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Abstract

Large volumes of training data introduce high computational cost in instance-

based classification. Data reduction algorithms select or generate a small (con-

densing) set of representative training prototypes from the available training

data. The Reduction by Space Partitioning algorithm is one of the most well-

known prototype generation algorithms that repetitively divides the original

training data into subsets. This partitioning process needs to identify the diam-

eter of each subset, i.e., its two farthest instances. This is a costly process since

it requires the calculation of all distances between the instances in each subset.

The paper introduces two new very fast variations that, instead of computing

the actual diameter of a subset, choose a pair of distant-enough instances. The

first variation uses instances belonging to an exact 3d convex hull of the subset,

while the second one uses instances belonging to the minimum bounding rectan-

gle of the subset. Our experimental study shows that the new variations vastly

outperform the original algorithm without a penalty in classification accuracy

and reduction rate.
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1. Introduction

Large volumes of training data become available on a daily basis and their

handling has attracted the interest of both academia and industry. The major

motive behind many research efforts is the reduction of the high computational

cost involved in the processing of large datasets. The problem is intense in5

instance-based classifiers because, for each new instance to be classified, all the

available training instances must be examined. The k-Nearest Neighbors (k-

NN) [1] classifier is a typical example of an instance-based classifier that can

not deal with large volumes of training data. It classifies a new instance by

retrieving its k nearest training instances (neighbors). The new instance is10

assigned to the most common class among the classes of its k nearest neighbors.

Although the task seems to be simple, it is CPU intensive and has memory

requirements for storing the training data.

There are various approaches for handing large data volumes in instance-

based classification. Indexing can be used to avoid exhaustive searches in the15

training set, however, indexing becomes problematic with high dimensional

data [2]. Data dimensionality could be lowered by applying a feature selec-

tion or feature extraction technique, but, such approaches in many cases harm

classification accuracy. An approach that does not alter the original feature

space is to adopt a data reduction technique that selects or generates a small20

but sufficient subset of representatives from the original training data. In this

paper, we focus on the latter approach.

A simple data reduction technique can be a random stratified sampling to

construct a much smaller training set. However, the latter may not be represen-

tative of the original dataset and, as a consequence, accuracy may be harmed.25
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Thus, data reduction aims to produce a small set that is as much as possible

representative of the initial (large) training set. The small representative set is

called the condensing set and it has the benefits of low computational cost and

low storage requirements.

Data Reduction Techniques (DRTs) [3, 4] pre-process the original training30

set and produce a condensing set to be used by the k-NN classifier. DRTs

can be either Prototype Selection (PS) [3] or Prototype Generation (PG) [4]

algorithms. PS algorithms create their condensing set by retaining some repre-

sentative instances, also called prototypes, from the original training set. On the

other hand, PG algorithms generate prototypes by summarizing instances. The35

goal is to select or to generate as few as possible prototypes that represent the

original data. Both approaches are based on the following idea: The instances

that define the boundaries between the different classes in the data space are the

only essential instances for the classification. Therefore, the instances that lie

on data areas far from the boundaries can be discarded without loss of accuracy.40

This paper focuses on the PG category of DRTs.

The Reduction by Space Partitioning (RSP3) [5] is one of the most popular

and effective PG algorithms. It is simple and parameter-free, properties that are

desirable to researchers and practitioners. It is based on a repetitive partitioning

process that divides the training set into homogeneous subsets (i.e., containing45

instances of a single class). In effect, RSP3 keeps dividing non-homogeneous

subsets until all of them become homogeneous. For each homogeneous subset, a

prototype is generated by averaging the instances of that subset. The prototype

is stored in the condensing set by replacing all instances of that subset. To divide

a non-homogeneous subset, RSP3 finds the pair of farthest instances (seeds) in50

the subset by computing all the possible distances between its instances.

In this paper, we illustrate that the choice of seeds for dividing a non-

homogeneous subset in RSP3 is a computationally expensive task that renders

the use of RSP3 inefficient for time-sensitive environments and prohibitive for

large datasets. The motivation of our research was to propose fast methods for55

choosing the seeds during subset divisions and thus, transform RSP3 to a fast
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PG algorithm.

The contribution of the paper is the development of mechanisms that ex-

ploit the notions of Convex Hull [6] and Minimum Bounding Rectangle (MBR)

to speed-up via approximation the aforementioned computationally expensive60

task. In the recent literature, Convex Hulls [7, 8, 9] and Convex Cones [10] are

employed in classification tasks in the pattern recognition domain.

The paper proposes two new RSP3 variations. The first variation computes

an approximate convex hull for each subset by utilizing the Quick hull algorithm

in the 3d space [11]. For datasets with up to three dimensions the algorithm65

computes the exact convex hull. For datasets with more dimensions, the convex

hull is approximated by considering only the three most significant dimensions,

i.e., the ones chosen by an attribute selection method. Notice that the gener-

ated prototypes are still in the original dimensionality. The second variation

approximates the convex hull of a subset using instances that belong to its70

Minimum Bounding Rectangle (MBR). The experimental results show that the

new variations reduce pre-processing computational cost to a minimum level

without harming accuracy and reduction rate. The results obtained are vali-

dated by conducting non-parametric Friedman tests with Conover’s Post Hoc

Comparisons.75

The rest of the paper is organized as follows: Section 2 briefly reviews the re-

cent research conducted in the field of PG algorithms. This short review reveals

that RSP3 is cited in the most recent research and this is an additional motive

behind the present paper. Section 3 reviews the family of Reduction by Space

Partitioning algorithms. Section 4 explains how convex hulls and minimum80

bounding rectangles can be exploited in order to speed-up the RSP3 algorithms

and, then, considers in detail the proposed RSP3 variations. Section 5 presents

and discusses the contacted experimental study, and finally, Section 6 concludes

the paper.

4



2. Related work85

Many Prototype Generation (PG) algorithms have been proposed in the

past decades. The explosion of Big Data maintains the research field active and

challenging. [4] reviews all PG algorithms that had been proposed until 2012

and includes a taxonomy and an experimental study where they are compared

to each other. The results reveal that RSP3 is a PG algorithm that achieves90

high accuracy. This section reviews the most recent research efforts, i.e., the

ones that became available since 2012.

Reduction through Homogeneous Clustering (RHC) [12] is a fast PG al-

gorithm based on k-means clustering. Like RSP3, RHC is based on the con-

cept of homogeneity. Initially, RHC considers the whole training set as a non-95

homogeneous cluster and it computes a mean instance for each class present

in the cluster. Then, it uses those mean instances as initial seeds for k-means

clustering. If a homogeneous cluster (i.e., a cluster with instances of a sin-

gle class) is discovered, the mean of the cluster constitutes a prototype. For

each non-homogeneous cluster, the aforementioned procedure is applied recur-100

sively. RHC terminates when all discovered clusters are homogeneous and the

final condensing set is the set of the means of the homogeneous clusters. The

experimental results presented in [12] show that RSP3 is more accurate than

RHC, but RHC is much faster and achieves higher reduction rates than RSP3.

Moreover, RHC is one of the fastest approaches in the experimental study. It is105

worth mentioning that RHC was recently modified and applied in string data

spaces [13, 14].

A simple clustering-based method to speed-up the k-NN classification is pre-

sented in [15]. Initially, the method discovers clusters in the training set by using

c-means clustering. Then, the k-NN classifier performs classification by search-110

ing for the nearest neighbours in the nearest cluster. The number of clusters is

an input parameter defined by the user. In addition, the authors try to further

improve their method by using Neural Codes that are feature-based represen-

tations extracted by Deep Neural Networks. Neural Codes gather instances of
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the same class so that they are placed within the same cluster. Although the115

authors refer to the cluster means as prototypes, their method is not a PG algo-

rithm since it does not reduce the training data. However, the proposed method

was empirically compared against several Data Reduction Techniques including

RHC, but not RSP3. The results show that RHC achieved the highest perfor-

mance against all data reduction techniques. Hence, we decided to include RHC120

in the experimental study of the present paper.

In [16], S. Impedovo et al present a PG algorithm for handwriting digit recog-

nition. Their technique involves two stages. The first stage uses the Adaptive

Resonance Theory [17] to determine the number of prototypes and generates

the initial set of prototypes. The second stage uses a naive evolution strategy125

to generate the final set of prototypes. The proposed algorithm is incremental

and can be adapted to changes in the writing styles by adding prototypes or

modifying the previous generated prototypes.

In [18], a swarm-based metaheuristic search technique is adapted to generate

prototypes. The technique is called Gravitational search algorithm (GSA) and130

has been inspired by Newtonian laws of gravity and motion [19]. It is worth

mentioning that RSP3 is included in the experimental study of this paper.

Particle Swarm Optimization for Prototype Generation is applied in [20]

alongside methods for improving the classification performance. The first method

is a fitness function called error rank that aims to enhance the generation abil-135

ity of the nearest neighbour classifier by considering the misclassified instances.

The second method is a multi-objective optimization strategy that pursues the

performance on multiple subsets of data in order to avoid over-fitting. The

proposed approach is not parameter free. The authors include RSP3 in their

experiments.140

In 2018, M. Elkano et al proposed CHI-PG [21], an one-pass Prototype

Generation algorithm that exploits the Map-Reduce paradigm. The algorithm

generates prototypes by using fuzzy rules. A key feature of the algorithm is

that the generated prototypes are exactly the same regardless of the number of

Mappers/Reducers used. However, the algorithm uses parameters that need to145
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be empirically determined.

Another interesting PG algorithm is proposed by H.J. Escalante et al in [22].

The algorithm is called Prototype Generation via Genetic Programming (PGGP).

It is based on genetic programming in which many training instances are com-

bined through arithmetic operators in order to generate prototypes. The genetic150

program has as goal to generate prototypes that maximize an estimate of the

generalization performance of the nearest neighbour classifier. The algorithm

automatically selects the number of prototypes for each class.

J.Calvo-Zaragoza et al proposed the Prototype Generation on structural

data using dissimilarity space representation [23]. The work focuses on struc-155

tural data such as strings, trees or graphs and does not propose a new algorithm.

It introduces dissimilarity space methods as an intermediate stage for mapping

the initial structural representation to a feature-based representation, thereby

allowing the use of PG algorithms. RSP3 and other two PG algorithms were

used in the experimental study. The results depict that RSP3 is the most accu-160

rate PG algorithm.

In [24], a Learning Vector quantization algorithm based on granular com-

puting is proposed. It is equipped with incremental learning mechanisms ap-

propriate for Big Data. The algorithm uses a simple one-pass clustering task

to quickly group instances with similar features. Then, it generates prototypes165

to cover the class distribution. The algorithm includes two stages. The first

stage controls the number of prototypes by a usage-frequency indicator. In ef-

fect, the algorithm keeps the best prototype through a life index attached to

each prototype. The second one prunes the useless dimensions of the training

database.170

The multi-objective evolutionary algorithm for prototype generation is pre-

sented in [25]. The algorithm aims to simultaneously optimize accuracy and

reduction rate as well as to achieve better trade-off between them. This is

achieved by formulating prototype generation as a multi-objective optimization

problem. The key factors are precisely the amount of prototypes and an esti-175

mate of generalization performance achieved by the selected prototypes. The

7



paper uses RSP3 in the experimental study.

3. Reduction by Space Partitioning algorithms

Reduction by Space Partitioning (RSP) algorithms [5] comprise a popular

family of three Prototype Generation algorithms proposed by Santchez in 2004.180

The Chen and Jozwik algorithm (CJA) [26] constitutes the ancestor of the fam-

ily. CJA initially retrieves the two farthest instances, x and y, in the training

set. The distance between x and y is the maximum distance in the training set

and constitutes the diameter of the dataset. The algorithm divides the training

set into two subsets. The instances that lie closer to x are placed in Sx whereas185

the instances that lie closer to y are placed in Sy. Then, CJA continues by

first dividing the non-homogeneous subset with the largest diameter. If all sub-

sets become homogeneous, the algorithm proceeds by dividing the homogeneous

subset with the largest diameter. This procedure continues until the number of

subsets becomes equal to a pre-specified value. In the end, for each subset S,190

CJA summarizes the instances in S by averaging them and creates a prototype

(a mean instance) that is assigned the label of the majority class in S. The set

of mean instances constitutes the final condensing set.

Each prototype p is computed by averaging the t attribute values of instances

xi, i = 1, 2, . . . , |S| that belong to S. Therefore, the jth attribute p.dj of p is

computed as follows:

p.dj =
1

|S|
∑
xi∈S

xi.dj , j = 1, 2, . . . , t

CJA always divides the subset with the largest diameter. The idea is that

this subset will likely contain the largest number of instances, and, when this195

happens, a high reduction rate is achieved. The algorithm has two weak points:

(a) it is a non-parameter free algorithm since the user has to specify the desired

number of subsets (or size of the condensing set), and, (b) the instances that

do not belong to the most common class of a final subset are not represented
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in the condensing set. Hence, it may be the case that a class label disappears200

from the condensing set.

RSP1 deals with the second drawback of CJA, i.e., all the original instances

are represented by a prototype and none is ignored. More specifically, in the

prototype generation step, RSP1 computes as many mean instances as the num-

ber of distinct classes in a final subset. Therefore, it averages the instances that205

belong to each class in the subset. Obviously, RSP1 builds larger condensing

sets than CJA. However, it attempts to improve classification accuracy since it

takes into account all training instances and all classes.

RSP1 and RSP2 differ in the way they select the next subset to be divided.

RSP2 uses the highest overlapping degree as the splitting criterion. The over-210

lapping degree of a subset is the ratio of the average distance between instances

belonging to different classes, to the average distance between instances belong-

ing to the same class. Hence, RSP2 assumes that instances that belong to the

same class lie as close to each other as possible, whereas instances that belong

to different classes lie farther apart.215

RSP3 differs in that it divides only non-homogeneous subsets and stops when

all of them become homogeneous. Since all non-homogeneous subsets are even-

tually divided, the choice of splitting criterion is irrelevant. RSP3 is the only

space partitioning algorithm that automatically determines the size of the con-

densing set, hence it does not involve any input parameter. Consequently, RSP3220

addresses both of the CJA weaknesses. Like all the aforementioned algorithms,

the condensing set constructed by RSP3 does not depend on the instance order

in the training set.

RSP3 constructs many small subsets for close-class-border areas where in-

stances from different classes are close to each other. Consequently, more pro-225

totypes are generated for representing those areas. On the other hand, fewer

and larger subsets are constructed for the non close-class-border (“internal”)

areas. RSP3 builds smaller homogeneous subsets for the “noisy” data areas

and, as a consequence, more prototypes are generated. Thus, the reduction rate

is negatively affected by noise and an editing algorithm [3] for noise removal230
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should be applied beforehand. The experimental study in [5] and the findings

in other studies have shown that RSP3 generates a small and accurate set of

training prototypes. When the k-NN classifier utilizes the RSP3 output instead

of the original training data, it achieves the same classification accuracy but at

a much lower computational cost. Still, the computational cost for constructing235

the condensing set remains very high.

In Figure 1, we depict a flowchart of an iterative version of RSP3 and we

emphasize our contribution, namely, the selection of the seed instances for di-

viding a non-homogeneous subset (see flowchart process box with bold-italics

font).240

Coincidentally, this is the most expensive process in the given flowchart

with a complexity of O(n2), since, in order to find the farthest instances in

a subset one has to compute all distances among the instances. The process

that computes the representative of a homogeneous subset and the process that

assigns each instance of a subset to its nearest seed, both have a complexity of245

O(n). The variations of RSP3 that we present in Section 4.2, make the process

of selecting the seed instances and dividing a subset a O(nlogn) or O(n) task.

4. The proposed algorithms

Based on the observation that the farthest instances of a dataset belong to its

convex hull, in this section, we discuss issues related to convex hull computation.250

We also list some observations that led us to the proposed fast variations of

RSP3.

4.1. Exploiting the concept of Convex Hull

The computation of the convex hull of a dataset in the Euclidean space

comprises a fundamental problem in computational geometry. The convex hull255

of a dataset S can be illustrated as the shape that encloses S [27, 28] (see

figure 2). As already mentioned, an important for our purposes property of the

convex hull of a dataset is that it contains the instances that define the diameter
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Figure 1: RSP3 algorithm flow chart (iterative version)
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of the dataset. If p1 and p2 are the farthest instances within a set, p1 and p2

are strictly convex hull instances (see figure 2). Therefore, if the convex hull is260

known, one has to only compute all distances among convex hull instances in

order to find the farthest instances of a subset.

Figure 2: The convex hull of a dataset and the farthest instances p1 and p2

Graham’s scan algorithm [29] is the oldest algorithm for convex hull com-

putation on two-dimensional Euclidean planes. The algorithm finds the convex

hull vertices by utilizing a stack data structure. The complexity of the algorithm265
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is O(nlogn) where n is the number of instances in the dataset. The algorithm

cannot be applied on higher dimensional euclidean spaces (see [29] for details).

Timothy Chan proposed a faster approach where the computational cost de-

pends on the size of the output [30]. The algorithm takes O(nlogh) time, where

h is the number of output vertices. Chan’s algorithm combines Graham scan270

with Jarvis’s march [31]. Chan’s algorithm is simpler than Graham’s scan and

it is applicable to three-dimensional spaces.

Quick Hull [11] is the most widely used algorithm for convex hull compu-

tation. It was proposed by Barber [11] in 1996. Quick Hull uses a divide-and-

conquer approach similar to that of Quick Sort, from which its name originates.275

Although the average algorithm complexity cannot be easily computed, it is

assumed to be O(nlogn), and in the worst case O(n2).

In two dimensional spaces, Quick Hull operates as follows: initially, the

algorithm finds the instances (p1 and p2) that have the minimum and maximum

x coordinates. In all cases, p1 and p2 are part of the convex hull. Quick Hull uses280

the line defined by the two instances to divide the set in two subsets and applies

the procedure described below recursively (see Figure 3(a)). The algorithm

determines the instance p3, on one side of the line, with the maximum distance

from the line. That instance is a convex hull instance. Now, p1, p2 and p3 form

a triangle (Figure 3(b)). The instances lying inside that triangle are ignored285

since they are not part of convex hull. Now, there are two new lines, i.e., the

line from p1 to p3 and that from p2 to p3. The aforementioned procedure is

repeated for these two lines, and up to two new instances are selected. In

the example of Figure 3, p4 is selected to be part of the convex hull. Quick

Hull proceeds recursively and terminates when there are no new instances to290

be selected. All the selected instances constitute the final set of convex hull

instances. Algorithm 1 outlines the recursive Quick Hull algorithm in pseudo-

code.

In general, Quick Hull performs well. However, its execution may turn slow

in cases of high symmetry or points lying on the circumference of a circle. It is295

worth mentioning that Quick Hull is available in Matlab and Octave. Moreover,
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(a) (b) (c)

Figure 3: example of Quick Hull Execution

the algorithm is distributed by the Geometry Center as a C library through

http://qhull.org/ where explanatory material and detailed instructions are

available1.

Many algorithms implement convex hull computation, yet few of them scale300

to three-dimensional spaces and even fewer to multidimensional spaces [32].

Thus, it is not straightforward to incorporate such algorithms into a DRT. The

Geometry Center that developed the C Quick Hull library have generalized the

algorithm to operate in n-dimensional spaces. However, there are constraints

concerning the datasets used [11]. Also, even if a dataset satisfies the constraints,305

it is not certain that its convex hull is successfully computed. The C Quick Hull

library developers warn that as space dimensionality increases, the complexity

and the memory requirements of the algorithm increase, too. In effect, the

algorithm’s overall complexity is unknown, since it is highly dependent on the

dataset used.310

Consequently, a variation of RSP3 that utilizes the generalized Quick Hull

algorithm is inappropriate for multi-dimensional data. In addition to the po-

tential problems during the computation phase, the overall computational cost

and the memory requirements would probably overcome those of RSP3.

1The Geometry Center ( http://www.geom.uiuc.edu/) has been a mathematics research
and education center of the University of Minnesota. It had been established by the US
National Science Foundation, and operated until 1998. However, the Quick Hull C library is
still maintained by former members of the Center.
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Algorithm 1 QuickHull

Input: S
Output: ConvexHull

1: ConvexHull← ∅
2: p1 ← left most point
3: p2 ← right most point
4: ConvexHull← ConvexHull ∪ {p1, p2}
5: S1 ← instances from the right side of line p1 to p2
6: S2 ← instances from the right side of line p2 to p1
7: ConvexHull← FindConvexHull(S1, p1, p2, ConvexHull)
8: ConvexHull← FindConvexHull(S2, p2, p1, ConvexHull)
9: return ConvexHull

FindConvexHull(Sk, pa, pb, ConvexHull)

1: if Sk = ∅ then
2: return
3: end if
4: c← the distant instance from line from pa to pb
5: ConvexHull← ConvexHull ∪ {c}
6: S0 ← instances inside triangle c, pa and pb {S0 is ignored}
7: S1 ← instances from the right side of line pa to c
8: S2 ← instances from the right side of line c to pb
9: ConvexHull← FindConvexHull(S1, pa, c, ConvexHull)

10: ConvexHull← FindConvexHull(S2, c, pb, ConvexHull)
11: return ConvexHull

Hence, our proposal is to avoid the computation of the exact convex hull of315

high dimensional datasets and instead opt for convex hull approximations. The

development of the two RSP3 variations we propose in the following section was

based on the following observations:

• RSP3 uses a subset’s diameter in order to divide it. However, the termi-

nation of the algorithm does not depend on whether the chosen pair of320

instances actually represents the diameter of the subset. In a hypothetical

scenario where subsets are divided by using any two of their instances, the

algorithm still returns a condensing set. However, the algorithm will likely

require more time to execute, because of the additional number of subset

divisions, and also a lower data reduction rate will be achieved. Based325

on this observation, we developed RSP3-RND, a dump baseline version
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of RSP3, that chooses two random instances to perform the division of a

subset.

• We have also empirically noticed that dividing a subset using the instances

that define its diameter does not always lead to the optimal data reduction.330

Hence, it may turn out that it is not necessary to calculate the actual

diameter of a subset. Instead, it may be appropriate to use a pair of

distant enough instances in the subset in order to divide it.

• Convex hull algorithms require one or more instances that belong to the

convex hull to be known / given in the beginning of their execution. In335

all cases, these instances are those with the minimum or maximum value

in one of the dimensions. It turns out that finding the instances with

the minimum and maximum values in each dimension of a subset, i.e., in-

stances that belong to the subset’s Minimum Bounding Rectangle, results

into a set of instances that could approximate the convex hull of the sub-340

set. In the best case, the distance between the farthest instances in this

set will be the subset’s diameter, whereas, in the worst case, that distance

will comprise a good approximation of the latter.

Since our goal is to speed-up RSP3 the proposed approximate convex hull

computations in RSP3 should be as fast as possible. In effect, the total time345

for approximating the convex hull plus finding the farthest instances of the

approximation should be significantly less than the time needed to find the

farthest instances in the subset.

4.2. The new RSP3 variations

In this respect, we propose two new RSP3 variations that aim to reduce the350

distance computations required for the division of each subset. Both variations

avoid the computation of the actual convex hull of a subset. Instead, they

attempt to efficiently compute an approximation of the convex hull of a subset

and use the farthest instances of this approximation in order to perform the

division of the subset.355

16



In addition, we implement a dump version of RSP3, where instead of using

the farthest instances of a subset in order to divide it, we choose two random

instances to perform the division. To the best of our knowledge, this version

of RSP3 has not been proposed/used before. We consider it to be a baseline

version of RSP3 that should justify the reason why distant instances are needed360

during subset division. We refer to this version as RSP3-RND.

4.2.1. RSP3-QH3d

We first propose a variation of RSP3, called “RSP3-QH3d” that uses Quick

Hull for only three selected dimensions of the dataset, in the case of high di-

mensional data (> 3).365

Thus, we propose to compute the exact 3d convex hull of a dataset in three

selected dimensions and find the farthest instances of these 3d convex hull in-

stances using all their attributes in order to get a good approximation of the

farthest instances in the dataset.

For datasets with high dimensionality (> 3), RSP3-QH3d works as follows:370

Initially, an attribute selection method is applied in order to obtain the three

most important attributes of the dataset. These attributes are then used for the

3d convex hull computation in each subset, i.e., all attributes, except those three,

are ignored during the computation of the convex hull. Thus, the instances used

for subset division are the farthest instances in the computed convex hull with375

their full set of attributes. The division of subsets and the prototype generation

in homogeneous subsets also use the full set of attributes, like in the standard

RSP3. Obviously, for datasets with up to three dimensions, attribute selection

is not applied.

We also propose two versions of RSP3-QH3d that differ on the technique380

they employ to select the three most important attributes that Quick Hull uses

for the computation of the exact 3d convex hull.

The first technique is based on the Interquartile Range (IQR), a measure

of volatility. It involves dividing the values of an attribute into quarters. The

quarters divide the sorted values of the attribute into four equal parts. The val-385
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ues that determine the borders of the quarters are called first, second and third

quartiles and are denoted by Q1, Q2 and Q3, respectively. IQR is computed as

follows: IQR = Q3−Q1. For each dataset, we selected the top three attributes

in terms of IQR. The idea is that the higher the IQR value is for an attribute,

the larger is the dispersion of the attribute’s distribution of values. Therefore,390

in theory, the attribute in question contributes more to space partitioning, than

the rest of the attributes do. From now on, we call RSP3-QH3d-IQR the RSP3-

QH3d version that utilizes IQR.

The second technique selects the three most important attributes using the

Gain Ratio [33] attribute selection algorithm. It involves the consideration of395

each one attribute and the evaluation of its importance for class label prediction.

The RSP3-QH3d version that utilizes the Gain ratio technique is hereafter code-

named RSP3-QH3d-GR. Obviously, any attribute selection algorithm [34, 35,

36, 37] could be used in the place of Gain Ratio.

We stress again, that in both versions of RSP3-QH3d, the three selected400

attributes are used by Quick Hull for identifying the 3d convex hull instances,

only. The full set of attributes is considered during the formation of the subsets

and the computation of the homogeneous subset mean instances (prototypes).

4.2.2. RSP3-MBR

We also propose a second variation of RSP3, that approximates the farthest405

instances of a subset by exploiting the Minimum Bounding Rectangle (MBR)

of the subset.

The instances that contain the minimum or maximum value of a dimension

(attribute) belong to the dataset’s Minimum Bounding Rectangle (MBR). Thus,

we call the RSP3 variation that uses the MBR approximation, “RSP3-MBR”.410

Note that the MBR of a dataset coincides with the MBR of the dataset’s convex

hull. Figure 4 illustrates a two-dimensional example of the MBR and convex

hull in the case of a hypothetical dataset.

Algorithm 2 depicts the MBR algorithm in pseudo-code. The input to the

algorithm is a dataset S with d dimensions. The output consists of the set of415
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Figure 4: Convex Hull and Minimum Bounding Rectangle (MBR) of a set of instances

instances MI belonging to the dataset’s MBR. The MBR algorithm maintains a

d×2 array of indexes to the minimum and maximum instances in each dimension.

Initially, the MBR algorithm initializes MMI by setting the first instance of S

as the minimum and maximum for each dimension. Next, with one pass over S,

MMI is updated with the indexes to the MBR instances. Evidently, an instance420

may be the minimum or the maximum for more than one dimension. Thus, the

algorithm terminates by removing the duplicate MBR instances. Duplicate

instance removal reduces the number of distances to be calculated when finding

the farthest MBR instances.

Algorithm 2 MBR algorithm

Input: S
Output: MI

1: MI ← ∅, low ← 1, high← 2
2: for j ← 1 to d do
3: MMI[j][low]← 1,MMI[j][high]← 1 {index of the first instance in S}
4: end for
5: for i← 2 to |S| do
6: for j ← 1 to d do
7: if S[i][j] < S[MMI[j][low]][j] then
8: MMI[j][low]← i
9: else if S[i][j] > S[MMI[j][high]][j] then

10: MMI[j][high]← i
11: end if
12: end for
13: end for
14: for j ← 1 to d do
15: MI ←MI ∪ {S[MMI[j][low]], S[MMI[j][high]]}
16: end for
17: Remove duplicates from MI
18: return MI

19



The complexity of MBR algorithm is O(nd), where n is the size of the425

dataset and d its dimensionality. But, in most real life problems n >> d, thus,

the complexity is closer to O(n). Besides its simplicity, the algorithm is scalable

to high dimensional datasets and it always returns a MBR that contains at most

twice the number of input dimensions (d × 2) instances, regardless the size of

the dataset.430

To summarize, RSP3-MBR first finds the MBR instances of a subset, then

identifies the pair of farthest instances among them, and, finally, uses them to

divide the subset.

5. Experimental study

5.1. The setup435

The original RSP3 algorithm, the baseline variation RSP3-RND and the

three proposed variations RSP3-QH3d-IQR, RSP3-QH3d-GR and RSP3-MBR

were implemented in C++. The implementations are available on Github2.

We used the Quick Hull C library distributed by Geometry Center. Moreover,

RHC and NOP (no data reduction) were used for comparison purposes. Like440

RSP3, RHC is a fast parameter-free PG algorithm and is also based on the

concept of homogeneity. These properties render RHC suitable for the present

experimental study. The experiments were conducted on a Debian GNU/Linux

server with two 64-bit Quad-Core CPUs (8 threads) and 8GB RAM.

1-NN classification using the five RSP3 algorithms, RHC and NOP was445

tested against sixteen (16) classification datasets distributed by the KEEL repos-

itory3 [38]. Table 1 summarizes on the datasets used. We used various types of

datasets regarding the number of instances, attributes and classes involved. All

attributes were numerical and were normalized to the [0, 1] range and we used

the Euclidean distance. The datasets did not contain missing values. Regard-450

2https://github.com/giotoman/RSP3
3https://sci2s.ugr.es/keel/datasets.php
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Table 1: datasets characteristics
Dataset Instances Attributes Classes

Banana (BN) 5300 2 2
Eye State (EEG) 14980 14 2
KDD Cup (KDD) 494020 40 23

Letter Image Recognition (LIR) 20000 16 26
Landsat Satellite (LS) 6435 36 7

Magic Gamma Telescope (MGT) 19020 11 2
Pen Digits (PD) 10992 16 10
Phoneme (PH) 5404 5 2
Ring (RNG) 7400 20 2

Segment (SG) 2310 19 7
Shuttle (SH) 58000 9 7

Twonorm (TN) 7400 20 2
Textrue (TXR) 5500 40 11
Waveform (WF) 5000 21 3

Wine Quality White (WQW) 4898 11 11
Yeast (YST) 1484 8 10

ing the KDD dataset, we removed all nominal and fixed-value attributes and all

duplicate instances, hence, the resulting dataset contained 141,481 instances.

The goal of data reduction is to build a small condensing set from the original

dataset. The computational cost for producing the condensing set should be as

low as possible and the use of the condensing set in the place of the original455

dataset as a training set (model) in kNN classification should achieve comparable

accuracy.

Therefore, for each algorithm and dataset used, we calculated and report

three measures by applying 5-fold cross validation: (i) Classification Accuracy

(ACC), (ii) Reduction Rate (RR), and, (iii) condensing set construction CPU460

time in seconds (CPU). For the two RSP3-QH3d versions, we do not report

the CPU time required for attribute selection. Accuracy is usually the most

significant measure in classification tasks. The main goal of data reduction is to

reduce the size of the training set as much as possible without loss of accuracy.

Hence, reduction rate is considered more significant than the condensing set465

construction CPU time. The latter remains significant and should not be ignored

especially when the training dataset is large and the data reduction is applied
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in time-sensitive environments.

5.2. Experimental results

Table 2 presents the experimental results for each dataset. The best mea-470

surements are in bold while the second best measurements are in italic typeface.

Figure 5 presents three histograms with the average values of each compared

algorithm for each one measure.

The table and the histogram plots reveal no substantial difference between

the original RSP3 and the proposed variations, namely RSP3-QH3d-IQR, RSP3-475

QH3d-GR and RSP3-MBR, regarding classification accuracy (ACC) and reduc-

tion rate (RR). All four have been found to perform similarly with respect to

these two measures. In Figure 5, we plot these two results in an exponential

scale to demonstrate how close the four algorithms perform. As expected, the

baseline variation RSP3-RND is the worst RSP3 variation in terms of reduction480

rate. On the other hand, RSP3-RND is the fastest (lowest CPU cost) RSP3

approach and does not achieve lower accuracy than the original RSP3 and the

proposed variations.

However, one notices that for all the datasets used, all RSP3 variations

(RSP3-RND included) outperform the original RSP3 in terms of CPU Cost.485

This happens because RSP3 computes an extremely large number of distances.

In contrast, the two RSP3-QH3d versions and RSP3-MBR retrieve 3d con-

vex hull or MBR instances, respectively, and only compute distances among

them, whereas, RSP-RND simply chooses two random instances. For the larger

datasets in particular (i.e., KDD and SH), the original RSP3 leads to noticeably490

more intensive CPU usage, when compared to the RSP3 variations herewith

proposed. Thus, one may safely conclude that the two RSP3-QH3d versions

and RSP3-MBR each outperform the original RSP3 in execution time with no

sacrifice in the classification accuracy and the reduction rate achieved. More

specifically, each one of the proposed RSP3 variations executes at less than495

0.15% of the RSP3 CPU cost on average. Therefore, the proposed variations

can be applied on large datasets where the computational cost involved prohibits
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the use of RSP3.

As expected, RHC is the fastest approach, with the exception of RSP3-RND,

and achieves the highest reduction rate. This happens because the proposed500

variations need to compute the 3d convex hull or the MBR of each subset and

then compute the distances between their instances. It is worth mentioning

that, in several datasets, the proposed RSP3 variations require CPU time close

to that of RHC. On the other hand, almost in all datasets used, RHC achieves

the lowest accuracy.505

Upon closely inspecting the results in Table 2, one notices that the reduction

rate of RSP3-MBR is as high as that of RSP3-QH3d-GR, while RSP3-QH3d-

IQR yields a slightly lower reduction rate when compared to the former and

RSP3. Therefore, the approximation technique in RSP3-MBR and the convex

hull computation in the three-dimensional space applied by the two RSP3-QH3d510

versions have a negligible impact on the reduction rate measure.

Furthermore, the accuracy achieved by RSP3-MBR and the two RSP3-QH3d

versions is as high as that of RSP3. Although the difference is negligible, it

is noteworthy that RSP3-MBR was measured to achieve the highest average

accuracy measurement. The finding confirms that using the actual maximum515

distance in a subset does not necessarily produce optimal results.

RSP3’s CPU Cost is much higher than that of the rest of the algorithms.

There is no significant difference in CPU Cost between RSP3-MBR and the

two RSP3-QH3d versions although they use completely different approaches for

approximating the diameter of the subsets. RSP3-MBR generates an almost520

constant number of instances, whereas, the output of the two RSP3-QH3d ver-

sions depends on how the data instances are distributed within the dataset, not

simply on the number of attributes involved.

To summarize, RSP3-QH3d and RSP3-MBR seem to outperform RHC in

terms of accuracy, RSP3-RND in terms of reduction rate, and, the original525

RSP3 in terms of CPU cost. This significant improvement in the required

computational cost of the proposed RSP3 variations over the original RSP3,

makes the proposed RSP3 variations valid contenders of RHC. Therefore, in case
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Table 2: Comparison in terms of Accuracy (Acc(%)), Reduction Rate (RR(%)), CPU
Time(secs)

Dataset NOP RHC RSP3 RSP3 RSP3 RSP3 RSP3
QH3d-IQR QH3d-GR MBR RND

BN
ACC: 86.86 83.17 84.42 84.42 84.42 84.53 84.10
RR: - 79.39 75.13 75.18 75.18 75.32 74.13

CPU: - 0.10 5.72 0.53 0.55 0.41 0.20

EEG
ACC: 45.70 47.54 47.30 47.33 46.80 47.53 46.51
RR: - 77.22 53.71 53.71 53.37 53.81 49.54

CPU: - 1.44 333.15 6.53 6.36 6.15 4.49

KDD
ACC: 99.71 99.30 99.60 99.50 99.30 99.58 99.50
RR: - 99.19 98.54 98.19 98.63 98.56 97.95

CPU: - 38.54 41021.00 13.54 6.68 17.37 5.08

LIR
ACC: 95.87 93.49 95.45 95.37 95.41 95.38 95.25
RR: - 88.01 61.81 61.57 62.13 61.56 56.05

CPU: - 6.55 373.16 13.90 9.67 14.39 5.90

LS
ACC: 90.29 88.93 90.10 90.35 90.07 90.21 90.07
RR: - 90.04 73.20 73.47 74.10 73.11 70.82

CPU: - 0.94 118.22 1.59 1.48 2.18 0.49

MGT
ACC: 80.89 74.79 77.82 77.55 77.59 77.58 78.01
RR: - 79.38 58.44 58.85 58.77 58.88 57.44

CPU: - 1.24 297.58 13.51 10.19 12.71 4.78

PD
ACC: 99.40 98.50 99.10 99.06 98.94 99.04 99.09
RR: - 96.48 89.22 88.77 88.66 89.10 84.44

CPU: - 0.80 138.44 1.17 1.14 1.04 0.37

PH
ACC: 89.84 85.06 87.10 86.89 87.30 87.47 86.56
RR: - 80.74 69.09 69.40 69.35 69.30 67.01

CPU: - 0.16 12.49 0.99 0.96 0.68 0.30

RNG
ACC: 74.87 82.20 81.84 82.22 81.85 81.30 79.46
RR: - 90.14 57.15 56.80 56.17 55.75 57.18

CPU: - 1.06 94.29 3.11 3.18 3.44 0.86

SG
ACC: 97.09 94.24 95.97 96.23 96.40 96.49 95.75
RR: - 92.21 81.95 82.45 82.44 82.24 78.76

CPU: - 0.09 9.89 0.32 0.25 0.23 0.07

SH
ACC: 99.94 99.79 99.39 99.48 99.56 99.69 99.70
RR: - 99.63 99.38 99.29 99.32 99.37 98.82

CPU: - 1.86 3104.68 2.15 2.31 2.07 0.59

TN
ACC: 94.80 89.76 93.00 92.86 92.79 92.52 93.37
RR: - 96.65 84.58 83.87 83.75 84.07 79.75

CPU: - 0.73 73.15 0.96 0.97 1.01 0.30

TXR
ACC: 99.05 97.11 98.54 98.67 98.80 98.58 98.45
RR: - 94.51 82.60 82.72 82.70 82.97 78.84

CPU: - 1.47 97.99 1.06 1.12 1.38 0.30

WF
ACC: 77.25 75.18 78.40 77.17 77.48 77.78 78.17
RR: - 88.78 56.83 56.55 56.96 56.87 50.93

CPU: - 0.42 16.70 0.93 0.91 0.99 0.59

WQW
ACC: 64.26 60.63 61.68 61.86 61.88 62.42 61.56
RR: - 59.45 35.34 35.17 34.69 35.65 32.52

CPU: - 0.40 39.91 2.95 2.96 2.80 1.12

YST
ACC: 52.51 47.47 50.00 50.14 49.86 50.54 50.81
RR: - 50.41 28.35 27.72 27.94 27.45 26.23

CPU: - 0.10 2.07 0.43 0.30 0.38 0.15
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Figure 5: Average experimental measurements
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of large datasets and time-sensitive environments, where the use of the original

RSP3 is prohibitive because of its high CPU cost, either RSP3-QH3d or RSP3-530

MBR should be used instead of RHC when the need for higher accuracy can

justify lower reduction rates. On the other hand, RHC outperforms all RSP3

variations in terms of reduction rate and comes close in terms of accuracy.

Thus, RHC is preferable in scenarios where storage is limited. In the following

subsection, we support the above claims with the help of extended statistical535

tests.

5.3. Statistical comparisons

The non-parametric Friedman test with Conover’s Post Hoc Comparisons

was used in order to check for differences among the algorithms. We used the

Friedman test provided by the JASP statistical software [39]. The test was run540

three times, one for each criterion measured (ACC, CPU, RR). For brevity in

the presentation, in all the tables that follow, we use the names IQR, GR, MBR,

and RND for the proposed RSP3 variations.

Regarding ACC, there was a statistically significant difference in perfor-

mance depending on which reduction algorithm was used, χ2(6) = 28.834,545

p < .001. Conover’s post hoc comparisons (with the Holm correction applied)

revealed that the algorithms did not differ among each other with the exception

of RSP3-MBR that was rated better than RHC (p = .031) and NOP that was

rated better than RSP3-RND (p = .038) and RHC (p < .001) (see Table 3).

This is not a surprising result considering the very high reduction rates achieved550

by RHC. On the other hand, the quite good performance of RSP3-RND is at-

tributed to the mediocre reduction rate of the algorithm (see statistical analysis

of Reduction Rate below).

Regarding CPU, there was a statistically significant difference in perfor-

mance depending on which reduction algorithm was used, χ2(5) = 61.429,555

p < .001. Conover’s post hoc comparisons (with the Holm correction applied)

revealed that RSP3 was rated worse than all other algorithms, RSP3-RND was

rated better than all other RSP3 algorithms but equal to RHC, and RHC was
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Table 3: Conover’s Post Hoc Comparisons - Accuracy

T-Stat df Wi Wj p pbonf pholm

RSP3 IRQ 0.322 90 68.000 64.000 0.748 1.000 1.000
GR 0.645 90 68.000 60.000 0.521 1.000 1.000

MBR 0.403 90 68.000 73.000 0.688 1.000 1.000
RND 1.007 90 68.000 55.500 0.316 1.000 1.000
RHC 2.861 90 68.000 32.500 0.005 0.110 0.094
NOP 2.176 90 68.000 95.000 0.032 0.676 0.418

IRQ GR 0.322 90 64.000 60.000 0.748 1.000 1.000
MBR 0.725 90 64.000 73.000 0.470 1.000 1.000
RND 0.685 90 64.000 55.500 0.495 1.000 1.000
RHC 2.539 90 64.000 32.500 0.013 0.270 0.206
NOP 2.498 90 64.000 95.000 0.014 0.300 0.214

GR MBR 1.048 90 60.000 73.000 0.298 1.000 1.000
RND 0.363 90 60.000 55.500 0.718 1.000 1.000
RHC 2.216 90 60.000 32.500 0.029 0.613 0.409
NOP 2.821 90 60.000 95.000 0.006 0.124 0.100

MBR RND 1.410 90 73.000 55.500 0.162 1.000 1.000
RHC 3.264 90 73.000 32.500 0.002 0.033 0.031
NOP 1.773 90 73.000 95.000 0.080 1.000 0.876

RND RHC 1.854 90 55.500 32.500 0.067 1.000 0.805
NOP 3.183 90 55.500 95.000 0.002 0.042 0.038

RHC NOP 5.037 90 32.500 95.000 < .001 < .001 < .001

rated better than RSP3-QH3d-IQR (p = .002) and RSP3-MBR (p = .036) and

marginally better than and RSP3-QH3d-GR (p = .056) (see Table 4).560

Finally, regarding RR, there was a statistically significant difference in per-

formance depending on which reduction algorithm was used, χ2(5) = 52.102,

p < .001. Conover’s post hoc comparisons (with the Holm correction applied)

revealed that RHC was rated better than all other algorithms, RSP3-RND was

rated worse than all other algorithms, and all other RSP3 variations were rated565

equal among each other (see Table 5).

Thus, we conclude that the two versions of RSP3-QH3d and RSP3-MBR

outperform RSP3 by involving only 0.13% - 0.15% of the computational cost of

the latter, without sacrifices in classification accuracy and reduction rate. Also,

the new variations of RSP3 come very close to RHC in terms of computational570

cost, but RHC remains the best algorithm in terms of data reduction rates.
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Table 4: Conover’s Post Hoc Comparisons - CPU Cost

T-Stat df Wi Wj p pbonf pholm

RSP3 IRQ 2.882 75 96.000 65.000 0.005 0.077 0.036
GR 3.439 75 96.000 59.000 < .001 0.014 0.011

MBR 3.160 75 96.000 62.000 0.002 0.034 0.020
RND 6.786 75 96.000 23.000 < .001 < .001 < .001
RHC 6.042 75 96.000 31.000 < .001 < .001 < .001

IRQ GR 0.558 75 65.000 59.000 0.579 1.000 1.000
MBR 0.279 75 65.000 62.000 0.781 1.000 1.000
RND 3.904 75 65.000 23.000 < .001 0.003 0.003
RHC 3.160 75 65.000 31.000 0.002 0.034 0.020

GR MBR 0.279 75 59.000 62.000 0.781 1.000 1.000
RND 3.346 75 59.000 23.000 0.001 0.019 0.013
RHC 2.603 75 59.000 31.000 0.011 0.167 0.056

MBR RND 3.625 75 62.000 23.000 < .001 0.008 0.006
RHC 2.882 75 62.000 31.000 0.005 0.077 0.036

RND RHC 0.744 75 23.000 31.000 0.459 1.000 1.000

Finally, RSP3-RND was rated as the worst algorithm in terms of reduction rate,

thus, it was shown that looking for distant instances when dividing a subset,

effectively leads to higher data reduction.

6. Conclusion and future work575

This paper proposes two fast RSP3 variations that can be used on large

datasets. Contrary to the conventional RSP3 algorithm, which finds the farthest

instances in non-homogeneous subsets by computing all the possible distances

in each subset, both variations find instances belonging to approximations of the

convex hull of each subset. Then, they compute the distances between those580

instances and retrieve the two farthest ones. The first variation is called RSP3-

QH3d and utilizes the Quick Hull algorithm for 3d convex hull computation.

Although, for datasets with more than three attributes, the three most impor-

tant ones are used for the computation of the 3d convex hull of each subset,

all other tasks are performed on the original dimensionality and the prototypes585

generated are in the original space. We conducted experiments by using the

Interquartile Range as an attribute selection technique as well as the Gain ra-
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Table 5: Conover’s Post Hoc Comparisons - Reduction Rate

T-Stat df Wi Wj p pbonf pholm

RSP3 IRQ 0.047 75 54.000 53.500 0.963 1.000 1.000
GR 0.047 75 54.000 54.500 0.963 1.000 1.000

MBR 0.372 75 54.000 58.000 0.711 1.000 1.000
RND 3.163 75 54.000 20.000 0.002 0.034 0.018
RHC 3.908 75 54.000 96.000 < .001 0.003 0.003

IRQ GR 0.093 75 53.500 54.500 0.926 1.000 1.000
MBR 0.419 75 53.500 58.000 0.677 1.000 1.000
RND 3.117 75 53.500 20.000 0.003 0.039 0.018
RHC 3.954 75 53.500 96.000 < .001 0.003 0.002

GR MBR 0.326 75 54.500 58.000 0.746 1.000 1.000
RND 3.210 75 54.500 20.000 0.002 0.029 0.018
RHC 3.861 75 54.500 96.000 < .001 0.004 0.003

MBR RND 3.536 75 58.000 20.000 < .001 0.011 0.008
RHC 3.536 75 58.000 96.000 < .001 0.011 0.008

RND RHC 7.071 75 20.000 96.000 < .001 < .001 < .001

tio attribute selection. The second RSP3 variation is called RSP3-MBR and

approximates the convex hull using the Minimum Bounding Rectangle of each

subset. RSP3-MBR can be used with datasets of any dimensionality without590

the need of attribute selection.

The goal of our research was to improve RSP3 in terms of CPU cost, since

RSP3 was already one of the best PG algorithms in terms of accuracy and good

enough in terms of reduction rate. The experimental results and the statistical

tests we performed, demonstrated that the proposed variations of RSP3 have595

all the desired properties, i.e., they outperform (a) RHC in terms of accuracy

(this is true for RSP3-MBR), (b) RSP3-RND in terms of reduction rate - a fact

that demonstrates that choosing instances that are far apart as seeds for subset

division is meaningful, and, (c) the original RSP3 in terms of CPU cost.

The final conclusion is that the proposed RSP3 variations are preferable over600

the original RSP3 (always and especially when having large datasets), RSP3-

RND (always), and, RHC (when higher accuracy justifies lower reduction rate).

In the context of RSP3-QH3d, the computation of 3D convex hull implies

the usage of attribute selection beforehand, so that the three most important
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attributes are selected. Although the simple method we used in this study605

performed very well, we plan to conduct an extensive experimental study using

a variety of attribute selection algorithms [34, 35, 36, 37]. Furthermore, we keep

working on data reduction and RSP3 variations. More specifically, we plan to

adapt RSP3 and other DRTs on more complex classification problems, such as

multi-label data and data streams.610
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