
Improving Data Reduction by Merging
Prototypes

Pavlos Ponos1, Stefanos Ougiaroglou1,2, and Georgios Evangelidis1

1 Dept. of Applied Informatics, School of Information Sciences,
University of Macedonia, 54636 Thessaloniki, Greece

pponos@uom.edu.gr, gevan@uom.gr
2 Dept. of Information Technology,

Alexander TEI of Thessaloniki, 57400 Sindos, Greece
stoug@uom.edu.gr

Abstract. A well-known and adaptable classifier is the k-Nearest Neigh-
bor (kNN) that requires a training set of relatively small size in order to
perform adequately. Training sets can be reduced in size by using con-
ventional data reduction techniques. Unfortunately, these techniques are
inappropriate in streaming environments or when executed in devices
with limited resources. dRHC is a prototype generation algorithm that
works in streaming environments by maintaining a condensed training
set that can be updated by continuously arriving training data segments.
Prototypes in dRHC carry an appropriate weight to indicate the num-
ber of instances of the same class that they represent. dRHC2 is an
improvement over dRHC since it can handle fixed size condensing sets
by removing the least important prototypes whenever the condensing
set exceeds a predefined size. In this paper, we exploit the idea1 that
dRHC or dRHC2 prototypes could be merged whenever they are close
enough and represent the same class. Hence, we propose two new pro-
totype merging algorithms. The first algorithm performs a single pass
over a newly updated condensing set and merges all prototype pairs of
the same class under the condition that each prototype is the nearest
neighbor of the other. The second algorithm performs repetitive merging
passes until there are no prototypes to be merged. The proposed algo-
rithms are tested against several datasets and the experimental results
reveal that the single pass variation performs better both for dRHC and
dRHC2 taking into account the trade-off between pre-processing cost, re-
duction rate and accuracy. In addition, the merging appears to be more
appropriate for the static version of the algorithm (dRHC) since it offers
higher data reduction without sacrificing accuracy.

Keywords: k-NN Classification, Data Reduction, Prototype Merging,
Data Streams, Clustering

1 We thank Prof. Yannis Manolopoulos for his excellent remarks during ADBIS 2017
that led to that idea.



2 P. Ponos et al

1 Introduction

The attention of the Data Mining and Machine Learning communities has been
attracted by the problem of dealing with fast data streams [1] and large data
sets that cannot fit in main memory. What is more, researchers focus on how
to perform data mining tasks on devices with limited memory, instead of trans-
ferring data to powerful processing servers. Classification, being a typical data
mining task, has many applications on all above-mentioned environments.

Classification algorithms (or classifiers) can be categorized to eager (model
based) or lazy (instance based). Both eager and lazy classifiers assign unclassified
items to a predefined set of class values, with their difference being on how they
work. Eager classifiers use a training set to build a model that is used to classify
new items. On the other hand, lazy classifiers do not build any models and
classify a new item by examining the whole training set. What is of utmost
importance for both types of classifiers is the size and the quality of the training
set, as both dictate the classifier’s effectiveness and efficiency.

A well known and widely used lazy classifier is the k-Nearest Neighbors (k-
NN) [2]. Once a new unclassified item arrives, its k nearest neighbors are retrieved
from the training data. This is achieved by using a distance metric, i.e. Euclidean
distance. Then, the unclassified item is assigned to the most common class among
the classes of the k nearest neighbors.

k-NN is an effective classifier, especially when it is used on small training
sets. In the event of large training sets, all distances between a new item and the
training data have to be computed, and as a result its performance degrades.
Opposite to an eager classifier that discards the training data after the construc-
tion of its classification model, k-NN classifier has higher storage requirements
as it must have the training set always available. Another drawback of k-NN is
that noise can negatively affect its accuracy. A pre-processing step that builds a
small condensing set through a Data Reduction Technique (DRT) can cope with
these weaknesses.

The Dynamic RHC (dRHC) algorithm proposed in [3] is a DRT that is based
on RHC [8] (Reduction through Homogeneous Clusters) and can gradually build
its condensing set. Whenever a new training data segment becomes available,
the existing condensing set gets updated incrementally without needing to keep
the complete training set and regenerate the prototypes. dRHC is applicable
to dynamic environments where training data progressively becomes available
and for the cases where data cannot fit in main memory. Despite the fact that
dRHC is a fast DRT that achieves high reduction rates with no significant loss
in accuracy when applying k-NN, the condensing set that it builds may outpace
the available physical memory. dRHC2 [4] is an improvement over dRHC in that
it keeps the size of the condensing set fixed. The experimental study in [4] shows
that dRHC2 is faster than dRHC while keeping accuracy at high levels.

The motivation of the current work is the scenario shown in Figure 1. The
figure depicts a condensing set produced by dRHC2. One can notice that there
exist prototypes that could be merged, for example the two prototypes that
belong to class “circle”. The paper examines the conditions under which proto-



Improving Data Reduction by Merging Prototypes 3

types could be merged without inhibiting the performance of the k-NN classifier.
Two variations of a prototype merging algorithm are introduced for both dRHC
and dRHC2. The main idea is to merge pairs of prototypes that belong to the
same class, only when certain criteria are met. The difference between the two
variations lies on whether after the arrival of a data segment that updates the
condensing set, the merging phase is executed only once or repetitively until
there are no more prototype to be merged.

Fig. 1. Items of the same class that could be merged. The two prototypes of class
“circle” could be merged. What about the two prototypes of class “square”?

The rest of this paper is structured as follows: Section 2 discusses the back-
ground knowledge on DRTs and their limitations. Section 3 reviews the dRHC
and dRHC2 algorithms. Section 4 considers in detail the proposed algorithms.
In Section 5, the four new algorithms are experimentally compared to dRHC
and dRHC2 on fourteen data sets. Section 6 concludes the paper and proposes
directions for future work.

2 Background Knowledge

In the literature, Data Reduction Techniques (or DRTs in short) can be clas-
sified into two main categories: (i) Prototype Generation (PG) algorithms that
generate prototypes to summarize similar items [5] and (ii) Prototype Selection
(PS) algorithms that collect prototypes from the initial training set [6]. Proto-
type selection algorithms can be further categorized into condensing or editing
algorithms. PS-condensing and PG algorithms are used for data condensation,
i.e., construction of a condensing set from the initial training data. On the other
hand, PS-editing algorithms are used for noise and outlier removal from the
training data.

The basic idea behind both PG and PS algorithms is that without loss in
accuracy we can remove items that do not delineate decision boundaries between
classes. Therefore, PG algorithms generate a few prototypes for the internal areas
and many more for the close-class borders, whereas PS algorithms try to collect



4 P. Ponos et al

items the are close to decision boundaries. A point worth mentioning is that both
are sensitive to noise, hence an editing algorithm must be applied beforehand.

PS and PG algorithms have been reviewed, and compared to each other in
[5], [6] and [7]. A prevalent feature of both is that the whole training set must
reside in main memory, which in general, makes DRTs improper for very large
datasets, especially for the cases where algorithms are executed in devices with
limited resources or when the training set cannot fit in memory.

In addition, as soon as the condensing sets are constructed these DRTs can-
not contemplate new items. In other words, they cannot update their condensing
set in a dynamic manner. What makes DRTs inappropriate for streaming envi-
ronments is that training items must always be available once the condensing set
is built. For each new training item (D) that becomes available, the algorithm
must run from scratch in order to calculate the new condensing set. In order to
tackle this issue the Dynamic RHC and Dynamic RHC2 algorithms [3, 4] can be
used in dynamic and/or streaming environments.

3 The dRHC and dRHC2 Algorithms

The dRHC algorithm maintains all properties of RHC (Reduction through Ho-
mogeneous Clusters) algorithm [3, 8], and in addition it can also manage large
or streaming datasets.

The idea behind RHC is to apply k-Means clustering on the training set in
order to form as many clusters as the distinct values of the class variable using as
initial seeds the corresponding class representatives. Homogeneous clusters, i.e.,
clusters with all items belonging to the same class, are replaced by their centroid,
whereas, the clustering procedure is applied recursively to all non-homogeneous
clusters. RHC is shown to be a fast and effective DRT that outperforms other
well-known DTRs in terms of data reduction and accuracy [3, 8].

In an analogous fashion, dRHC engages two stages: (i) initial condensing set
construction and (ii) condensing set update. As soon as the first data segment
arrives, the condensing set construction phase is executed. The only difference
with RHC’s condensing set is that a weight attribute that denotes the number
of training items that are represented is stored for each prototype. All the sub-
sequent data segments that arrive, are processed by the condensing set update
phase. In this phase, the prototypes of the current condensing set and the items
of the incoming data segment are used, so that a new set of initial clusters is
built. Then, dRHC algorithm proceeds alike to RHC.

An example of the execution of the condensing set update phase is depicted
in Figure 2. More specifically, in Figure 2a we can see a condensing set with
three prototypes and their corresponding weights. When a new data segment
with seven items arrives (Figure 2b), each item is assigned to its nearest proto-
type (Figure 2c). Cluster A is homogeneous, therefore the prototype’s attributes
are updated so that it slightly “moves” towards the new items (Figure 2d), and
its weight is updated to be the sum of the weights of all items it now represents
(all items in the arriving data segment have weight equal to 1). For cluster B,



Improving Data Reduction by Merging Prototypes 5

there is no new item assigned to it, hence the corresponding prototype remains
unchanged. On the other hand, cluster C becomes non-homogeneous and RHC
is applied on it. k-means creates two homogeneous clusters (Figure 2e). Finally,
a new cluster centroid is computed for each cluster and the final updated con-
densing set is depicted in Figure 2f.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of execution of the condensing set update phase of dRHC

Notwithstanding the fact that dRHC seems to be a good fit for data streams
or large training datasets, after repetitive condensing set update phases, the
condensing set may become too large. An algorithm that confronts with this
drawback is dRHC2 [4], in which the size of the condensing set is maintained
to a fixed pre-specified threshold. Practically, the only difference between dRHC
and dRHC2 is the post-processing step that is presented in [4]. In dRHC2, the
condensing set never exceeds a pre-specified size that is determined as a trade-off
between computational cost, accuracy, system limitations as well as the level of
noise in data.

dRHC2 encapsulates a mechanism where prototypes are ranked according to
their importance. The highest the importance of a prototype, the more likely to
survive a condensing set update phase. In order to judiciously rank prototypes,
dRHC2 takes into account not only the prototype’s weight, but also its age.



6 P. Ponos et al

Lastly, in case of data with noise, dRHC2 performs better than dRHC due
to the fact that the noisy prototypes have lower weight and AnA values and are
eventually removed.

4 The Proposed Algorithms

As discussed in Section 3, both dRHC and dRHC2 algorithms perform well
in streaming environments, with the latter algorithm having a clear advantage
after repetitive condensing set update phases. As we demonstrated in Figure 1,
we may encounter cases where prototypes that belong to the same class are close
enough to be considered for merging. In effect, the size of the condensing set can
be further reduced.

We propose two new prototype merging algorithms that:

– in the case of dRHC are applied after each condensing set updating due to
the arrival of a new training data segment, and

– in the case of dRHC2 are applied between the condensing set updating phase
and the prototype removal via ranking phase.

After examining various merging strategies, we propose a strategy that is
not very aggressive and manages to improve data reduction while maintaining
accuracy at acceptable levels. The first prototype merging algorithm performs
a single pass over the condensing set and merges prototype pairs belonging to
the same class where each prototype is the nearest neighbor of the other. The
notation “sm” that stands for single pass merging is used to denote the new
variations of dRHC and dRHC2, namely, dRHCsm and dRHC2sm.

The second prototype merging algorithm performs multiple passes over the
condensing set until no more prototype pairs can be merged. The notation “mm”
that stands for multiple pass merging is used to denote the new variations of
dRHC and dRHC2, namely, dRHCmm and dRHC2mm.

dRHCsm and dRHC2sm being descendants of dRHC and dRHC2 respec-
tively, retain all their properties, with the difference being that once a new data
segment arrives and updates the condensing set, the merging phase described in
Algorithm 1 is performed.

The merging algorithm accepts as input a condensing set CS. Initially, newCS
is empty. Then, the algorithm for each prototype x checks whether the nearest
neighbor of the nearest neighbor y of x is x itself and whether both x and y
belong to the same class (line 4). If this is the case, x and y are merged to
prototype m, m is added to newCS and x, y are removed from CS (lines 5–7).
Otherwise, x moves to newCS (line 9).

A visual representation of the execution of the single pass merging phase
is shown in Figure 3. More particularly, the initial condensing set is depicted
in Figure 3a. Prototype pairs (E, F ) and (C, G) satisfy the merging require-
ments (Figure 3b), and are merged to form prototypes EF and CG respectively
(Figure 3c).



Improving Data Reduction by Merging Prototypes 7

Algorithm 1 Single Pass Merging Phase

Input: CS
Output: newCS

1: newCS ← ∅
2: for each x in CS do
3: y = NN(x)
4: if NN(y) == x and class(x) == class(y) then
5: m = merge (x,y)
6: add m to newCS
7: remove x,y from CS
8: else
9: move x to newCS

10: end if
11: return newCS
12: end for

(a) Initial condensing set

(b) Pairs of prototypes to be merged

(c) CS after the single pass merging phase

Fig. 3. Single Pass Merging Algorithm



8 P. Ponos et al

In the case of dRHCmm and dRHC2mm, the merging phase is again per-
formed after the condensing set update phase. Algorithm 2 is essentially a vari-
ation of Algorithm 1, where merging is applied repetitively until no more pairs
of prototypes can be merged. Thus, starting with the condensing set depicted in
Figure 3c, with two additional merging passes, first CG and D are merged and
then CGD and H are merged for the final condensing set (see Figure 4).

Algorithm 2 Multiple Pass Merging Phase

Input: CS
Output: newCS

1: newCS ← ∅
2: mergeflag ← True
3: while mergeflag == True do
4: mergeflag ← False
5: for each x in CS do
6: y = NN(x)
7: if NN(y) == x and class(x) == class(y) then
8: m = merge (x,y)
9: mergeflag ← True

10: add m to newCS
11: remove x,y from CS
12: else
13: move x to newCS
14: end if
15: end for
16: end while
17: return newCS

Fig. 4. Multiple Pass Merging Algorithm: condensing set after the multiple pass merg-
ing phase



Improving Data Reduction by Merging Prototypes 9

5 Performance Evaluation

5.1 Experimental Setup

The performance of dRHCsm, dRHCmm, dRHC2sm and dRHC2mm was tested
against dRHC and dRHC2 using fourteen datasets distributed by the KEEL
dataset repository3 [9]. Table 1 summarizes the datasets used.

Table 1. Dataset description

Dataset Size Attributes Classes Data segment

Letter Image Recognition (LIR) 20000 16 26 2000
Magic G. Telescope (MGT) 19020 10 2 1902

Pen-Digits (PD) 10992 16 10 1000
Landsat Satellite (LS) 6435 36 6 572

Shuttle (SH) 58000 9 7 1856
Texture (TXR) 5500 40 11 440
Phoneme (PH) 5404 5 2 500
Balance (BL) 625 4 3 100
Pima (PM) 768 8 2 100
Ecoli (ECL) 336 7 8 200
Yeast (YS) 1484 8 10 396

Twonorm (TN) 7400 20 2 592
MONK 2 (MN2) 432 6 2 115
KddCup (KDD) 141481 36 23 4000

The chosen distance metric was the Euclidean distance. All algorithms were
implemented in C. All datasets except KddCup were not normalized. We ran-
domized the datasets that were distributed sorted on the class label (last value
in each row of the datasets). For each algorithm and dataset, we measured three
average values via five-fold cross-validation. These values are Accuracy (Acc),
Reduction Rate (RR) and Pre-processing cost (PC).

Acc was estimated by running k-NN classification with k = 1 and PC in terms
of distance computations. A point worth mentioning is that PC measurements do
not include the small cost overhead introduced by the ranking of the prototypes.

All four algorithms presented in Section 4 accept data segments as input.
The data segment sizes that were adopted for each dataset are listed in the
last column in Table 1, therefore the initial training sets were split into specific
segments. Data segment size can relate to the size of the available memory, in
the scenario of limited main memory, or to the buffer size accepting data from a
streamer. Experiments with data segments of different size were not conducted
in this study, due to the fact that in [3] dRHC’s performance was not found to
be influenced at all by the chosen segment size.

In dRHC2, dRHC2sm and dRHC2mm the maximum allowed condensing set
size is provided as an input in form of the T parameter. In order to be comparable
with [4], the T parameter was adjusted to the 85%, 70%, 55% and 40% of the
size of the condensing sets constructed by dRHC.

3 http://sci2s.ugr.es/keel/datasets.php



10 P. Ponos et al

5.2 Results and Discussion

In Table 2, the performance of the dRHC was compared against dRHCsm and
dRHCmm. The prevalent values are highlighted in bold. The pre-processing cost
measurements are in million distance computations while values of accuracy and
reduction rate are reported as percentages.

Due to the extra cost that is introduced by Algorithm 1, pre-processing cost
in dRHC was lower compared to dRHCsm and dRHCmm. In addition to that,
since dRHCmm may perform many passes over the condensing set in order to
merge all eligible prototype pairs, the pre-processing cost of this algorithm was
the highest in all datasets. On the other hand, reduction rate with dRHCsm
and, especially, dRHCmm was improved at the cost of a small loss in accuracy
in some datasets. Interestingly, in some other datasets (BL, MN2, TN, ECL, YS)
accuracy increased, signifying an improvement in the quality of the condensing
set after the merging phase.

Table 2. Comparison of dRHC, dRHCsm and dRHCmm in terms of Accuracy
(ACC(%)), Reduction Rate (RR(%)) and Preprocessing Cost (PC (millions of distance
computations))

ACC (%) RR (%) PC (M)

Dataset dRHC dRHCsm dRHCmm dRHC dRHCsm dRHCmm dRHC dRHCsm dRHCmm

BL 70.56 70.88 70.88 78.12 80.88 81.24 0.029 0.051 0.084

KDD 99.42 99.30 99.28 99.22 99.32 99.33 54.70 56.54 67.94

LS 88.50 88.17 88.14 88.35 89.29 89.42 1.53 2,63 4.74

LIR 93.92 92.59 92.53 88.18 90.68 90.78 19.57 28.14 53.56

MGT 72.97 72.23 72.26 74.62 76.46 76.48 26.03 67.23 162.04

MN2 97.68 97.91 97.91 96.88 97.17 97.17 0.004 0.004 0.004

PD 98.49 97.19 96.63 97.23 98.07 98.28 1.44 1.57 1.68

PH 85.38 84.49 84.55 82.34 83.61 83.70 1.64 3.68 7.05

SH 99.70 99.36 99.32 99.50 99.60 99.62 7.98 8.09 8.92

TXR 97.60 95.91 95.96 94.95 96.40 96.63 0.68 0.74 1.01

TN 93.08 93.34 91.22 95.37 95.68 97.29 0.695 0.893 1.691

ECL 71.46 71.73 71.74 68.92 69.67 69.74 0.015 0.029 0.035

PM 63.93 63.40 63.41 65.11 66.33 66.63 0.064 0.210 0.325

YS 48.38 48.51 48.51 51.23 52.58 52.63 0.306 0.779 1.394

Similarly, in Table 3 one can compare the performance of dRHC2 against
dRHC2sm and dRHC2mm for the different values of T that is provided as an
input to the algorithms. We omit the measurements of the reduction rate (RR)
since the values of T fix the size of the condensing set as a percentage of the size
of the condensing set generated by dRHC. To understand the concept behind
the T value, take for example the LIR dataset. In Table 2, one can observe that
for the LIR dataset, dRHC achieves Acc=93.92 with RR=88.18 (it practically
generates only 2364 prototypes out of the 20000 instances of the dataset). In
Table 2, we observe that for T=40 (or by fixing the max size of the condensing
set to be 40% of the condensing set produced by dRHC, i.e., the top ranked 946
prototypes) dRHC2, dRHCsm and dRHCmm achieve accuracies 90.08, 90.41
and 90.00 respectively.

As depicted in Table 3, for both dRHC2sm and dRHC2mm higher pre-
processing cost values were measured, which is justified by the extra costs in-
troduced with the merging step. Other than this, despite the much smaller con-



Improving Data Reduction by Merging Prototypes 11

densing sets used, accuracy was in most cases slightly affected (negatively or
positively) as in the case of the results presented in Table 2 for dRHC.

Table 3. Comparison of dRHC2, dRHC2sm and dRHC2mm in terms of Accuracy
(ACC(%)), Reduction Rate (RR(%)) and Preprocessing Cost (PC (millions of distance
computations)) taking into account four different values of T

ACC (%) PC (M)

Data T % dRHC2 dRHC2sm dRHC2mm dRHC2 dRHC2sm dRHC2mm

LIR

85 93.40 92.59 92.53 19.18 28.14 53.56
70 92.84 92.44 92.33 17.72 27.65 53.47
55 91.85 91.82 91.79 15.36 24.06 45.31
40 90.08 90.41 90.00 12.29 18.58 32.64

MGT

85 74.19 72.89 72.91 25.85 67.23 162.04
70 74.64 74.05 74.00 24.41 63.21 156.08
55 75.11 74.55 74.13 21.71 53.07 124.89
40 75.97 75.48 75.43 17.73 39.75 89.54

PD

85 98.60 97.19 96.63 1.41 1.56 1.68
70 98.63 97.22 96.63 1.32 1.37 1.68
55 98.34 97.13 96.53 1.16 1.27 1.64
40 97.73 96.95 96.76 0.93 1.04 1.33

LS

85 88.61 88.07 88.13 1.51 2.62 4.72
70 88.53 88.33 88.35 1.42 2.46 4.49
55 88.58 87.94 87.96 1.27 2.11 3.74
40 87.89 87.62 87.69 1.03 1.63 2.72

SH

85 99.69 99.38 99.31 7.61 7.65 7.71
70 99.61 99.37 99.36 6.91 6.92 7.77
55 99.56 99.26 99.36 5.95 6.14 6.75
40 99.37 99.28 99.23 4.73 4.93 5.23

TXR

85 97.38 95.91 95.96 0.67 0.74 1.01
70 97.00 96.00 95.98 0.62 0.74 1.01
55 96.46 95.87 95.66 0.53 0.67 0.94
40 95.76 95.44 95.33 0.43 0.53 0.72

PH

85 86.14 84.96 85.03 1.62 3.65 7.00
70 85.62 85.59 85.70 1.52 3.34 6.73
55 85.21 84.97 85.18 1.33 2.77 6.04
40 84.88 85.36 84.60 1.08 2.06 3.92

BL

85 71.84 70.40 70.88 0.029 0.050 0.083
70 73.12 73.92 72.32 0.027 0.050 0.081
55 77.28 74.56 73.76 0.025 0.043 0.070
40 81.60 78.56 78.56 0.021 0.035 0.052

PM

85 65.23 65.62 65.49 0.063 0.200 0.324
70 67.96 65.88 65.88 0.060 0.180 0.320
55 68.09 67.44 67.31 0.055 0.150 0.260
40 68.23 67.58 68.23 0.046 0.110 0.194

ECL

85 74.73 72.95 72.95 0.015 0.029 0.035
70 76.22 75.62 75.03 0.015 0.027 0.040
55 78.28 76.81 76.51 0.014 0.024 0.034
40 79.75 77.70 78.30 0.013 0.022 0.026

YS

85 48.31 48.72 48.78 0.306 0.779 1.394
70 48.65 48.92 48.92 0.306 0.779 1.394
55 48.99 49.46 49.26 0.278 0.682 1.146
40 52.83 51.62 51.62 0.244 0.567 1.004

TN

85 94.03 94.00 91.22 0.688 0.892 1.691
70 94.54 94.69 91.22 0.654 0.850 1.691
55 95.45 95.24 91.54 0.590 0.746 1.752
40 95.93 95.34 91.54 0.495 0.604 1.471

MN2

85 96.28 96.28 96.28 0.0039 0.0041 0.0041
70 96.29 96.99 96.99 0.0038 0.0040 0.0040
55 94.45 90.50 91.66 0.0038 0.0040 0.0040
40 93.52 93.52 93.52 0.0040 0.0042 0.0042

KDD

85 99.47 99.31 99.27 53.56 56.45 68.00
70 99.51 99.38 99.36 49.81 53.80 66.53
55 99.50 99.38 99.39 43.48 47.32 57.97
40 99.48 99.38 99.40 34.60 37.34 43.85

6 Conclusions and Future Work

This paper introduces four new algorithms (dRHCsm, dRHCmm, dRHC2sm
and dRHC2mm) that are variations of dRHC and dRHC2. The newly proposed
algorithms inherit the characteristics of the dRHC and dRHC2 algorithms while



12 P. Ponos et al

trying to further condense the training set by merging pairs of prototypes. In
theory, we would expect higher reduction rates while maintaining the accuracy
at the same level and a slight increase in pre-processing costs, especially for the
“mm” versions.

The experimental study, demonstrates that pre-processing costs are signifi-
cantly higher in the case of the “mm” versions of the merging algorithm com-
pared to the “sm” versions, an increase that is not justified by the small improve-
ment in reduction rate, in the case of dRHC. Overall, the merging of prototypes
appears to make more sense in the case of dRHC where it offers increased data
reduction without affecting accuracy. In the case of dRHC2, where condens-
ing sets are eventually truncated via ranking, merging of prototypes could be
skipped.

In the near future, we plan to further investigate alternative prototype merg-
ing algorithms, for example based not only on the proximity of the prototypes
but on their weights or age as well. We will examine the effect of the application
of prototype merging on additional data reduction algorithms.

7 Acknowledgments

This research is funded by the University of Macedonia Research Committee as
part of the “Principal Research 2019” funding program.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Sys-
tems Series, Springer Science+Business Media, LLC (2007)

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (Sep 2006), http://dx.doi.org/10.1109/TIT.1967.1053964

3. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data re-
duction for efficient k-NN classification. Pattern Analysis and Applications 19(1),
93–109 (2014), http://dx.doi.org/10.1007/s10044-014-0393-7

4. Ougiaroglou S., Arampatzis G., Dervos D.A., Evangelidis G. (2017) Generating
Fixed-Size Training Sets for Large and Streaming Datasets. In: Kirikova M., Nrvg
K., Papadopoulos G. (eds) Advances in Databases and Information Systems. AD-
BIS 2017. Lecture Notes in Computer Science, vol 10509. Springer, Cham

5. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. Trans. Sys. Man Cy-
ber Part C 42(1), 86–100 (Jan 2012), http://dx.doi.org/10.1109/TSMCC.2010.
2103939

6. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal.
Mach. Intell. 34(3), 417–435 (Mar 2012), http://dx.doi.org/10.1109/TPAMI.

2011.142

7. M. Lozano. Data Reduction Techniques in Classification processes (Phd Thesis).
Universitat Jaume I, 2007



Improving Data Reduction by Merging Prototypes 13

8. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homo-
geneous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics.
pp. 168–173. BCI ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/
10.1145/2371316.2371349

9. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework. Multiple Valued Logic and Soft Computing 17(2-3),
255–287 (2011)


