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– Based on the output of the above, researchers can work on more accurate
technical debt prevention methodologies that will attack the heart of the
problem, based on the particular conditions of each project. For example,
a project that is expected to undergo staff turnover, or will face tight
deadlines, should calibrate its quality gates to ensure technical debt does
not grow beyond thresholds.

Regarding practitioners, we encourage them to perform fluctuation analysis
and investigate the reasons for the existence of high or frequent peaks in the
evolution of introduced Technical Debt issues. Understanding the consequences
of their way of working in certain periods (which might lead to excessive
accumulation of technical debt) can prove beneficial for process improvement
purposes and quality control.

7 Threats to Validity

In this section, we discuss threats to the validity of the study, including threats
to construct, external validity and reliability. The study does not aim at es-
tablishing cause-and-effect relations; thus it is not concerned with internal
validity.

Construct Validity reflects how far the examined phenomenon is connected
to the intended objectives. The main threat is related to the accuracy by which
technical debt can be captured by static analysis tools such as SonarQube. Rule
violations reported as Technical Debt issues are only one manifestation of ac-
tual code and design inefficiencies. Furthermore, it is known that such tools
are not capable of identifying architectural problems or other types of tech-
nical debt such as requirements, test or build debt. In addition, we consider
only technical debt that can be mapped to methods, thus ignoring changes
which might occur at the level of files. However, while SonarQube is by far not
perfect in identifying technical debt, other static analysis tools suffer from sim-
ilar limitations. Another construct validity threat is related to the use of the
number of commits as a surrogate of the workload that has been carried out
by the project participants. Since in open-source projects, voluntary contribu-
tion is interleaved with the rest of the developers’ activities, we acknowledge
that a ‘busy’ or ‘relaxed’ period in terms of commits, does not necessarily re-
flect the actual work conditions of the developers. Moreover, commits differ in
the amount of work that they carry: some commits might be accompanied by
many changes in several files while other are related to only a few changes. A
final threat to construct validity stems from the current calculation of devel-
opment experience. In practice, in this work we consider as the starting date
of someone’s programming career, his/hers registration to GitHub. Although
this might be accurate in some cases, we downgrade the experience of devel-
opers who have started developing before contributing to GitHub–i.e., started
developing in commercial products, or contributed to other OSS repositories.
In addition, this calculation is threatened by the fact that the time between
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registration and commit is not experience equivalent, in the sense that a devel-
oper might be idle for a while within the period of interest. Therefore, further
research is required to derive the actual workload of developers committing
to an open-source software project; as well as their development experience in
the start of the sliding window.

Reliability reflects whether the study has been conducted and reported in
a way that others can replicate it and reach the same results. To mitigate
this threat, the study protocol is explicitly described listing all data collec-
tion and analysis steps. The only subjective data interpretation concerns the
identification of spikes (which however is of secondary importance); therefore,
to a large extent, researcher bias has been avoided. A replication package3 is
available with all available data to allow for an independent replication of the
investigation.

External Validity examines the applicability of the findings in other set-
tings, e.g., other software projects, other programming languages and possibly
other technical debt tools. We have focused only on Java Apache and Eclipse
projects that use Maven as a build tool. This limits the ability to generalize
the findings to other projects. The fact that the study focuses on 47 projects
of the Apache Software Foundation and Eclipse Foundation, which are highly
active and popular among software developers partially mitigates threats to
generalization. Nevertheless, replication studies on the effect of new code on
the evolution of technical debt are needed to strengthen the validity of the
derived conclusions.

8 Conclusions and Future Work

Studying the phenomenon of introducing code Technical Debt issues is a re-
search direction that is important for building tools aimed at preventing the
accumulation of technical debt. In this study, we focus on code technical debt,
and in particular, we explore the temporality of the technical debt introduc-
tion phenomenon. To this end, we explore if the introduction of Technical Debt
issues changes in different time periods, and if these changes can be attributed
to the developers’ activity or experience in the corresponding period. To ex-
plore these two questions, we have performed a case study on the complete
evolution of forty-seven projects from the Apache Software Foundation and
Eclipse Foundation.

The results of the study suggested that for the majority of the projects the
evolution on technical debt introduction is stable, i.e., there are not many (at
maximum 2) high fluctuations in Technical Debt issues introduction, due to
new code. However, a non-negligible part of projects (approx. 40%) present
high and frequent fluctuations. These results suggest that technical debt in-
troduction is only partially a temporal phenomenon, with more technical debt
being introduced in some time periods. The additional exploration of the phe-
nomenon led to the conclusion that the spikes in the evolution of technical debt
introduction are not correlated with spikes in the development activity, nor

https://zenodo.org/record/5082041
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with the average developers’ experience. The findings suggest that the number
of commits in a particular period and the maturity of the developers are not
the main factors affecting the introduction of ‘excessive’ technical debt.

The current study focused only on the impact of new code on the accu-
mulation of TD. However, TD can be introduced or removed along method
modification as well. Modified methods are much more challenging to analyze
as they entail multiple types of changes such as code addition, removal, modifi-
cation and refactoring. Nevertheless, it would be of great interest to study the
impact of new vs. modified code on the system technical debt along software
evolution. Furthermore, the study of the relation between introduced TD is-
sues and developer experience and workload can be performed at a finer-grain
level (i.e., introduction of TD at commit level). Analyzing TD at commit level
along with the study of the corresponding commit messages could also shed
light into the reasons that lie beneath the excessive introduction of TD issues,
with the potential of revealing some of the root causes of TD accumulation.
In addition to this, the analysis of TD at commit level will unveil how the val-
ues of experience and workload vary across sliding-time windows; this could
provide further insights and explain the reasons for detecting no correlation
between these factors and TD introduction.
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