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Abstract. Numerous Prototype Selection and Generation algorithms
for instance based classifiers and single label classification problems have
been proposed in the past and are available in the literature. They build
a small set of prototypes that represents as best as possible the initial
training data. This set is called the condensing set and has the bene-
fit of low computational cost while preserving accuracy. However, the
proposed Prototype Selection and Generation algorithms are not appli-
cable to multi-label problems where an instance may belong to more
than one classes. The popular Binary Relevance transformation method
is also inadequate to be combined with a Prototype Selection or Gener-
ation algorithm because of the multiple binary condensing sets it builds.
Reduction through Homogeneous Clustering (RHC) is a simple, fast,
parameter-free single label Prototype Generation algorithm that is based
on k-means clustering. This paper proposes a RHC variation for multi-
label training datasets. The proposed method, called Multi-label RHC
(MRHC), inherits all the aforementioned desirable properties of RHC
and generates multi-label prototypes. The experimental study based on
nine multi-label datasets shows that MRHC achieves high reduction rates
without negatively affecting accuracy.

Keywords: Multi-label classification, Data Reduction, Prototype Gen-
eration, k-NN Classification, Binary Relevance, RHC, BRENN

1 Introduction

Multi-label classification [13] is a challenging problem that has attracted the
interest of the machine learning and data mining research communities. Con-
trary to traditional single-label classification problems, where an instance may
belong to only one class, in multi-label problems an instance may belong to
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more than one classes (or labels). Nowadays, multi-label classification is needed
in numerous real-life applications of different problem domains. Typical exam-
ples of multi-label classification problems are image, text, protein, music and
video/movies classification. For instance, a movie can simultaneously be “Crime”
and “Drama”. A music track may belong to more than one genre. An image may
depict “mountain”, “sea” and “beach”.

The k-Nearest Neighbours (k-NN) classifier [5] is a typical instance-based
(or lazy) classification algorithm. For each unclassified instance z, it searches
the available training data and retrieves the k nearest to x instances. These
instances are called nearest neighbours. Then, z is classified by a majority vote.
In effect, z is classified to the most common class among the classes of the
retrieved k nearest neighbours. The k-NN classifier is simple, easy to implement
and has good performance. Moreover, it can be easily adapted for multi-label
datasets. However, the k-NN classifier is CPU and memory intensive since all
distances between a new unclassified instance and all training instances must
be computed, and all training instances need to always be available in memory.
Therefore, it cannot deal with large volumes of training data. Thus, in single-
label classification, k-NN is usually applied in conjunction with a Prototype
Selection (PS) [7] or Prototype Generation (PG) [12] algorithm.

PS and PG algorithms replace the initial training dataset by a small rep-
resentative set. This set is called the condensing set and is used by k-NN to
achieve comparable accuracy as when using the initial training dataset but at a
much lower computational cost. PS algorithms select instances (or prototypes)
that represent as much as possible the initial training set. The algorithms of this
category are also called condensing algorithms. In contrast, PG algorithms gener-
ate prototypes by summarizing similar training instances of the same class. The
prototypes generated by a PG algorithm are artificial instances that represent a
specific data area in the metric space. Most of PS condensing and PG algorithms
are based on the following simple idea: only the close to the class decision bound-
aries training instances are needed for classification tasks. The training instances
that lie to the “internal” area of a class (far from decision boundaries) burden
computational cost of the classifier, do not contribute to accurate classification
and can be safely removed without loss of accuracy. Therefore, PS condensing
and PG algorithms try to select or to generate a sufficient number of prototypes
that lie close to class decision boundary data areas.

A sub-category of PS algorithms are called editing algorithms. Editing aims
to improve accuracy rather than reduce data. To achieve this, editing algorithms
try to improve the quality of the training data by removing noise and by smooth-
ing the decision boundaries between the distinct classes. Of course, in case of
non-separable classes, editing may fail to achieve these goals. Thus, contrary to
PS condensing algorithms that condense the data by keeping only the instances
that lie close to class decision boundaries, PS editing algorithms “clear” the
class decision boundary areas by removing the close to the decision boundary
instances. Although editing has a completely different goal, it can be used to
improve the performance of PS condensing and PG algorithms. More specifi-
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cally, the size of the condensing set built by PS condensing and PG algorithms
depends on the level of noise in the training data. High levels of noise in the
training set prevent many PS condensing or PG algorithms from achieving high
reduction rates on the training data. In other words, the condensing set does
not become small enough with respect to the original training set. Therefore,
effective application of such algorithms requires removal of noise from the data,
i.e., application of an editing algorithm beforehand.

PS and PG algorithms are appropriate for single-label classification problems.
The Label Powerset (LP) transformation technique [13] could be an intuitive
approach in order to use a PS or PG algorithm in a multi-label problem. LP
transforms a multi-label dataset into singe-label datasets by considering each
label combination (labelset) as a distinct class. However, LP can be applied
only if the number of labels and the possible labelsets are small and there is a
sufficient number of instances for each labelset. Otherwise, the total number of
different combinations may increase exponentially, the reduction rate will be low
and some combinations may be poorly represented.

Binary Relevance (BR) is the most widely-used problem transformation tech-
nique for multi-label problems. It transforms the multi-label problem into mul-
tiple binary problems, one for each label. A binary problem is a single-label
problem with two labels. More specifically, for each label [ € L, BR builds a
classifier in order to predict whether an instance belongs to [ or not. In effect,
BR copies the original training set |L| times. Each copy concerns a different
label [ and contains all instances of the original training set, labelled as “17 if
the original instance is labeled by [ and as “0” otherwise.

The k-NN classifier in conjunction with BR is called BREKNN [6] and seems
to be an ideal combination because k-NN classifier is a lazy classifier and does
not build any classification model. BREKNN does not make |L| copies of the
training set. When an instance = needs to be classified, BREKNN searches for
the k nearest to x neighbours once, like the single-label k-NN does. Then, the
nearest neighbours voting procedure is repeated |L| times, once for each label,
and BREKNN makes |L| label predictions for z. Therefore, x obtains the predicted
labels of each voting procedure. Since each voting procedure concerns a binary
classification problem, k should be odd to prevent ties.

The k-NN classifier stops being lazy when it is used in conjunction with a
PS or PG algorithm. In effect, the condensing set is a classification model. In
multi-label classification, if BR is used, one condensing set must be constructed
for each label. Therefore, the goal of data reduction is not achieved and the
k-NN classifier must search for nearest neighbours in each condensing set in
order to make each individual label prediction. Hence, the computational cost
remains high. This observation makes clear that the PS and PG algorithms must
be adapted so that they can be used for multi-label datasets and this is the
motive behind the present work. This paper proposes a PG algorithm for multi-
label datasets. It constitutes a variation of Reduction through Homogeneous
Clustering (RHC) [10], which is a fast and parameter-free PG algorithm for single
label classification problems. The proposed algorithm is called Multilabel RHC
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(MRHC). It inherits the aforementioned desirable properties of RHC and builds
a multi-label condensing set that is then used by BRENN. The experimental
study conducted shows that MRHC achieves noteworthy reduction rates while
classification accuracy is not affected.

The rest of this paper is organized as follows: Section 2 briefly presents the
related work, while Section 3 reviews RHC. Section 4 presents the proposed
MRHC algorithm. Section 5 presents the experimental study, and, Section 6
concludes the paper and gives directions for future work.

2 Related work

While most of research works in multi-label classification focus on proposing
accurate classification algorithms, the issue of the computational cost on large
multi-label training sets is somehow marginalized. There are only few research
works that focus on speeding-up lazy classifiers in large multi-label training sets
and even fewer that concern condensing algorithms for that type of dataset. As
far as we know, there are no PG algorithms in the literature for multi-label
training sets. In this section, we review the limited related works for fast multi-
label classification.

The algorithm presented in in [4] can be considered as the first PS algorithm
for multi-label datasets. However, it focuses on editing of imbalanced datasets. In
effect, the authors presented an under-sampling method for imbalanced training
sets inspired by the Edited Nearest Neighbour rule (ENN-rule) [15]. Kanj et al.
in [8] proposed a PS editing algorithm also based on ENN-rule. The proposed
algorithm uses Hamming loss to determine the noisy instances. The idea behind
the algorithm is simple: the instances with high Hamming loss probably lie in
close decision boundaries and for this reason they should be removed, like in the
case of ENN-rule. Both aforementioned works concern data editing. Thus, they
are not considered further in the present work.

To the best of our knowledge, the work presented in [1] is a first attempt that
adapts existing PS algorithms that edit and condense multi-label data. In this
work, the previous proposed PS LSBo and LSSm algorithms [9] are adapted.
LSBo condenses the data while LSSm edits it. The proposed algorithms as well
as their predecessors are based on the concept of local sets [3] and on the LP
transformation technique. In single-label problems, the local set of an instance x
is the largest set of instances centered on x, so that all instances are of the same
class. In multi-label datasets, the authors define that there is no need for a local
set to contain the exact same labelset. The labelset of the instances in a local set
may slightly differ. The authors use the Hamming loss calculated over labelsets
to measure the difference in the labelsets. If the Hamming loss between the
labelsets of two instances is greater than a pre-specifed threshold, the instances
are considered to be of different “classes”. The proposed PS algorithms are not
parameter-free and their performance depends on the pre-specified threshold.
Therefore, they are not considered further in this paper.
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The paper in [2] uses BR, LP and other transformation methods in conjunc-
tion with single label PS algorithms. In case of BR and its variants, the proposed
strategy copies the original training set |L| times. Each copy concerns a differ-
ent label [ and contains all instances of the original training set, labelled as “1”
if the original instance labeled by [ and as “0” otherwise. Then, the strategy
utilizes a PS algorithm on each copy and builds |L| condensing sets for each
label. Every time an instance is selected, it receives a vote that is accumulated
in a vector with the votes for all instances. The strategy builds a complete con-
densing set by selecting all instances with a number of votes that exceeds a
pre-specified threshold. As we mentioned before, we are interested in parameter-
free approaches. Hence, these strategies are not considered further in the present
work. Furthermore, the same paper [2] points out the LP drawbacks, mentioned
in Section 1, when it is used in conjunction with a PS algorithm.

The work presented in [11] proposes a scalable lazy classifier for large multi-
label datasets. The authors proposed an implementation that takes advantage
of the GPU architecture. In effect, the work implements MLENN [16] on GPUs.
The proposed method implements the execution stages of MLANN in parallel on
GPUs, offering computational speedup without loss of accuracy.

3 The Reduction through Homogeneous Clustering
(RHC) algorithm

Reduction through Homogeneous Clustering (RHC) [10] is a PG algorithm that
is based on the well known k-means clustering algorithm. RHC is parameter-
free, hence the size of the condensing set is determined automatically. Also, it is
a fast algorithm since it avoids costly and time-consuming pre-processing tasks
on the training set, which may be prohibitive for large datasets.

Initially, RHC computes the class representatives by averaging the instances
of each class. If a dataset has ten classes, RHC will compute ten class rep-
resentatives. These class representatives are used as initial means for k-means
clustering. Then, k-means discovers as many clusters as the number of classes
in the training set. If a discovered cluster has instances of only one class (i.e.,
it is homogeneous), the cluster centroid is placed in the condensing set as a
prototype. Otherwise (i.e., the cluster is non-homogeneous), the aforementioned
procedure is recursively repeated on that cluster. RHC terminates when all the
discovered clusters are homogeneous.

The centroid /representaive m of each cluster/class C' is computed by averag-
ing the n attribute values of instances z;, ¢ = 1,2...|C| that belong to C. More
formally, the n attributes m.d; of m is estimated as follows:

1
m.dj:—in.dj,jzl,Z...,n
|C| z; €C

Obviously, RHC generates more prototypes for the close to the decision
boundary areas and fewer prototypes for the “internal” class areas. By using
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the class representatives as initial means for k-means clustering, RHC increases
the probability of quickly finding large homogeneous clusters and achieving a
high reduction rate without costly k-means iterations (the larger the homoge-
neous clusters constructed, the higher the reduction rate achieved). RHC can
become even faster if k-means clustering without full cluster consolidation is
used. Full clusters consolidation means that k£ means clustering stops only when
there are no moves of instances among clusters.

Contrary to many PS and PG algorithms, RHC always builds the same con-
densing set regardless the order of the data in the training set. Moreover, RHC
is simple and quite easy to implement. The experimental study presented in [10]
shows that RHC is faster and achieves higher reduction rates and than state-of-
the-art PS condensing and PG algorithms without harming classification.

4 The Proposed Multi-label RHC (MRHC) Algorithm

The Multi-label Reduction through Homogeneous Clustering (MRHC) algorithm
is a variant of RHC for multi-label training data. It works quite similar to RHC.
However, MRHC builds a multi-label condensing set. The key question that
should be answered is how to define homogeneity on clusters that contain multi-
label data. In the case of MRHC, a cluster is considered homogeneous, when it
contains instances that share at least one common label.

This is how the MRHC algorithm works. Initially, it builds a mean (represen-
tative) for each label [ by averaging the instances that their label-set contains I.
Then, it runs k-means clustering and discovers as many clusters as the number
of labels in the training set. For each cluster C' with instances that do not share
a common label (i.e., C' is non-homegenous), the aforementioned procedure is
repeated considering only the instances that belong to C'. For each homogeneous
cluster, MRHC stores the cluster centroid in the condensing set as a prototype.
The generated prototype is labeled by the common label(s) in C along with each
label that appears in the label-set of more than half the instances in C'. We call
such labels majority labels. Like the case of RHC, MRHC terminates when all
clusters become homogeneous.

Suppose a training set has three attributes (a,b,c) and three labels (z,y,2).
Moreover, suppose that MRHC discovered a cluster C' which contains the in-
stances insty, insty and insts with the following BR representation:

— insty: {a,b,c,x,y,2} ={2,1,1,0,1,1}
— inste: {a,b,c,x,y,2} ={1,2,3,0,1,0}
— insts: {a,b,c,x,y,2} ={3,2,1,1,1,1}

Since all instances contain label y, C' is homogeneous. The label-set of the gen-
erated prototype p will be {y, 2z} because y is the common label that renders C
homogeneous and z is a majority label in C. Consequently, in a BR representa-
tion, p is {a,b,c,z,y, 2z} = {2,1.67,1.33,0,1, 1}.

Figure 4 represents a two dimensional example. Suppose that a dataset con-
tains sixteen instances (Figure 4(a)). MRHC computes a representative for the
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Fig. 1. MRHC excution example

squares, a representative for the circles, and, a representative for the stars (Fig-
ure 4(b)). Then, k-means clustering uses the three label representatives as initial
means and discovers three clusters (Figure 4(c)). Two of them are homogeneous
because their instances have a common class. Thus, the cluster centroids con-
stitute prototypes (Figure 4(d)). One prototype is labeled only by “square”
because there is no majority label in the cluster. The other prototype is labeled
by “square” and “star”, because “star” is the common label and “square” is
a majority label in a that cluster. For the instances of the non homogeneous
cluster, MRHC recursively builds three homogeneous clusters (Figures 4(e,f)).
Consequently, three more prototypes are stored in the condensing set. Thus, the
final condensing set contains five prototypes instead of the sixteen instances of
the initial training set (Figure 4(g)).

Algorithm 1 shows a non-recursive MRHC implementation. It uses a queue
data structure, @, to hold clusters. Initially, the whole training set is an unpro-
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Algorithm 1 MRHC
Input: T'S
Output: CS
QO
: Enqueue(Q, T'S)
: CS«+— o
repeat
C' <+ Dequeue(Q)
if all the instances in C have at least one common label then
r < centroid of C
Tlabelset < &

S I A S e

9: for each label [ in C do
10: n < count the instances € C' with [ in their labelset
11: if n>|C/2| then
12: Tlabelset < Tlabelset ul
13: end for
14: end for
15: CS«+ CSu{r}
16: else
17: M <+ @ {M is the set of label-centroids}
18: for each label [ € C do
19: my < centroid of [
20: M+ MU {ml}
21: end for
22: NewClusters + K-MEANS(C, M)
23: for each cluster C € NewClusters do
24: Enqueue(Q, C)
25: end for
26: end if

27: until IsEmpty(Q)
28: return CS =0

cessed cluster and is placed in ¢ (line 2). At each repeat-until iteration, MRHC
dequeues cluster C' from @ (line 5) and checks whether C' is homogeneous (has
at least one common label) or not. If it is (line 6), its centroid is placed in
the condensing set (C'S) as a prototype (line 15) labeled by the common and
majority labels in C' (lines 9-14). Otherwise, MRHC computes a list of label-
representatives (M), one for each of the labels that exist in C' (lines 1721).
Then, MRHC calls k-means clustering, with parameters the non-homogeneous
cluster C and the list of the initial label-representatives M to be used as initial
means. The result is a new set of unprocessed clusters (NewClusters) (line 22)
all of which are put into @ (lines 2325). The repeat-until loop continues until @
becomes empty (line 27), i.e., there are no more clusters to process.

MRHC inherits all the properties of RHC. Therefore, it is a fast and parameter-
free PG algorithm. Also, MRHC builds the same condensing set regardless the
order of the instances in the training set. MRHC can be ideally combined with
BRENN. For each unclassified instance z, the BRENN classifier runs over the
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condensing set (instead of the initial large training set) once and retrieves the k
nearest to z prototypes. Then, the label-set of z is predicted by as many voting
procedures as the number of labels. For each label [, the same k retrieved nearest
prototypes vote in order to predict if = is labeled by [ or not.

5 Performance Evaluation

5.1 Datasets

The performance of MRHC was evaluated by conducted experiments on nine
multilabel datasets distributed by Mulan datasets repository [14]*. Table 1 sum-
marizes the key characteristics of the datasets used. The last two columns present
the cardinality and the density of the datasets. Cardinality is the mean of the
number of labels of the instances. Density is the mean of the number of labels
of the instances divided by the number of labels. The second column of Table 1
lists the domain of each dataset.

Table 1. Dataset characteristics

Datasets Domain Size Attributes Labels Cardinality Density
CAL500 (CAL) Music 502 68 174 26.044 0.150
Emotions (EMT) Music 593 72 6 1.869 0.311
Water quality (WQ) Chemistry 1060 16 14 5.073 0.362
Scene (SC) Image 2407 294 6 1.074 0.179
Yeast (YS) Biology 2417 103 14 4.237 0.303
Birds (BRD) Sounds 645 260 19 1.014 0.053
CHD49 (CHD) Medicine 555 49 6 2.580 0.430
Image (IMG) Image 2000 294 5 1.236 0.247
Mediamill (MDM) Video 43907 120 101 4.376 0.043

5.2 Experimental Setup

MRHC was coded in C and it runs only as a pre-processing step to build the
condensing set. BRENN was implemented in Python. We compared the perfor-
mance of BRENN running over the condensing set built by MRHC against the
performance of BRENN running over the original training set. The Euclidean dis-
tance was used as the distance metric. We measured two metrics: (i) Hamming
loss and (ii) Reduction Rate, that were derived via a five-fold-cross-validation
schema. Initially, we normalized the datasets in the [0 — 1] range, and then, we
split them into random subsets appropriate for five-fold-cross-validation. Since
the computational cost of the BRENN classifier depends on the size of the train-
ing set used, the CPU time needed for the classification is not reported. The

4 http://mulan.sourceforge.net/datasets-mlc.html
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Hamming Loss (HL) is the fraction of the wrong predicted labels to the total
number of labels. It is computed as follows:

1 & |V;AZ;
HL=—) =74
I

where m is the number of instances in the dataset, |L| is the number of labels, Y;
is the instances’ set of real labels and Z; is the instances’ set of predicted labels.
A is the symmetric difference of two sets and corresponds to the XOR operation.
For example, if the labels of an instance are {1,1,0,0, 1} and the predicted labels
are {1,1,0,1,0}, the Hamming loss will be % = 0.4. Also, we ran experiments
using three different k values (1, 5 and 9).

5.3 Experimental results

Table 2 presents the results obtained by the experimental study. For each dataset,
we report Hamming loss and the reduction rate achieved by MRHC. We observe
that MRHC achieved reduction rates between 40% and 85%. The average re-
duction rate is 57.63%. This means that the BRAKNN classifier that runs over
the condensing set constructed by MRHC is 57.63% faster on average than the
BRENN classifier that runs over the original training set. One could claim that
the reduction rates are not very high - certainly, they are lower than the re-
duction rates achieved by the single-label RHC. We claim that the comparison
between the reduction rates achieved on single-label and multi-label datasets
does not make sense. Multi-label data is more complex than single-label data.
As a result, MRHC cannot identify large homogeneous clusters in multi-label
data like RHC does in single-label data.

Moreover, we observe there is no difference in Hamming loss between BRENN
that uses the multi-label condensing set constructed by MRHC and the BRANN
classifier that uses the original training set. BRANN achieves similar Hamming
loss measurements regardless of whether the condensing set or the original train-
ing set is used. Therefore, we can safely conclude that MRHC achieves significant
gains in reduction rates while accuracy is not negatively affected.

6 Conclusions and future work

Prototype Selection and Generation is an essential pre-processing stage in order
to avoid the drawbacks of high computational cost and storage requirements
in instance based classification. However, the vast majority of existing PS and
PG algorithms are not applicable to multi-label classification problems, and also
they can not be effectively used in conjunction with a problem transformation
method like Binary Relevance or Label Powerset.

This paper initially presented the recent research efforts for speeding-up the
k-NN classifier in the context of multi-label classification. Then, it proposed the
MRHC algorithm, which is the first PG algorithm for multi-label training data.
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Table 2. Comparison in terms of Hamming Loss (HL (%)) and Reduction Rate (RR
(%))

Dataset BRKNN BRENN BRANN MRHC MRHC MRHC

k=1 k=5 k=9 BRENN BRENN BRENN
k=1 k=5 k=9
CAL HL: 0.19 0.15 0.14 0.17 0.14 0.14
RR: - - - 40.50 40.50 40.50
HL: 0.24 0.20 0.19 0.22 0.20 0.20
EMT RR: - - - 65.73 65.73 65.73
WQ HL: 0.38 0.35 0.33 0.37 0.34 0.32
RR: - - - 40.64 40.64 40.64
SO HL: 0.13 0.11 0.12 0.12 0.12 0.12
RR: - - - 85.13 85.13 85.13
Vs HL: 0.24 0.20 0.19 0.23 0.21 0.21
RR: - - - 51.85 51.85 51.85
BRD HL: 0.09 0.08 0.08 0.09 0.08 0.09
RR: - - - 42.70 42.70 42.70
CHD HL: 0.36 0.33 0.31 0.35 0.32 0.30
RR: - - - 65.47 65.47 65.47
IMG HL: 0.29 0.27 0.27 0.28 0.25 0.25
RR: - - - 71.71 71.71 71.71
MDM HL: 0.041 0.033 0.032 0.038 0.032 0.032
RR: - - - 55.86 55.86 55.86

In effect, MRHC is an adaptation of the fast, single-label RHC algorithm. Like
RHC, MRHC is parameter-free and is based on a recursive k-means clustering
procedure that discovers homogeneous clusters. In the context of multi-label
classification, we considered a cluster to be homogeneous when it contains in-
stances with at least one common label. The centroid of each homogeneous
cluster constitutes a prototype labeled by the common labels along with each
label that appears in the majority of the cluster instances. Thus, MRHC builds a
multi-label condensing set that BRENN can use to search for nearest neighbours
and make multi-label predictions. The experimental study used nine multi-label
datasets and demonstrated that there is no difference on the accuracy achieved
by BRENN when using the condensing set built by MRHC or the original train-
ing set. On the other hand, the CPU time needed for the classification process
when using the condensing set is much lower.

This paper showed that Prototype Selection and Generation for multi-label
problems is an open research field in the data mining and machine learning
context. We plan to adapt well-known single-label PG algorithms on multi-label
problems. Next, we plan to developed new parameter-free PS and PG algorithms
as well as scalable classification methods for multi-label training sets.
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