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Abstract. The effectiveness of the popular k-NN classifier is highly de-
pendent on the value of the parameter k that is chosen in advance and
is fixed during classification. Different values are appropriate for differ-
ent datasets and parameter tuning is usually inevitable. A dataset may
include simultaneously well-separated and not well-separated classes as
well as noise in certain only subspaces of the metric space. Thus, a dif-
ferent k value should be employed depending on the subspace where the
unclassified instance lies. The paper proposes a new algorithm with five
heuristics for dynamic k determination. The heuristics are based on a
fast clustering pre-processing procedure that builds an auxiliary data
structure. The latter provides information about the subspace where the
unclassified instance lies. The heuristics exploit the information and dy-
namically determine how many neighbours will be examined. The data
structure construction and the heuristics do not involve any input pa-
rameters. The proposed heuristics are tested on several datasets. The ex-
perimental results illustrate that in many cases they can achieve higher
classification accuracy than the k-NN classifier that uses the best tuned
k value.

Keywords: k-NN Classification, Dynamic k parameter determination,
Homogeneous clustering, heuristics

1 Introduction

Classification is a important data mining task that has attracted the interest of
the research community for many decades. Classification algorithms try to assign
new, unlabeled instances to a set of predefined categories (or classes) on the basis
of the available training data, namely, a set of already classified instances.

The k-NN classifier [5] predicts the class of an instance x by searching in the
training set and retrieving the k nearest instances to x according to a distance
metric, typically, the Euclidean distance. The nearest instances are called neigh-
bours. Then, x is classified to the majority class among the classes that the k
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nearest neighbours belong to. The majority class is determined via a procedure
known as the nearest neighbours voting.

Classification accuracy highly depends on the selection of k. The value of k
that achieves the highest accuracy depends on the training set used. Usually,
tedious cross-validation tasks are performed to determine the “best” k value,
which is then used to classify new instances. That value is unique and constant
for all instances that need to be classified. Although the determination of k
can not follow any general rule and the “best” k may be completely different for
different training sets, large k values examine larger neighbourhoods (subspaces)
and, consequently, they have to be used when the classes are not well separated
and when the training set contains noise. In other words, large k values render
the classifier more noise tolerant. However, large k values do not clearly define
the boundaries between distinct classes. In contrast, small k values render the
classifier noise sensitive and should be used on training sets with well-separated
classes.

Even the “best” k value can not be optimal. Real-life datasets may have
quite different form in different subspaces of the multidimensional metric space.
For example, a training set may contain simultaneously well-separated and not
well-separated classes as well as noise only in certain subspaces of the metric
space. In such cases, a classifier that uses a fixed “best” k value may lead to less
accurate classification than a classifier that utilizes a different k value for each
instance that needs to be classified depending on the subspace where the latter
lies. This observation triggered the motivation of the present work.

The contribution of this work is the development of a novel parameter free
k-NN classifier in the sense that it uses a dynamic k value depending on nature
of the subspace where the instance to be classified lies. We call the proposed
classifier Subspace Homogeneity based Dynamic k-NN classifier (shd-kNN). The
shd-kNN classifier utilizes heuristic methods that dynamically adjust the value
of parameter k. The paper introduces five heuristics. All of them are based on a
same data structure that is constructed by a simple fast and parameter-free k-
means clustering [11] pre-processing procedure that builds homogeneous clusters.
The data structure holds the cluster centroids as well as information about the
area that each cluster centroid represents. In effect, when a new instance x needs
to be classified, the nearest centroid c from the data structure is retrieved. Then
based on c, k is appropriately adjusted and x is classified by searching the k
nearest neighbours in the training set.

The rest of the paper is structured as follows: Section 2 briefly reviews related
work and Section 3 presents in detail the proposed shd-kNN classifier and the
five heuristics. The experimental study is presented in Section 4, and finally,
Section 5 concludes the paper and gives directions for future work.

2 Related work

In [14] three heuristics for dynamic k value determination in the context k-NN
classification are proposed. However, the three heuristics introduce parameters
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that should be tuned in order to achieve high accuracy. The parameter tuning
is usually computational expensive since it involves trial-and-error procedures.
In [4] a clustering based method for dynamic k value selection is proposed, but
involves various parameters.

Another interesting proposal to dynamically adjust the k parameter is pre-
sented in [3]. For each unclassified instance, the proposed algorithm determines
the k value by constructing a hypersphere around it to capture the local distri-
bution of the surrounding training instances. In [10], Johansson et al. propose a
k-NN classifier that adopts the concept of “Spheres of Confidence” to determine
the k parameter value for each instance that needs to be classified.

The work presented in [12] introduced two Adaptive kNN classifiers. They
are code named Ada-kNN1 and Ada-kNN2. Ada-kNN1 uses the density and
distribution of the neighborhood of each unclassified instance and learns a suit-
able k for it by using an artificial neural network. Ada-kNN2 uses a heuristic
method guided by an indicator of the local density of the unclassified instance
and information about its neighboring training instances.

Moreover, In [9] the authors demonstrated how k value can be adjusted
for two-class nearest neighbour classifiers with unbalanced classes. A Bayesian
method for optimum k value determination for a dataset is presented in [8].
However, the optimum k value is fixed.

3 Subspace Homogeneity based Dynamic k-NN

The proposed Subspace Homogeneity based Dynamic k-NN classifier (shd-knn) is
based on a simple k-means clustering procedure that builds homogeneous clusters
and keeps their centroids. The result of the procedure is a data structure, which
we call Structure of Homogeneous Clusters (SHC). The concept of homogeneous
clustering was first presented in [13] for the purpose of developing a prototype
generation data reduction technique. Here, we adopt the same methodology in
order to develop a parameter free k-NN classifier that automatically adjusts k for
each instance that needs to be classified depending on the nature of the subspace
where the instance lies.

More specifically, SHC is build by applying the following algorithm: Initially,
the training set is considered as a non-homogeneous cluster and a mean instance
for each class is computed. Then, k-means clustering is applied using the class
means as initial means. The result is the creation of as many clusters as the
number of distinct class labels in the cluster. This clustering process is applied
recursively for all non-homogeneous clusters, and in the end, all clusters become
homogeneous. Each homogeneous cluster centroid is stored in SHC along with
a number indicating the recursion depth, i.e., how many recursive calls were
necessary to determine that homogeneous cluster.

Figure 1 presents a two dimensional example. Assume that the training set
has 26 instances that can be either “squares” or “circles” (Figure 1(a)). Initially,
the SHC construction algorithm computes a mean for the class “square” and a
mean for the class “circle” (see Figure 1(b)). Then, k-means is executed by using
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the class means as initial means and produces two clusters (Figure 1(c)). Cluster
A is non-homogeneous and cluster B is homogeneous. For cluster B, the algo-
rithm stores the cluster centroid to SHC along with the number d = 1, denoting
that the homogeneous cluster was produced at recursion depth 1 (Figure 1(d)).
For cluster A, the class means in the cluster are computed (Figure 1(d)), k-means
is executed and discovers clusters C and D. Both are homogeneous (Figure 1(e))
and their centroids are placed in SHC along with the number d = 2 since both
were produced at recursion depth 2 (Figure 1(f)).

(a) initial data (b) initial class means (c) k-means on initial
data

(d) Cluster centroid and
class means in a non-
homogeneous cluster

(e) k-means on a
non-homogeneous clus-
ter

(f) final set of homoge-
neous cluster centroids

Fig. 1. Data generation through recursive k-means clustering

From another point of view, the aforementioned example can be illustrated as
a tree of homogeneous clusters (see Figure3). The root of the tree is the whole
training set. The first level of tree holds clusters A and B. Since cluster B is
homogeneous, it becomes a leaf where the its centroid b is stored together with
the recursion depth 1. Cluster A becomes parent of clusters C and D. Since C and
D are homogeneous, they also become leaves with the corresponding centroids
and their depths shown accordingly.

Obviously, for large subspaces that include instances of only one class label,
the SHC construction algorithm discovers large homogeneous clusters at a rela-
tively low recursion depth. These clusters are leaves in the cluster tree and are
placed not far away from the root of the tree. In contrast, for close class border
or noisy subspaces, the algorithm identifies small homogeneous clusters at higher
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Fig. 2. Tree representation of SHC

recursion depths. Those clusters are placed far away from the root of the tree.
Hence, the cluster centroids hold information about the subspace they represent
in the form of the recursion depth d.

The shd-kNN classifier utilizes SHC and, based on one of the heuristics we
propose below, determines the k value to be used for each individual instance
that needs to be classified. Obviously, the SHC construction algorithm runs only
once as a pre-processing step. Then, when a new instance x needs to be classified,
shd-kNN finds the 1-nearest centroid c in SHC and its corresponding d. Then,
one of the proposed heuristics is employed to determine k based on d. Finally,
shd-kNN classifies x by finding the k nearest neighbours in the original training
set.

The five proposed heuristics are summarized bellow:

– k = d: The is the simplest heuristic. It just defines k to be equal to d. For
instance, if the 1-nearest centroid in SHC belongs to a homogeneous cluster
that was formed at recursion depth 3, k is set to 3. One can assume that
this heuristic will not be very accurate since a larger number of neighbours
is often more appropriate. However, it is used as a baseline.

– k = 2d: This heuristic tends to examine an extremely large number of nearest
neighbours, especially when d is greater than 9. Thus, in our experiments,
we manually set k = 29 when d > 9.

– k = d2: This heuristic is a trade-off between the above two heuristics.
– k = (d× (d + 1))/2 or k =

∑d
i=1 d: This heuristic determines k by mapping

values of d to the following arithmetic sequence: 1, 3, 6, 10, 15, 21, 28, . . ..

– k = be
√
dc: This is a more conservative heuristic than the previous one. It

uses the 2, 4, 5, 7, 9, 11, 14, . . . sequence for determining k.

We expect that our classifier will outperform the k-NN classifiers that use
fixed k parameter values for datasets that contain a mixture of well-separated
and not well-separeted classes, like the well-known iris dataset. The SHC con-
struction algorithm will build only one homogeneous cluster for the subspace
containing the well-separated class (in our case iris-setosa). Thus, the proposed
heuristics will consider a very small k value for each unclassified instance lying
closer to that cluster centroid. In contrast, for unclassified instances close to
cluster centroids in the subspaces of the other two classes the algorithm will use
larger k values.
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4 Performance Evaluation

4.1 Experimental Setup

The shd-kNN classifier was evaluated on fourteen datasets. Table 1 summa-
rizes the characteristics of the datasets used. They are distributed by the KEEL
dataset repository3 [1] and by UCI machine learning repository4 [2, 7]. We used
the Euclidean distance as the distance metric. The datasets were normalized
within the range [0, 1].

Table 1. Dataset description

Dataset Size Attributes Classes

Balance (bl) 625 4 3

Banana (bn) 5300 2 2

Ecoli (ecl) 336 7 8

Iris 120 4 3

Letter Recognition (lir) 20000 16 26

Landsat Satellite (ls) 6435 36 6

Magic G. Telescope (mgt) 19020 10 2

Pen-Digits (pd) 10992 16 10

Phoneme (ph) 5404 5 2

Pima (pm) 615 8 2

Shuttle (sh) 58000 9 7

Twonorm (tn) 7400 20 2

Texture (txr) 5500 40 11

Yeast (ys) 1484 8 10

Moreover, we wanted to test the performance of the heuristics on datasets
with high levels of noise. Thus, for some of the datasets, we built two additional
“noisy” versions by adding 10% and 30% random uniform noise. The noise was
added by setting the class label of the 10% or 30% of the training instances to
a randomly chosen different class label. The datasets on which we artificially
added noise are code-named by their abbreviation plus the level of added noise
(e.g., txr30). The mgt dataset has only two classes, thus, we did not build the
mgt30 version for this dataset.

We compared the performance of the shd-kNN classifier against the conven-
tional k-NN classifiers that use fixed k values. We divided each dataset into a
training set and a testing set. We added noise only in the training portions.
We measured the accuracy achieved by each k-NN classification approach by
searching for the nearest neighbours of each testing instance in the correspond-
ing training set. Possible ties during the majority class voting were resolved using
the 1-nearest neighbour rule.

3 http://sci2s.ugr.es/keel/datasets.php
4 http://archive.ics.uci.edu/ml/
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We build six conventional k-NN classifiers with constant k parameter value.
The first three classifiers are: the widely used 1-NN classifier, the 5-NN classi-
fier (5 is the default value for the implementation of k-NN classifier in Python’s
scikit-learn library [15]) and the 10-NN classifier. The fourth and fifth conven-

tional k-NN classifiers used are those with k =
√
N [6, 3] and k =

√
N
2 where N

is the number of instances in the training set. They are common rule-of-thumb
approaches that are often utilized in the literature. The last conventional k-NN
classifier used is that with the “best” k parameter value.

“Best k” was estimated by applying a 5-fold cross validation schema. In
particular, we divided each training set into five portions. Then, we ran the k-NN
classifier five times. Each time, a different portion was the validation set. Each
instance of the validation set was classified by applying the k-NN classifier that
searches for nearest neighbours into the union of the rest four portions. The result
was the average accuracy of the five executions. We applied the aforementioned
procedure fifty times by varying k from 1 to 50. Then, we kept the k parameter
value that achieved the highest accuracy, and this is the so called “best” k.
Obviously, the accuracy achieved by the k-NN classifier that uses the “best” k
is derived by classifying the instances of the initial testing set.

For the datasets with artificially added noise, we estimated the “best” k value
by using validation sets without noise. To achieve this, the noise was added in a
copy of the original training set. Then, the original training set and the “noisy”
copy were divided into five folds. Then, we kept the five “noisy” training sets
from the “noisy” copy and the five validation sets from the original training set.
This procedure is described in https://sci2s.ugr.es/noisydata.

We conducted the experimental study without prior knowledge about the
datasets. We believe that the proposed shd-kNN classifier could be more accu-
rate than the “best” k-NN classifier only when the datasets include simultane-
ously well-separated and not well-separated classes as well as noise in certain
subspaces. However, we conducted experiments by using datasets that may not
belong to such dataset categories.

Apart from the accuracy, we estimated three computational cost measure-
ments in terms of distance computations. The first one concerns the cost of
the k-NN classifier. The k parameter value does not influence that cost. Thus,
shd-kNN and conventional k-NN classifiers need to compute that number of
distances. The second measurement concerns the cost overhead needed for the
nearest cluster centroid searching in SHC and it concerns exclusively the shd-
kNN classifiers. The last cost measurement is the pre-processing cost required
for the SHC construction.

4.2 Experimental results

Table 2 presents the computational cost measurements. The last column lists
the number of distances computed for SHC construction, which obviously is
a computationally “cheap” algorithm. Considering that the SHC construction
algorithm runs only once as a pre-processing step, the computational cost is
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insignificant. The computational cost of cross-validation needed for parameter
tuning in the case of “best k” is not reported. Bear in mind that it is extremely
higher than the computational cost of the SHC construction algorithm.

The other two columns present the distance computations for the classifi-
cation step. All the classifiers of the experimental study have to compute the
distances listed in column “NN search over TS”. The shd-kNN classifiers have
to compute the distances that concern the search of the nearest cluster centroid
in SHC. They are listed by column with header “NN search over SHC”.

Table 2. Computational cost in terms of distance computations

Dataset NN search over TS NN search over SHC Construction of SHC

bl 62,500 12,500 59,159

bl10 62,500 21,125 45,104

bl30 62,500 30,250 52,568

bn 4,494,400 940,220 592,642

ecl 18,023 6,030 41,592

ecl10 18,023 6,901 38,263

ecl30 18,023 12,596 43,200

iris 3,600 390 3,826

lir 64,000,000 7,476,000 37,168,151

ls 6,625,476 679,536 1,751,252

ls10 6,625,476 1,537,965 1,945,468

ls30 6,625,476 2,626,767 1,968,248

mgt 57,881,664 12,035,856 3,830,966

mgt10 57,881,664 17,296,788 3,918,354

pd 19,329,212 655,004 2,593,601

pd10 19,329,212 5,303,774 4,231,769

pd30 19,329,212 10,132,780 4,298,161

ph 4,669,920 886,680 639,564

ph10 4,669,920 1,710,720 693,068

ph30 4,669,920 2,494,800 766,212

pm 94,095 27,846 59,688

pm10 94,095 35,343 58,802

pm30 94,095 36,261 65,418

sh 538,193,600 1,774,647 10,977,178

tn 8,761,600 307,840 1,564,256

tn10 8,761,600 1,147,000 1,590,280

tn30 8,761,600 1,863,320 1,793,078

txr 4,840,000 257,400 2,623,438

txr10 4,840,000 1,250,700 3,403,100

txr30 4,840,000 2,523,400 3,521,357

ys 351,648 176,712 431,125

ys10 351,648 204,832 581,014

ys30 351,648 256,336 390,432



Dynamic k-NN classification based on subspace homogeneity 9

Tables 3, 4 and 5 present the accuracy measurements. Almost in all cases an
shd-kNN classifier can achieve higher accuracy than the accuracy achieved by
the conventional k-NN classifiers with k = 1, k = 5, k = 10, k =

√
N and k

=
√

N
2 . It is worth mentioning that 10-NN performs quite well on the specific

suite of datasets, since a large number of them contain noise. It turns out that
10-NN is on average better than 1-NN or 5-NN.

Notice, though, that shd-kNN classifiers in many cases clearly beat all ver-
sions of kNN with fixed k (excluding best k-NN). This is demonstrated in the bl,
bl10, ecl30, iris, ph30, pm10, txr30 and ys datasets. Finally, shd-kNN classifiers
almost always outperform RoT classifiers. This is the reason that in tables 3 and
4 we indicate with boldface only the winners among best k-NN and the shd-kNN
classfiers.

The comparison between the best k-NN and shd-kNN classifiers reveals note-
worthy performance for shd-kNN. At least one of the shd-kNN classifiers can
achieve higher accuracy than that of the best k-NN classifier in 18 datasets,
while in two datasets, a shd-kNN approach is as accurate as the best k-NN clas-
sifier. It is worth mentioning that contrary to the best k-NN classifier, shd-kNN
achieves that performance without the need of any input parameter and tedious
and costly parameter tuning procedures.

The k = (d × (d + 1))/2 heuristic seems to be an ideal approach since it
achieves high accuracy even when the dataset contains noise. In nine datasets it
is more accurate than best k-NN classifier. The simple k = d heuristic performs
well on datasets that in their original form do not include noise (e.g., lir, pd,

sh, txr). The k = 2d, k = d2 and k = be
√
dc heuristics all achieve accuracy

measurements that are close to those of the best k-NN classifier and, in some
cases, even better.

The comparison between shd-kNN and best k-NN classifiers on “noisy” ver-
sions of the datasets does not reveal any useful insights on which classifier is more
accurate on “noisy” conditions. The noise in the data leads to smaller clusters
with high d values. Thus, all shd-kNN heuristics use a high k. Accordingly, the
tuning process through cross-validation reveals a high k value for the best k-NN
classifier.

Table 6 gives an interesting insight on the determination of k based on d.
For each dataset, we report the number of testing instances whose 1-nearest
cluster centroid in SHC is at a given recursion depth. We observe that in general
the number of instances follow the normal distribution for almost all datasets.
There are some interesting exceptions, like the ph dataset, where a large number
of instances are assigned to a small depth. Also, in many datasets the distribution
is left-skewed. As expected, we observe shifted to the right distributions (larger
d values) for noisy datasets.
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5 Conclusions

We propose the shd-kNN classifier, a parameter free k-NN classifier that heuris-
tically determines how many neighbours will be examined for each under classifi-
cation instance. Hence, a different k value is employed depending on the subspace
where the instance lies. The classifier uses a pre-processing step that builds an
auxiliary data structure (SHC) corresponding to the centroids of homogeneous
clusters obtained via a k-Means clustering procedure together with their depth
(a number indicating the recursion depth when the clusters were formed). When
an instance needs to be classified, SHC provides information about the subspace
where the instance lies, in effect, whether the instance is in a noisy subspace in
terms of class labels or not. Then the heuristic used exploits the information and
dynamically determines how many neighbours will be examined.

The data structure construction and the heuristics do not involve input pa-
rameters. The proposed heuristics are tested on several datasets. The experi-
mental results illustrate that in many cases they can achieve higher classification
accuracy than the k-NN classifier that uses the best tuned k value.

We plan to further explore dynamic k parameter determination in the context
of the k-NN classifier. More specifically, we plan to develop heuristics that take
into consideration not only the depth of the cluster centroid but additional met-
rics about the subspace such as the number of instances the centroid represents
and the number of distinct class labels that exist in the immediate neighborhood
of the instance.
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