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Abstract—Instance-based classifiers become inefficient when
the size of their training dataset or model is large. Therefore,
they are usually applied in conjunction with a Data Reduction
Technique that collects prototypes from the available training
data. The set of prototypes is called the condensing set and has
the benefit of low computational cost during classification, while,
at the same time, accuracy is not negatively affected. In case
of imbalanced training data, the number of prototypes collected
for the minority (rare) classes may be insufficient. Even worse,
the rare classes may be eliminated. This paper presents three
methods that preserve the rare classes when data reduction is
applied. Two of the methods apply data reduction only on the
instances that belong to common classes and avoid costly under-
sampling or over-sampling procedures that deal with class imbal-
ances. The third method utilizes SMOTE over-sampling before
data reduction. The three methods were tested by conducting
experiments on twelve imbalanced datasets. Experimental results
reveal high recall and very good reduction rates.

Index Terms—k-NN Classification, Imbalanced data, Prototype
Selection, Prototype Generation, SMOTE, Rare classes

I. INTRODUCTION

The k-Nearest Neighbours (k-NN) classifier is a simple and
widely-used instance-based classification algorithm. For each
unclassified instance x, it searches in the training data and
retrieves the k nearest to x instances, which are called nearest
neighbours. Then, x is classified to the majority class among
the classes in the set neighbourhood. The k-NN classifier
is effective and can by used in many application domains.
However, it is a CPU intensive classifier and it cannot handle
large volumes of training data since all distances between the
unclassified instance and the training data must be computed.

Many Data Reduction Techniques for efficient instance-
based classification have been proposed in the past. They
are divided into two main categories: (i) Prototype Selection
(PS) algorithms [1] and (ii) Prototype Generation (PG) algo-
rithms [2]. PS algorithms may be either condensing or editing
algorithms and work by selecting instances (prototypes) from

the original training data. Condensing algorithms store in the
condensing set only the close-border instances, while editing
algorithms remove noise and smooth the decision boundaries
between different classes. On the other hand, PG algorithms
summarize instances that are close to each other and generate
artificial prototypes that represent groups of similar instances.
They generate more prototypes for the decision boundaries ar-
eas and fewer prototypes for the “internal” class areas. PG and
PS-condensing algorithms try to reduce the computational cost
of the k-NN classifier by keeping the size of the condensing set
as small as possible without sacrificing classification accuracy.
It is worth mentioning that the reduction rate achieved by PS-
condensing and PG algorithms depends on the level of noise
and the number of classes in the training data. Thus, editing
may be applied beforehand.

Although PS-condensing and PG algorithms can efficiently
reduce the training data, they cannot deal with imbalanced
data [3], [4]. The number of prototypes selected or gener-
ated for the minority (rare) classes may be insufficient, and,
sometimes rare classes may even be eliminated. As a result,
crucial rare situations (such as extreme weather conditions,
earthquakes, tsunamis, diseases, etc.) will be misclassified
when the k-NN classifier runs over the condensing set built by
a PS-condensing or a PG algorithm. Yet, the correct prediction
of a rare situation is usually more significant than the correct
prediction of common (non-rare) ones. On the other hand, the
misclassification of a rare situation may be pernicious. The
present work is motivated by these observations.

The contribution of the present paper is the development
of three methods for the preservation of the instances of the
rare classes in data reduction tasks. The methods are applied
in conjunction with a PS-condensing or PG algorithm. The
first two methods preserve the instances that belong to rare
classes by applying data reduction only on instances that
belong to common classes and avoid costly under-sampling
or over-sampling techniques that are usually used to balance978-1-6654-0032-9/21/$31.00 ©2021 IEEE



such training datasets. The third method utilizes the popular
Synthetic Minority Over-Sampling Technique (SMOTE) [5] to
balance the training data and then applies data reduction. Fur-
thermore, the paper presents an extended experimental study
conducted on twelve binary and multi-class imbalanced train-
ing datasets, where various PS-condensing and PG algorithms
are tested on the original training datasets with and without the
application of the proposed Rare Class Preservation Methods.

The rest of this paper is organized as follows: Section II
reviews on classification with imbalanced datasets, Section III
discusses the proposed Rare Class Preservation Methods,
Section IV presents the experimental outcomes, and, Section V
concludes the paper.

II. CLASSIFICATION WITH IMBALANCED TRAINING
DATASETS

Real-life training datasets are usually imbalanced [3], [4].
When performing classification on such datasets, the metric of
Accuracy is insufficient. Suppose that a classification system
has been trained to predict earthquakes. The training set
used contains the classes: “no-earthquake” and “earthquake”.
Surely, the class “earthquake” is rare. A wrong prediction for
“no-earthquake” may result in loss of human lives. On the
other hand, the cost of a wrong prediction for “earthquake”
is not so high. In effect, the cost is some unneeded protective
actions for an earthquake that will not happen. The ZeroR
classifier, that always predicts “no-earthquake”, achieves high
accuracy. However, it is a totally unacceptable classifier be-
cause it does not predict any earthquake (i.e., it predicts False-
Negatives). On the other hand, a classification system that very
often wrongly predicts “earthquake” (i.e., False-Positives) is
unreliable.

In the case of imbalanced training data, Precision, Recall,
F-measure and other metrics must be considered [6]. These
metrics are computed by considering the confusion matrix that
contains the number of True-Positives (TP), True-Negatives
(TN), False-Positives (FP) and False-Negatives (FN). Precision
is computed by the formula |TP |

|TP |+|FP | and counts how many
positive predictions are correct. Recall is computed by the
formula |TP |

(|TP |+|FN |) and counts how many positives are
correctly predicted.

In the case of the classification system for earthquake
predictions, Precision counts how many earthquake predictions
are correct while Recall counts how many earthquakes were
predicted. Thus, Recall is more significant than Precision
because even few wrong predictions for “no-earthquake” (i.e.,
FN) may be disastrous. However, a classification system that
always predicts positive achieves Recall equal to one (there
are no FNs - all earthquakes are correctly predicted), but it
is unreliable since it predicts many FPs and, as a result, the
precision is low. Consequently, in the case of systems that
predict extreme situations like earthquakes, Recall is more
significant than Precision, but Precision should not be ignored.

On the other hand, suppose that a web user submits a query
on a search engine. Suppose that the search engine indexes one
thousand web pages. Ten web pages contain the information

that the user is looking for. Ideally, the search engine returns
the ten relevant web pages and no more. In that case, both
Precision and Recall will be equal to one. In contrast, Precision
and Recall will be equal to zero if the search engine returns
only irrelevant web pages. In the case of search engines,
Precision is more significant than Recall, but Recall should
not be ignored. The user cannot afford low Precision and high
Recall because the search engine returns many relevant web
pages and many more irrelevant. Here, there is a risk that the
relevant web pages will be lost among the many irrelevant
ones and the user may not find what he/she is looking for.
On the other hand, the user can afford a relatively low Recall
with high Precision. This means that the user has the chance to
find what he or she is looking for from the few relevant web
pages retrieved but at the same time the retrieved irrelevant
web pages that mislead the user are kept at a minimum level.

In effect, the significance of Precision and Recall depends
on the application domain. The F-score is the harmonic mean
of Precision and Recall. It is calculated as follows:

F − score = 2 ∗
|TP |

|TP |+|FP | ∗
|TP |

|TP |+|FN |
|TP |

|TP |+|FP | +
|TP |

|TP |+|FN |

Although there are some under-sampling techniques [7] that
try to deal with class imbalances, the most popular techniques
are based on over-sampling [7], [8]. Both over-sampling
and under-sampling aim at balancing the class distributions.
Oversampling techniques strengthen the rare classes by adding
new instances to them. The most common oversampling tech-
nique is called Synthetic Minority Over-Sampling Technique
(SMOTE) [5]. SMOTE works as follows: In each iteration, a
random instance x that belongs to the rare class is selected.
Then, the k nearest to x neighbors that also belong to the same
rare class are retrieved (typically k = 5). SMOTE continues by
randomly selecting one of the neighbors (nn) and generating a
synthetic instance at a randomly selected point between x and
nn in the feature space. In effect, x and nn form a line in the
feature space and the synthetic instances are generated on a
random point on this line. The iterations stop when the data is
balanced or when a predefined number of synthetic instances
are generated. Thus, SMOTE can be used to generate as many
synthetic rare class instances as required.

III. RARE CLASS PRESERVATION METHODS

This section presents three methods that preserve the in-
stances that belong to rare classes in data reduction tasks.
The preservation of those instances in the condensing set is
important since they contribute to the correct prediction of
rare situations of vital importance. For data reduction, any
PS-condensing or PG algorithm can be used. The methods
divide the training data into two subsets. One subset contains
only the instances of rare classes while the other contains
the instances of common classes. The first subset is called
subset of rare classes while the second one is called subset of
common classes. The training dataset is divided using a pre-
specified threshold. The classes with fewer instances than the
threshold are taken to comprise rare classes.



Fig. 1. RCPM1 Flow chart

Fig. 2. RCPM2 Flow chart

Fig. 3. RCPM-SMOTE Flow chart

A. Rare Class Preservation Method 1

Rare Class Preservation Method 1 (RCPM1) is quite simple.
It performs data reduction on the subset of common classes
and produces a condensing set for this subset. Then, RCPM1
merges the condensing set with the subset of rare classes. The
result is the final condensing set that is used by the k-NN
classifier. Figure 1 illustrates the flow chart of RCPM1.

Since data reduction is applied on a set of instances that
do not contain the rare classes (fewer decision boundaries
exist), RCPM1 collects fewer close-border instances and thus,
it achieves higher reduction rates than when data reduction
is applied on the complete training dataset. RCPM1 can be
applied only on training datasets that contain more than one
common classes. This is because PS-condensing and PG algo-
rithms will collect only one prototype when applied on datasets
with only one class. Consequently, RCPM1 is inappropriate for
binary imbalanced datasets and for imbalanced datasets with
only one common class.

B. Rare Class Preservation Method 2

The Rare Class Preservation Method 2 (RCPM2) applies
data reduction on the complete training dataset. Next, it
replaces the prototypes collected for the rare classes with
the instances contained in the original subset of rare classes.
Hence, data reduction is applied on the complete datasets
where all decision boundaries exist, thus, RCPM2 achieves
lower reduction rates than RCPM1. Here, the number of com-
mon classes is irrelevant. Therefore, RCPM2 can be applied on
either binary training datasets or multi-class training datasets
with any number of common classes. Figure 2 presents the
flow chart of RCPM2.

C. Rare Class Preservation Method though SMOTE

The Rare Class Preservation Method through SMOTE
(RCPM-SMOTE) is based on SMOTE oversampling. Initially,
it utilizes SMOTE in order to balance the dataset. Next,
it applies data reduction on the resulting dataset. The flow
chart is presented in Figure 3. Here, rare classes preservation
is achieved through oversampling. Like RCPM2, RCPM-
SMOTE is appropriate for both binary and multi-class clas-
sification problems and the number of common classes is
irrelevant. However, the more the rare classes in the dataset,
the more the synthetic instances generated. Therefore, the
reduction rates achieved by RCPM-SMOTE depend on the
number of rare classes. From this point of view, RCPM-
SMOTE is appropriate for binary datasets and for datasets
with few rare classes. If the number of rare classes is high,
the reduction rates may not be high.

Surely, the preservation level of rare classes depends on
the k value used in SMOTE oversampling. If k is large, the
synthetic instances will be generated in a larger neighbourhood
where instances of other classes probably reside. Thus, a PS-
condensing or PG algorithm will collect a sufficient number
of prototypes for the rare classes. In contrast, a small k value
may result in few prototypes for rare classes. This is because
instances of different classes may be not mixed in small
neighbourhoods.

IV. EXPERIMENTAL STUDY

A. Experimental setup

To evaluate the performance of the proposed Rare Class
Preservation Methods, we applied PS-condensing and PG
algorithms on the training datasets of twelve imbalanced



TABLE I
DATASETS DESCRIPTION

Dataset Size Attr. Classes Rare
Classes

A class is rare
if it has ≤

Avila (AV) 20867 10 12 3 200
Balance (BL) 625 4 3 1 100

CAR 1.728 6 4 2 60
KDD 141481 36 23 12 100

Page-Blocks 1 (PB1) 5473 10 5 3 100
Shuttle (SH1) 57999 9 7 4 150

Yeast (YS) 1484 8 10 6 100
Page-Blocks 2 (PB2) 5472 10 2 1 500

Segment (SG) 2308 18 2 1 300
Shuttle (SH2) 1829 9 2 1 100
Vowel (VW) 988 13 2 1 100

Wine Quality Red (WQR) 1599 11 2 1 100

datasets, distributed by the KEEL repository [9], with and
without preprocessing. Table I summarizes on the datasets
used. The last column lists the threshold value set for splitting
each dataset into the subset of common classes and the subset
of rare classes. Seven datasets are multi-class while the rest are
binary. RCPM1 cannot be applied on the five binary datasets.
Hold out was used to validate the performance. We randomized
and normalized all datasets in the [0, 1] range, and then divided
them into training and testing sets. We used 67% of data for
training purposes and 33% for testing purposes.

For the data reduction stage, two PS-condensing algorithms
were used: the well-known CNN-rule [10] and one-pass varia-
tion of IB2 [11]. They work as follows: Initially, they move a
random instance to the condensing set. Then, for each instance
x of the training set, they retrieve the nearest instance y from
the condensing set. If x and y belong to different classes, x is
moved to the condensing set. CNN-rule makes multiple passes
and terminates when there is no movement from the training
set to the condensing set. On the other hand, IB2 performs
only one pass.

Moreover, we used the PG algorithms RSP3 [12], RHC [13],
and AIB2 [14]. RSP3 and RHC try to find homogeneous
groups of instances in the training data. Next, we generate
a prototype for each group. AIB2 constitutes a PG variation
of IB2. It works similar to IB2, but the instances that have
the same class with their nearest prototype in the condensing
set contribute to the construction of the condensing set by
updating their nearest prototype. This way, each prototype lies
in the center of the area that it represents.

All algorithms and Rare Class Preservation Methods were
implemented in C. We ran each data reduction technique in
conjunction with each Rare Class Preservation Method on each
dataset, and, we measured Precision, Recall and F-score for
each rare class in each dataset as well as Reduction Rate
and Accuracy. In the case of RCPM-SMOTE, we used the
SMOTE implementation of WEKA [15]. We set k = 5 for
SMOTE over-sampling, that is a typical setting for SMOTE
over-sampling and it is recommended by WEKA. Also, each
rare class was over-sampled so that it contained at least as
many instances as one of the common classes.

TABLE II
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN

CLASSIFIER ON THE ORIGINAL TRAINING DATA

Dataset Accuracy Rare
Classes Precision Recall F-Score

AV 0.813
Class [1] 1.000 1.000 1.000
Class [2] 0.828 0.679 0.746
Class [9] 0.839 0.929 0.882

BL 0.813 Class [1] 0.100 0.050 0.067

CAR 0.859 Class [2] 0.579 0.478 0.524
Class [3] 0.640 0.696 0.667

KDD 0.997

Class [1] 0.625 0.769 0.690
Class [2] 1.000 0.500 0.667
Class [3] 1.000 0.905 0.950
Class [4] 0.833 0.833 0.833
Class [6] 1.000 0.714 0.833
Class [7] 0.000 0.000 0.000
Class [8] 0.250 0.200 0.222

Class [12] 0.500 0.500 0.500
Class [13] 1.000 1.000 1.000
Class [16] 0.000 0.000 0.000
Class [22] 1.000 0.833 0.909

PB1 0.954
Class [2] 0.875 0.538 0.666
Class [3] 0.609 0.737 0.667
Class [4] 0.524 0.550 0.537

SH1 0.999

Class [1] 1.000 1.000 1.000
Class [2] 0.964 0.841 0.898
Class [5] nan 0.000 nan
Class [6] 0.500 0.500 0.500

YS 0.475

Class [3] 0.692 0.750 0.720
Class [4] 0.350 0.389 0.368
Class [6] 0.455 0.385 0.417
Class [7] 0.000 0.000 0.000
Class [8] 0.364 0.800 0.500
Class [9] 1.000 1.000 1.000

PB2 0.951 positive 0.739 0.764 0.751
SG 0.995 positive 0.988 0.966 0.977

SH2 1.000 positive 1.000 1.000 1.000
VW 1.000 positive 1.000 1.000 1.000

WQR 0.934 positive 0.130 0.167 0.146

B. Experimental results

Table II lists the results obtained by applying the k-NN
classifier on the original datasets, i.e., without applying data
reduction and Rare Class Preservation Methods. For each data
reduction technique, we present a table (Tables III, IV, V
and VII) where we evaluate the performance of classification
when no rare class preservation is used or when each one
of the proposed Rare Class Preservation Methods is applied
before the data reduction step.

As expected, the Rare Class Preservation Methods achieved
lower reduction rates than those of data reduction without rare
classes preservation. This is an absolutely reasonable fact since
the instances that belong to rare classes are not reduced. It
is worth noting that there are few exceptions where RCPM1
achieved higher reduction rate than that of data reduction
without preserving rare classes. For datasets with many rare
classes, RCPM-SMOTE achieved the lowest reduction rates.
In the case of the YS dataset, RSP3 and CNN with RCPM-
SMOTE produced condensing sets that are larger than the
original datasets. Thus, the experimental results confirmed
our initial thoughts about RCPM-SMOTE. RSP3 achieved
the lowest reduction rates. On the other hand, RHC seems
to achieve the highest reduction rates. As expected, AIB2
achieved higher reduction rates than IB2.

RSP3 achieved the highest accuracy measurements. It is not



TABLE III
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN THAT USES THE CONDENSING SET BUILT BY CNN-RULE

Datasets
Accuracy Reduction Rate Rare

Classes Precision Recall F-Score

Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE

AV 0.776 0.772 0.775 0.779 61.671 61.246 60.837 58.723
Class [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [2] 0.764 0.589 0.724 0.727 0.705 0.718 0.705 0.821 0.733 0.647 0.714 0.771
Class [9] 0.735 0.578 0.643 0.722 0.893 0.929 0.964 0.929 0.806 0.713 0.771 0.813

BL 0.718 0.746 0.751 0.708 67.308 74.038 67.308 43.990 Class [1] 0.200 0.200 0.300 0.148 0.200 0.150 0.150 0.200 0.200 0.171 0.200 0.170

CAR 0.865 0.844 0.861 0.852 74.544 75.847 71.242 69.939 Class [2] 0.571 0.472 0.556 0.552 0.522 0.739 0.652 0.696 0.545 0.576 0.600 0.616
Class [3] 0.640 0.500 0.594 0.613 0.696 0.957 0.826 0.826 0.667 0.657 0.691 0.704

KDD 0.997 0.985 0.997 0.996 99.060 99.025 98.996 98.457

Class [1] 0.625 0.458 0.588 0.611 0.769 0.846 0.769 0.846 0.690 0.594 0.666 0.710
Class [2] 1.000 1.000 1.000 1.000 0.500 0.500 0.500 0.500 0.667 0.667 0.667 0.667
Class [3] 1.000 0.040 1.000 1.000 0.905 0.952 0.952 0.905 0.950 0.077 0.975 0.950
Class [4] 0.833 0.455 0.714 0.714 0.833 0.833 0.833 0.833 0.833 0.589 0.769 0.769
Class [6] 1.000 1.000 1.000 1.000 0.714 0.714 0.714 0.857 0.833 0.833 0.833 0.923
Class [7] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [8] 0.250 0.250 0.250 0.250 0.200 0.200 0.200 0.200 0.222 0.222 0.222 0.222
Class [12] 0.500 0.500 5.000 1.000 0.500 0.500 0.500 0.500 0.500 0.500 0.909 0.667
Class [13] 1.000 0.333 1.000 1.000 1.000 1.000 0.100 1.000 1.000 0.500 0.182 1.000
Class [16] 0.000 0.021 0.000 0.083 0.000 0.167 0.000 0.167 0.000 0.037 0.000 0.111
Class [22] 1.000 1.000 1.000 1.000 0.833 0.833 0.833 0.833 0.909 0.909 0.909 0.909

PB1 0.945 0.839 0.946 0.912 89.200 89.940 87.664 84.501
Class [2] 0.800 0.562 0.800 0.667 0.615 0.692 0.615 0.769 0.695 0.620 0.695 0.714
Class [3] 0.538 0.389 0.583 0.342 0.737 0.737 0.737 0.684 0.622 0.509 0.651 0.456
Class [4] 0.438 0.125 0.451 0.262 0.525 0.775 0.575 0.675 0.478 0.215 0.506 0.377

SH1 0.999 0.464 0.990 0.999 99.566 99.472 99.255 99.366

Class [1] 1.000 0.007 0.153 1.000 1.000 1.000 1.000 1.000 1.000 0.014 0.265 1.000
Class [2] 0.964 0.007 0.368 0.982 0.857 1.000 0.889 0.873 0.907 0.014 0.521 0.924
Class [5] nan 0.000 nan 1.000 0.000 0.000 0.000 0.250 nan 0.000 0.000 0.400
Class [6] 0.500 0.667 0.500 0.067 0.500 1.000 0.500 1.000 0.500 0.800 0.500 0.125

YS 0.448 0.430 0.448 0.426 31.749 31.446 28.514 -13.448

Class [3] 0.800 0.692 0.692 0.889 0.667 0.750 0.750 0.667 0.727 0.720 0.720 0.762
Class [4] 0.300 0.318 0.350 0.225 0.333 0.389 0.389 0.500 0.316 0.350 0.368 0.310
Class [6] 0.455 0.455 0.455 0.267 0.385 0.385 0.385 0.308 0.417 0.417 0.417 0.286
Class [7] 0.000 0.059 0.000 0.021 0.000 0.200 0.000 0.200 0.000 0.091 0.000 0.038
Class [8] 0.364 0.333 0.364 0.176 0.800 0.800 0.800 0.600 0.500 0.470 0.500 0.272
Class [9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PB1 0.947 - 0.936 0.939 90.625 - 83.936 83.032 positive 0.707 - 0.642 0.649 0.787 - 0.775 0.820 0.745 - 0.702 0.725
SG 0.992 - 0.974 0.991 96.684 - 81.925 96.684 positive 0.966 - 0.833 0.955 0.966 - 0.966 0.966 0.966 - 0.895 0.960
SH2 1.000 - 1.000 1.000 99.672 - 94.258 99.590 positive 1.000 - 1.000 1.000 1.000 - 1.000 1.000 1.000 - 1.000 1.000
VW 0.991 - 0.979 0.991 94.529 - 86.778 93.769 positive 0.923 - 0.781 0.923 0.960 - 1.000 0.960 0.941 - 0.877 0.941

WQR 0.906 - 0.906 0.857 85.336 - 85.178 65.291 positive 0.079 - 0.079 0.097 0.167 - 0.167 0.389 0.107 - 0.107 0.155

TABLE IV
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN THAT USES THE CONDENSING SET BUILT BY IB2

Datasets
Accuracy Reduction Rate Rare

Classes
Precision Recall F-Score

Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE

AV 0.756 0.753 0.754 0.756 67.386 66.868 66.537 64.755
Class [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [2] 0.707 0.564 0.629 0.650 0.679 0.731 0.718 0.833 0.693 0.637 0.671 0.730
Class [9] 0.735 0.565 0.643 0.703 0.893 0.929 0.964 0.929 0.806 0.703 0.771 0.800

BL 0.703 0.737 0.703 0.670 71.875 78.125 71.635 55.769 Class [1] 0.190 0.185 0.176 0.125 0.200 0.250 0.150 0.200 0.195 0.213 0.162 0.154

CAR 0.861 0.812 0.851 0.847 80.626 80.278 76.455 76.021
Class [2] 0.522 0.400 0.455 0.516 0.522 0.783 0.652 0.696 0.522 0.783 0.652 0.696
Class [3] 0.679 0.468 0.553 0.625 0.826 0.957 0.913 0.870 0.826 0.957 0.913 0.870

KDD 0.995 0.984 0.995 0.987 99.198 99.154 99.133 98.834

Class [1] 0.471 0.458 0.476 0.478 0.615 0.846 0.769 0.846 0.533 0.594 0.588 0.611
Class [2] 1.000 1.000 1.000 0.500 0.500 0.500 0.500 0.500 0.667 0.667 0.667 0.500
Class [3] 1.000 0.040 1.000 1.000 0.905 0.952 0.952 0.905 0.950 0.077 0.975 0.950
Class [4] 0.500 0.455 0.625 0.500 0.667 0.833 0.833 0.667 0.572 0.589 0.714 0.572
Class [6] 1.000 1.000 1.000 1.000 0.714 0.714 0.714 0.857 0.833 0.833 0.833 0.923
Class [7] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [8] 0.250 0.250 0.250 0.250 0.200 0.200 0.200 0.200 0.222 0.222 0.222 0.222
Class [12] 0.500 0.500 0.500 1.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.667
Class [13] 1.000 0.333 1.000 1.000 1.000 1.000 0.100 1.000 1.000 0.500 0.182 1.000
Class [16] 0.000 0.021 0.000 0.010 0.000 0.167 0.000 0.167 0.000 0.037 0.000 0.019
Class [22] 1.000 1.000 1.000 0.833 0.833 0.833 0.833 0.833 0.909 0.909 0.909 0.833

PB1 0.925 0.820 0.926 0.739 91.530 91.091 89.419 74.589
Class [2] 0.600 0.529 0.615 0.600 0.462 0.692 0.615 0.692 0.522 0.600 0.615 0.643
Class [3] 0.520 0.341 0.600 0.259 0.684 0.737 0.789 0.789 0.591 0.466 0.682 0.390
Class [4] 0.344 0.123 0.342 0.078 0.525 0.775 0.625 0.700 0.416 0.212 0.442 0.140

SH1 0.997 0.464 0.988 0.948 99.604 99.478 99.289 99.501

Class [1] 0.241 0.007 0.099 0.027 1.000 1.000 1.000 1.000 0.388 0.014 0.180 0.053
Class [2] 0.966 0.007 0.377 0.098 0.889 1.000 0.921 0.905 0.926 0.014 0.535 0.177
Class [5] 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.400
Class [6] 0.333 0.667 0.500 0.667 0.250 1.000 0.500 1.000 0.286 0.800 0.500 0.800

YS 0.432 0.412 0.434 0.394 43.883 42.568 39.838 10.920

Class [3] 0.750 0.692 0.692 0.875 0.500 0.750 0.750 0.583 0.600 0.720 0.720 0.700
Class [4] 0.316 0.280 0.318 0.237 0.333 0.389 0.389 0.500 0.324 0.326 0.350 0.322
Class [6] 0.417 0.455 0.455 0.250 0.385 0.385 0.385 0.380 0.400 0.417 0.417 0.302
Class [7] 0.000 0.048 0.000 0.017 0.000 0.200 0.000 0.200 0.000 0.077 0.000 0.031
Class [8] 0.500 0.333 0.364 0.150 0.600 0.800 0.800 0.600 0.545 0.470 0.500 0.240
Class [9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PB2 0.925 - 0.917 0.858 92.873 - 85.307 88.734 positive 0.598 - 0.549 0.396 0.702 - 0.815 0.865 0.646 - 0.656 0.543
SG 0.988 - 0.951 0.986 97.594 - 82.575 97.529 positive 0.934 - 0.708 0.914 0.966 - 0.966 0.966 0.950 - 0.817 0.939
SH2 1.000 - 1.000 1.000 99.672 - 94.258 99.590 positive 1.000 - 1.000 1.000 1.000 - 1.000 1.000 1.000 - 1.000 1.000
VW 0.982 - 0.964 0.982 95.137 - 87.234 94.883 positive 0.828 - 0.676 0.828 0.960 - 1.000 0.960 0.889 - 0.807 0.889

WQR 0.859 - 0.856 0.659 88.743 - 88.462 81.426 positive 0.062 - 0.060 0.044 0.222 - 0.222 0.444 0.097 - 0.094 0.080



TABLE V
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN THAT USES THE CONDENSING SET BUILT BY RSP3

Datasets
Accuracy Reduction Rate Rare

Classes
Precision Recall F-Score

Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE

AV 0.792 0.794 0.792 0.791 47.581 47.150 47.085 38.358
Class [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [2] 0.788 0.743 0.783 0.713 0.667 0.705 0.692 0.795 0.722 0.724 0.735 0.752
Class [9] 0.818 0.711 0.794 0.844 0.964 0.964 0.964 0.964 0.885 0.818 0.871 0.900

BL 0.737 0.746 0.764 0.703 61.058 67.308 60.817 25.240 Class [1] 0.059 0.077 0.077 0.154 0.050 0.050 0.050 0.200 0.054 0.061 0.061 0.174

CAR 0.856 0.849 0.849 0.870 67.420 69.244 65.595 56.773 Class [2] 0.667 0.515 0.591 0.652 0.522 0.739 0.565 0.652 0.586 0.607 0.578 0.652
Class [3] 0.609 0.514 0.533 0.680 0.609 0.783 0.696 0.739 0.609 0.621 0.604 0.708

KDD 0.996 0.994 0.996 0.996 99.118 98.432 98.411 97.211

Class [1] 0.524 0.370 0.524 0.647 0.846 0.769 0.846 0.846 0.647 0.500 0.647 0.733
Class [2] 0.667 1.000 0.667 0.667 0.500 0.500 0.500 0.500 0.572 0.667 0.572 0.572
Class [3] 1.000 0.370 1.000 0.950 0.905 0.952 0.905 0.905 0.950 0.533 0.950 0.927
Class [4] 0.714 0.455 0.714 0.714 0.833 0.833 0.833 0.833 0.769 0.589 0.769 0.769
Class [6] 1.000 1.000 1.000 1.000 0.857 1.000 1.000 0.857 0.923 1.000 1.000 0.923
Class [7] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [8] 0.250 0.250 0.250 0.250 0.200 0.200 0.200 0.200 0.222 0.222 0.222 0.222
Class [12] 0.500 0.500 0.500 1.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.667
Class [13] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [16] 0.000 0.031 0.000 0.100 0.000 0.167 0.000 0.167 0.000 0.052 0.000 0.125
Class [22] 1.000 1.000 1.000 1.000 0.833 0.833 0.833 0.833 0.909 0.909 0.909 0.909

PB1 0.941 0.895 0.942 0.911 86.157 88.158 84.814 49.260
Class [2] 0.800 0.769 0.818 0.733 0.615 0.769 0.692 0.846 0.695 0.769 0.750 0.785
Class [3] 0.524 0.412 0.636 0.389 0.579 0.737 0.737 0.737 0.550 0.529 0.683 0.509
Class [4] 0.458 0.200 0.434 0.261 0.550 0.725 0.575 0.725 0.500 0.314 0.495 0.384

SH1 0.996 0.587 0.995 0.995 99.312 99.403 99.059 98.849

Class [1] 0.684 0.007 0.565 0.867 1.000 1.000 1.000 1.000 0.812 0.014 0.722 0.929
Class [2] 0.859 0.010 0.814 0.465 0.873 1.000 0.905 0.937 0.866 0.020 0.857 0.622
Class [5] nan 0.000 nan nan 0.000 0.000 0.000 0.000 nan 0.000 0.000 0.000
Class [6] 0.500 0.667 0.500 0.667 0.500 1.000 0.500 1.000 0.500 0.800 0.500 0.800

YS 0.481 0.463 0.477 0.432 26.997 26.694 24.469 -45.602

Class [3] 0.750 0.750 0.692 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.720 0.750
Class [4] 0.368 0.318 0.350 0.235 0.389 0.389 0.389 0.444 0.378 0.350 0.368 0.307
Class [6] 0.500 0.417 0.455 0.235 0.462 0.385 0.385 0.308 0.480 0.400 0.417 0.267
Class [7] 0.167 0.000 0.167 0.042 0.200 0.000 0.200 0.400 0.182 0.000 0.000 0.076
Class [8] 0.364 0.308 0.364 0.143 0.800 0.800 0.800 0.600 0.500 0.445 0.500 0.231
Class [9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PB2 0.940 - 0.932 0.933 87.747 - 81.880 76.974 positive 0.657 - 0.619 0.618 0.798 - 0.787 0.809 0.721 - 0.693 0.701
SG 0.988 - 0.975 0.988 94.083 - 80.429 93.888 positive 0.934 - 0.842 0.934 0.966 - 0.966 0.966 0.950 - 0.900 0.950
SH2 1.000 - 1.000 0.998 99.590 - 94.258 99.508 positive 1.000 - 1.000 0.982 1.000 - 1.000 1.000 1.000 - 1.000 0.991
VW 0.985 - 0.982 0.988 90.578 - 83.739 90.729 positive 0.833 - 0.806 0.862 1.000 - 1.000 1.000 0.909 - 0.893 0.926

WQR 0.889 - 0.887 0.854 84.897 - 84.803 46.154 positive 0.098 - 0.096 0.083 0.278 - 0.278 0.333 0.145 - 0.143 0.133

TABLE VI
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN THAT USES THE CONDENSING SET BUILT BY AIB2

Datasets
Accuracy Reduction Rate Rare

Classes
Precision Recall F-Score

Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE

AV 0.767 0.764 0.767 0.765 69.104 68.349 68.227 66.846
Class [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [2] 0.754 0.667 0.718 0.645 0.667 0.718 0.718 0.769 0.708 0.692 0.718 0.702
Class [9] 0.774 0.683 0.692 0.812 0.857 1.000 0.964 0.929 0.813 0.812 0.806 0.867

BL 0.785 0.718 0.766 0.770 73.077 81.971 72.115 63.462 Class [1] 0.000 0.194 0.143 0.185 0.000 0.300 0.150 0.250 0.000 0.236 0.146 0.213

CAR 0.873 0.816 0.851 0.863 83.406 82.103 78.454 81.060 Class [2] 0.667 0.353 0.472 0.533 0.609 0.783 0.739 0.696 0.637 0.487 0.576 0.604
Class [3] 0.680 0.488 0.556 0.586 0.739 0.913 0.870 0.739 0.708 0.636 0.678 0.654

KDD 0.994 0.992 0.994 0.992 99.104 99.067 99.035 98.686

Class [1] 0.474 0.414 0.407 0.550 0.692 0.923 0.846 0.846 0.563 0.572 0.550 0.667
Class [2] 0.667 0.667 0.667 0.667 0.500 0.500 0.500 0.500 0.572 0.572 0.572 0.572
Class [3] 0.950 0.299 0.870 0.952 0.905 0.952 0.952 0.952 0.927 0.455 0.909 0.952
Class [4] 0.714 0.455 0.714 0.714 0.833 0.833 0.833 0.833 0.769 0.589 0.769 0.769
Class [6] 1.000 1.000 1.000 1.000 0.857 1.000 1.000 1.000 0.923 1.000 1.000 1.000
Class [7] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [8] 0.250 0.250 0.250 0.250 0.200 0.200 0.200 0.200 0.222 0.222 0.222 0.222
Class [12] 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Class [13] 1.000 0.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000
Class [16] 0.000 0.017 0.000 0.000 0.000 0.167 0.000 0.000 0.000 0.031 0.000 0.000
Class [22] 1.000 1.000 1.000 0.714 0.833 0.833 0.833 0.833 0.909 0.909 0.909 0.769

PB1 0.922 0.885 0.921 0.808 91.913 91.283 89.446 49.260
Class [2] 0.875 0.692 0.800 0.769 0.538 0.692 0.615 0.769 0.666 0.692 0.695 0.769
Class [3] 0.609 0.593 0.615 0.309 0.737 0.842 0.842 0.895 0.667 0.696 0.711 0.459
Class [4] 0.388 0.370 0.382 0.129 0.650 0.750 0.725 0.800 0.486 0.496 0.500 0.222

SH1 0.990 0.679 0.986 0.982 99.563 99.457 99.250 99.421

Class [1] 0.078 0.011 0.075 0.075 1.000 1.000 1.000 1.000 0.145 0.022 0.140 0.140
Class [2] 0.812 0.012 0.401 0.261 0.889 1.000 0.937 0.921 0.849 0.024 0.562 0.407
Class [5] 0.000 0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [6] 0.500 0.667 0.500 0.667 0.500 1.000 0.500 1.000 0.500 0.800 0.500 0.800

YS 0.469 0.451 0.463 0.412 45.501 44.388 40.950 13.852

Class [3] 0.700 0.692 0.692 0.875 0.583 0.750 0.750 0.583 0.636 0.720 0.720 0.700
Class [4] 0.375 0.286 0.308 0.229 0.500 0.444 0.444 0.444 0.429 0.348 0.364 0.302
Class [6] 0.500 0.417 0.417 0.263 0.462 0.385 0.385 0.385 0.480 0.400 0.400 0.313
Class [7] 0.000 0.050 0.000 0.019 0.000 0.200 0.000 0.200 0.000 0.080 0.000 0.035
Class [8] 0.429 0.308 0.286 0.150 0.600 0.800 0.800 0.600 0.500 0.445 0.421 0.240
Class [9] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PB2 0.921 - 0.922 0.889 92.708 - 85.280 88.816 positive 0.576 - 0.566 0.463 0.702 - 0.843 0.843 0.633 - 0.677 0.598
SG 0.982 - 0.948 0.981 97.854 - 82.705 97.724 positive 0.885 - 0.688 0.876 0.966 - 1.000 0.966 0.924 - 0.815 0.919
SH2 1.000 - 0.997 1.000 99.754 - 94.340 99.754 positive 1.000 - 0.965 1.000 1.000 - 1.000 1.000 1.000 - 0.982 1.000
VW 0.997 - 0.997 0.997 95.745 - 87.234 95.259 positive 0.962 0.962 0.962 1.000 1.000 1.000 0.981 - 0.981 0.981

WQR 0.865 - 0.850 0.777 89.587 - 89.024 84.240 positive 0.078 - 0.081 0.068 0.278 - 0.333 0.444 0.122 - 0.130 0.118



TABLE VII
ACCURACY/PRECISION/RECALL/F-SCORE ACHIEVED BY 1-NN THAT USES THE CONDENSING SET BUILT BY RHC

Datasets
Accuracy Reduction Rate Rare

Classes
Precision Recall F-Score

Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE Original RCPM1 RCPM2 RCPM-

SMOTE Original RCPM1 RCPM2 RCPM-
SMOTE

AV 0.759 0.764 0.760 0.759 70.175 69.758 69.334 66.933
Class [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class [2] 0.738 0.585 0.688 0.686 0.615 0.705 0.705 0.756 0.671 0.639 0.696 0.719
Class [9] 0.800 0.684 0.737 0.833 0.857 0.929 1.000 0.893 0.828 0.788 0.849 0.862

BL 0.732 0.713 0.742 0.722 79.087 81.490 76.202 53.606 Class [1] 0.091 0.156 0.130 0.100 0.100 0.250 0.150 0.100 0.095 0.192 0.139 0.100

CAR 0.833 0.674 0.806 0.818 85.491 83.753 80.799 80.712 Class [2] 0.556 0.260 0.425 0.607 0.652 0.826 0.736 0.739 0.600 0.396 0.539 0.667
Class [3] 0.654 0.389 0.500 0.667 0.739 0.913 0.913 0.696 0.694 0.546 0.646 0.681

KDD 0.995 0.993 0.994 0.994 99.118 99.063 99.054 98.598

Class [1] 0.500 0.324 0.588 0.611 0.538 0.846 0.769 0.864 0.518 0.469 0.666 0.716
Class [2] 0.667 0.667 0.667 1.000 0.500 0.500 0.500 0.500 0.572 0.572 0.572 0.667
Class [3] 0.952 0.357 0.800 0.950 0.952 0.952 0.952 0.905 0.952 0.519 0.869 0.927
Class [4] 0.714 0.714 0.714 0.625 0.833 0.833 0.833 0.833 0.769 0.769 0.769 0.714
Class [6] 1.000 1.000 1.000 1.000 0.714 1.000 0.714 0.714 0.833 1.000 0.833 0.833
Class [7] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Class [8] 0.250 0.250 0.250 0.250 0.200 0.200 0.200 0.200 0.222 0.222 0.222 0.222
Class [12] 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Class [13] 1.000 0.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000
Class [16] 0.000 0.020 0.000 0.000 0.000 0.167 0.000 0.000 0.000 0.036 0.000 0.000
Class [22] 1.000 0.714 1.000 0.714 0.833 0.833 0.833 0.833 0.909 0.769 0.909 0.769

PB1 0.931 0.868 0.928 0.913 90.680 90.707 88.651 77.961
Class [2] 0.615 0.321 0.615 0.867 0.615 0.692 0.615 1.000 0.615 0.439 0.615 0.929
Class [3] 0.577 0.410 0.577 0.457 0.789 0.842 0.789 0.842 0.667 0.551 0.667 0.592
Class [4] 0.391 0.183 0.357 0.257 0.625 0.775 0.625 0.725 0.481 0.296 0.454 0.379

SH1 0.997 0.460 0.988 0.997 99.573 99.496 99.294 99.426

Class [1] 0.929 0.006 0.542 0.382 1.000 1.000 1.000 1.000 0.963 0.012 0.703 0.553
Class [2] 0.609 0.008 0.214 0.887 0.889 1.000 0.889 0.837 0.723 0.016 0.345 0.861
Class [5] nan 0.000 nan nan 0.000 0.000 0.000 0.000 nan 0.000 0.000 0.000
Class [6] 0.500 0.667 0.500 0.667 0.500 1.000 0.500 1.000 0.500 0.800 0.500 0.800

YS 0.420 0.438 0.416 0.416 48.534 46.714 44.186 11.426

Class [3] 0.800 0.750 0.692 0.889 0.667 0.750 0.750 0.667 0.727 0.750 0.720 0.762
Class [4] 0.348 0.250 0.350 0.229 0.444 0.389 0.389 0.444 0.390 0.304 0.368 0.302
Class [6] 0.500 0.333 0.417 0.333 0.462 0.385 0.385 0.385 0.480 0.357 0.400 0.357
Class [7] 0.000 0.056 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.088 0.000 0.000
Class [8] 0.364 0.267 0.364 0.176 0.800 0.800 0.800 0.600 0.500 0.400 0.500 0.272
Class [9] 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000

PB2 0.930 - 0.922 0.920 91.859 - 84.923 85.307 positive 0.615 - 0.571 0.562 0.764 - 0.815 0.809 0.681 - 0.672 0.663
SG 0.987 - 0.962 0.984 98.049 - 83.030 97.984 positive 0.924 - 0.761 0.904 0.966 - 0.977 0.966 0.945 - 0.856 0.934
SH2 1.000 - 0.997 1.000 99.754 - 94.340 99.754 positive 1.000 - 0.965 1.000 1.000 - 1.000 1.000 1.000 - 0.982 1.000
VW 1.000 - 0.985 1.000 97.112 - 88.298 96.960 positive 1.000 - 0.833 1.000 1.000 - 1.000 1.000 1.000 - 0.909 1.000

WQR 0.856 - 0.856 0.824 92.026 - 91.651 76.642 positive 0.117 - 0.117 0.068 0.500 - 0.500 0.333 0.190 - 0.190 0.113

TABLE VIII
COMPARISONS

Methods RR Acc. Precision Recall F-Score
W L T W L T W L T W L T W L T

Original vs RCPM1 5 2 0 7 0 0 6 1 0 0 7 0 6 1 0
Original vs RCPM2 12 0 0 8 1 3 8 3 1 2 9 1 9 3 0

Original vs RCPM-SMOTE 12 0 0 9 1 2 8 4 0 0 9 3 7 5 0
RCPM1 vs RCPM2 7 0 0 0 7 0 0 7 0 5 2 0 1 6 0

RCPM1 vs RCPM-SMOTE 7 0 0 3 4 0 2 5 0 5 2 0 2 5 0
RCPM2 vs RCPM-SMOTE 7 5 0 7 4 1 6 6 0 4 7 1 4 8 0

clear which of the other algorithms is more accurate in terms
of accuracy. Rare Class Preservation Methods achieved lower
rare classes precision and overall accuracy measurements
than the data reduction without preserving rare classes. Rare
classes precision achieved by RCPM-SMOTE seems to be
similar to that of RCPM2. Both achieved higher precision
than RCPM1. In contrast, all Rare Class Preservation Methods
seem to achieve higher recall than the data reduction without
preserving rare classes. RCPM1 is the method with the greatest
improvements in terms of recall. RCPM2 and RCPM-SMOTE
also improve recall, but the improvements are not so high as
the improvements achieved by RCPM1. It is not clear which
data reduction technique is better than the other in terms
of recall and precision. It depends on the dataset used. For
instance, RSP3 with RCPM2 achieved much higher precision
on SH than the other methods. Also, in some cases, AIB2 and
RHC seem to achieve higher recall than the other three al-
gorithms. Unfortunately, F-score measurements show that the
decreases in precision are higher than the increases in recall.
However, there are some cases with satisfactory improvements
in terms of F-Score. For example, for the CAR dataset, all
three methods produce very good results. Moreover, RCPM1

and RCPM-SMOTE produce good F-score results in some
datasets as well.

For each dataset used, a value for each Rare Class Preser-
vation Method is computed by averaging the measurements
achieved by each PS-condensing and PG algorithm. Then, we
count the wins, the losses and the ties for each measure used.
Table VIII compares the methods in pairs. It is seen that, in
terms of reduction rate, accuracy and precision, data reduction
without preserving rare classes is more effective. In contrast,
RCPM1, RCPM2 and RCPM-SMOTE improve recall.

V. CONCLUSION

Although rare classes are often more significant than com-
mon classes, data reduction may even eliminate the training
instances that belong to rare classes. Therefore, they are
inadequate for imbalanced training data. This paper presented
methods for rare classes preservation. They are applied in con-
junction with either a PS-condensing or a PG algorithm. The
first method is called RCPM1 and preserves the rare classes
by applying data reduction only on instances that belong to
common classes. The second method is called RCPM2 and
applies data reduction on the complete training datasets and
then all the instances that belong to rare classes are placed
back in the condensing set replacing the rare class prototypes.
In both RCPM1 and RCPM2, instances that belong to rare
classes remain intact in the condensing set. Both RCPM1 and
RCPM2 avoid costly under-sampling or over-sampling that
deal with class imbalances. Furthermore, an extra rare class
preservation method that utilizes SMOTE oversampling, and
is called RCPM-SMOTE, was developed. Initially, it applies
SMOTE in order to balance the training dataset and then
it applies data reduction. RCPM1 can be applied only on



multi-class datasets with more than one common classes while
RCPM2 and RCPM-SMOTE may be applied on any classifi-
cation dataset. The three methods were tested by conducting
experiments on twelve imbalanced datasets. The experimental
measurements obtained showed that RCPM1, RCPM2 and
RCPM-SMOTE improve recall measurements while reduction
rates remain high. In many problems with imbalanced data,
high recall is what is required (e.g., earthquake prediction,
extreme weather conditions, etc.). Therefore, the Rare Class
Preservation Methods presented in this paper can be applied
in such domains where high recall is required and a slightly
lower precision is acceptable.
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