
The Effect of Parallelism on Data Reduction
Pavlos Ponos

pponos@uom.edu.gr
Dept. of Applied Informatics
School of Information Sciences

University of Macedonia
Thessaloniki, Greece

Stefanos Ougiaroglou∗
stoug@uom.edu.gr

Dept. of Information Technology
Alexander TEI of Thessaloniki

Sindos, Greece

Georgios Evangelidis
gevan@uom.gr

Dept. of Applied Informatics
School of Information Sciences

University of Macedonia
Thessaloniki, Greece

ABSTRACT
In this paper, we investigate the effect of parallelism on two data
reduction algorithms that use k-Means clustering in order to find
homogeneous clusters in the training set. By homogeneous, we
refer to clusters where all instances belong to the same class label.
Our approach divides the training set into subsets and applies the
data reduction algorithm on each separate subset in parallel. Then,
the reduced subsets are merged back to the final reduced set. In
our experimental study, we split the datasets into 8, 16, 32 and 64
subsets. The results obtained reveal that parallelism can achieve
very low preprocessing costs. Also, when the number of subsets
is high, in some datasets the accuracy of k-NN classification is
almost equal (if not better) to the one achieved when using the
standard execution of the reduction algorithms, with a small loss
in the reduction rate.

CCS CONCEPTS
• Information systems→Nearest-neighbor search; • Theory
of computation→Parallel algorithms; •Computingmethod-
ologies → Feature selection.

KEYWORDS
k-NN Classification, Data Reduction, Prototype Merging, Parallel
Implementation, Clustering

ACM Reference Format:
Pavlos Ponos, Stefanos Ougiaroglou, and Georgios Evangelidis. 2019. The
Effect of Parallelism on Data Reduction. In 9th Balkan Conference in Infor-
matics (BCI’19), September 26–28, 2019, Sofia, Bulgaria. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3351556.3351584

1 INTRODUCTION
The k Nearest Neighbor (k-NN) is an extensively used lazy classifier.
It classifies a new item x by searching in the training set (TS) for the
k nearest items (neighbors) to x according to a distance metric (e.g.
Euclidean distance). Then, x is assigned to the most common class

∗Stefanos Ougiaroglou is also a Postdoctoral Researcher at the University of Macedonia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BCI’19, September 26–28, 2019, Sofia, Bulgaria
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7193-3/19/09. . . $15.00
https://doi.org/10.1145/3351556.3351584

determined via a majority vote of the retrieved k nearest neighbors.
Ties are resolved either randomly or by the single nearest neighbor.

k-NN classifier has two major drawbacks when it comes to
datasets of very large size: (i) training data have to be maintained,
which leads to high storage requirements, and, (ii) the computa-
tional cost is high, since between every new (unclassified) item and
the training data, all distances have to be calculated.

Many data reduction techniques have been proposed in the liter-
ature, which can cope with both weaknesses by building a small
representative training dataset, called the condensed set. All these
methods reduce datasets with labeled examples. The advantage of
applying k-NN to a smaller set is two-fold: (i) lower computational
cost is involved and (ii) less storage is required. Data reduction
techniques can be distinguished to prototype selection algorithms
[2] and to prototype generation algorithms [10]. The former choose
some representatives from the training set and put them into the
condensed set, while the latter generate representatives by summa-
rizing similar training set items. Another point worth mentioning
is that most of these algorithms are sensitive to noise [6]. Hence,
for noisy datasets an editing algorithm [11] for noise removal must
be applied beforehand.

According to [8] and [7], Reduction through finding Homoge-
neous Clusters (RHC) and Editing and Reduction through finding
Homogeneous Clusters (ERHC) prototype generation algorithms
run very fast by achieving high reduction rates, as well as high
accuracy levels. The motivation of the present work was to test
whether parallel and distributed execution of RHC and ERHC on
subsets of the original data, as well as merging of the resulting
reduced sets to a final reduced set is a feasible approach. In other
words, we apply a Map Reduce paradigm approach and we want to
investigate whether, in addition to the speed up that we expect to
be very high, the quality of the merged reduced set will be similar to
the reduced set that results from the application of RHC and ERHC
on the full original training set. We tested the effect of parallelism
using a predefined number of subsets (8, 16, 32 and 64). Each subset
was assigned to a different processor/thread and RHC or ERHC
algorithm was executed in all subsets in parallel. Finally, k-NN was
applied both on the reduced set that is derived from the original
training set and the reduced set that is produced by merging all
the reduced subsets that are created in parallel. The experimental
analysis shown in Section 5.2 reveals that the parallel execution of
RHC and ERHC speeds-up the process, while maintaining accuracy
and reduction rate at almost the same levels.

The rest of the paper is structured as follows: Section 2 dis-
cusses the background knowledge and Section 3 reviews RHC and
ERHC. Section 4 considers in detail the proposed algorithms. In
Section 5, the parallel implementations of RHC and ERHC are

https://doi.org/10.1145/3351556.3351584
https://doi.org/10.1145/3351556.3351584

BCI’19, September 26–28, 2019, Sofia, Bulgaria P. Ponos et al.

compared against RHC and ERHC on fifteen datasets. Section 6
concludes the paper and proposes directions for future work.

2 BACKGROUND KNOWLEDGE
The problem of efficiently handling Big Data has attracted the
interest of the research community in the recent years. The already
collected historical data and the vast amounts of data that are
continuously collected by modern big data systems need to be
reduced in size in order to be appropriate for analysis.

[9] contains a detailed survey on Big Data reduction methods
that addresses the full spectrum of challenges specific to Big Data,
namely, dimension reduction techniques, data reduction methods
and algorithms for preprocessing, cluster-level data deduplication,
redundancy elimination, and implementation of network (graph)
theory concepts. The survey also differentiates between methods
that are applicable at the post-data collection phases and methods
that reduce big data during the collection process [5].

The idea of reducing the size of big data is crucial in lazy classifi-
cation tasks, like k-NN. Such classifiers benefit a lot when running
by using relatively small training datasets. The problem can be ad-
dressed both at the post-data collection phase, i.e., by applying any
popular data reduction technique on the collected data, and dur-
ing the collection process, i.e., when data comes from independent
streams (see surveys at [2], [10]).

Because of the enormous size of the collected data, parallelization
and distributed computation is a natural approach to data reduction,
using technologies like Hadoop, Pig, Hive and Spark ([12], [4]).

Our approach is applicable to any such framework and deals
with data reduction at the post-data collection phase.

3 THE RHC AND ERHC ALGORITHMS
Reduction through Homogeneous Clusters (RHC) [8] is a proto-
type generation algorithm for data (instance) condensing, whereas,
ERHC [7] is an extension of the aforementioned algorithm that
simultaneously performs data condensing and editing. Both algo-
rithms are based on a procedure that forms clusters containing
items of a specific class only, i.e., homogeneous clusters. Initially,
thewhole training set is considered to be a single non-homogeneous
cluster and the algorithm recursively splits it in as many clusters
as the existing class labels in the cluster. For both RHC and ERHC,
when a cluster becomes homogeneous, it is replaced by its centroid.
For ERHC, in addition, single item clusters are discarded.

Algorithm 1 presents the pseudo-code of a possible implemen-
tation of RHC and ERHC. The only difference between them (see
line 7) is how they treat the homogeneous clusters [7].

For a given non-homogeneous cluster C , the class means for all
the existing class labels in the cluster are computed by averaging
the corresponding items of the cluster and are put in R (lines 9–12).
Then, k-means clustering is applied on the cluster, with initial clus-
ter centroids being the computed class means R and the outcome
is |R | clusters, which replace the cluster under processing (lines
13–16). This procedure is applied on all non-homogeneous result-
ing clusters (lines 4–18). Finally, RHC replaces each homogeneous
cluster by its cluster centroid, whereas, ERHC in addition removes
clusters that contain a single item, since they most probably corre-
spond to noise and outliers (line 7).

Algorithm 1 RHC/ERHC
Input: TS ▷ Training Set
Output: RS ▷ Reduced Set

1: RS ←� ▷ Initialize the Reduced Set
2: Q ←� ▷ Initialize a queue for the clusters to be processed
3: Enqueue(Q , TS) ▷ the entire training set constitutes a cluster
4: repeat
5: C ← Dequeue(Q) ▷ Get the cluster from the queue
6: if C is homogeneous then ▷ C holds items of the same class
7: RS ← Reduce_Edit(RS , C) ▷ For (E)RHC: C is replaced by

its class centroid. For ERHC: if |C |=1, C is removed
8: else ▷ C is non-homogeneous
9: R←� ▷ R is the set of class means
10: for each class labelM in C do
11: R← R ∪ class_mean_o f (M) ▷ Compute the class

mean or representative for each class label and put it in R
12: end for
13: clusters ← k-Means (C , R) ▷ The elements of R are used

as the initial cluster centroids for clustering C
14: for each cluster r ∈ clusters do
15: Enqueue(Q , r) ▷ C is replaced by the |R | new clusters
16: end for
17: end if
18: until IsEmpty(Q) ▷ until all clusters become homogeneous
19: return RS ▷ The Reduced Set is returned

4 THE PROPOSED ALGORITHMS
The main idea of this paper is the parallel execution of prototype
generation algorithms. We apply RHC and ERHC on the training
part of the datasets presented in Table 1 after splitting it in smaller
equally sized subsets, and then, we merge the resulting reduced
subsets. The application of the algorithms on the subsets can in
practice be performed in parallel, assuming that we have as many
processing units as the number of subsets. We call these algorithms
pmRHC and pmERHC, with the letter “p" denoting the parallel exe-
cution of the algorithms on the subsets and the letter “m" denoting
the merging of the resulting reduced subsets back into a single
merged reduced set.

In order to split the datasets we used the Stratified Remove Folds
method from the WEKA data mining tool [3]. Stratified sampling
is a technique where the entire dataset is segregated into differ-
ent strata and then the final subjects are proportionally selected
from them. It is worth mentioning that the strata must be non-
overlapping, otherwise overlapping subjects have higher chances
of being selected, which contradicts the concept of stratified sam-
pling as a type of probability sampling [3].

The training part of the datasets was fed into the Stratified Re-
move Folds method, with the output being n subsets of the initial
dataset. As an example, let us consider a dataset that consists of
20000 items. We form 5 folds, so the training part of the dataset
consists of 16000 items. When this training set is split into, for
example, 64 subsets, each subset will accommodate 250 items. In
turn, the newly created 64 subsets will be the input to either RHC
or ERHC algorithm (Algorithm 1). The 64 resulting reduced subsets
are then merged to a single reduced set that is used as the training
set. Figure 1 schematically depicts this process.

The Effect of Parallelism on Data Reduction BCI’19, September 26–28, 2019, Sofia, Bulgaria

Figure 1: Schematic representation of pmRHC/pmERHC:
the training part of the datasets is split into subsets, the re-
duction process is applied on each subset in parallel, and the
reduced subsets are merged back into the final training set
to be used in the cross validation.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
The performance of the new variations was tested against RHC
and ERHC by using fifteen datasets distributed by the KEEL dataset
repository1 [1]. Table 1 summarizes the datasets used in this paper.

Table 1: Dataset description

Dataset Size Attributes Classes
Letter Image Recognition (LIR) 20000 16 26
Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2
Balance (BL) 625 4 3
Pima (PM) 768 8 2
Ecoli (ECL) 336 7 8
Yeast (YS) 1484 8 10

Twonorm (TN) 7400 20 2
MONK 2 (MN2) 432 6 2
KddCup (KDD) 141481 36 23
Banana (BN) 5300 2 2

The chosen distance metric was the Euclidean distance. All al-
gorithms were implemented in C. All datasets except KDD were
not normalized. Three average values were measured for each algo-
rithm, via 5-fold cross validation. These values are Accuracy (Acc),
Reduction Rate (RR) and Preprocessing cost (PC). Acc and RR mea-
sured as percentages (%) while PC in million distance computations.

A point worth mentioning is that due to the parallel execution
of the reduction algorithms, the preprocessing costs are calculated
using the equation below:

PC =
PC1 + PC2 + ... + PCn

n
(1)

where n is the number of subsets to which the initial training
dataset is split and PCi is the preprocessing cost for subset i .

Acc was estimated by running k-NN classification with k = 1
and PC was measured in terms of distance computations.
1http://sci2s.ugr.es/keel/datasets.php

5.2 Results and Discussion
The performance of RHC was compared against four variations of
the parallel version of the algorithm (pmRHC), using 8, 16, 32 and
64 subsets respectively. The results can be found in Table 2, with
the prevalent values highlighted in bold.

Due to the fact that the k-Means clustering, as presented in
Algorithm 1, is executed in parallel to as many processors/threads
as the available subsets, the preprocessing cost is significantly lower,
especially in pmRHC64. As an example, in LIR dataset the PC is
41.844 while in pmRHC8, pmRHC16, pmRHC32 and pmRHC64 the
PC is 1.7478, 0.6021, 0.1919 and 0.0629 respectively. In other words,
the data reduction procedure is executed from 24 up to 665 times
faster. This was expected since the repeated applications of k-Means
on the full dataset start with a large dataset, whereas, the parallel
executions start on much smaller subsets and converge much faster.

In addition, the lower the number of subsets to which the initial
training set is split, the higher the loss in Acc in all datasets except
BL and ECL. In turn, from Table 2, we can ascertain that RR deteri-
orates (apart from YS) when the number of subsets increases. For
instance, in MN2 and LIR there is a drop in RR of almost 50%.

Similarly, in Table 2, one can compare the performance of ERHC
against four variations of the parallel version of the algorithm
(pmERHC). The parallelized variations have significantly lower
preprocessing costs compared to ERHC, which means that there
is speed-up in the process from 25 up to 650 times, taking into
consideration the LIR dataset.

Alike in RHC, Acc declines when a small number of subsets
is used and it is almost the same as in ERHC when the initial
datasets are split into 64 subsets, if not better for BL, TXR, ECL,
BN and YS datasets. Contrary to the RHC’s variations, we noticed
that notwithstanding the fact that RR is worse (except ECL), the
proportion of the reduction is about 20% forMN2 and LIR, compared
to the 50% in RHC’s variations. A possible explanation could be the
editing step that removes the noise from the datasets.

6 CONCLUSIONS AND FUTUREWORK
This paper introduces the parallel execution of RHC and ERHC
where the initial training datasets are split into subsets that are then
sent for processing to different processors/threads in a Map Reduce
fashion. In theory, we would expect lower preprocessing costs, thus
faster execution of the algorithm, compared to the execution of
RHC and ERHC on the original training set, while keeping the
accuracy and the reduction rate at decent levels.

From the experimental study it is clear that with the parallelism
we can achieve faster execution up to 650 times in certain datasets,
compared to the execution of RHC and ERHC on the original train-
ing set. On the other hand, in pmRHC there is significant loss in
reduction rate (up to 50%) and a relative small loss in accuracy in
most of the datasets that are tested. For the pmERHC algorithm,
reduction rate values are deteriorating, but less than in the case of
pmRHC, which is justified by the editing step that is introduced
in the former. Last but not least, when the number of subsets is
high, the accuracy is almost the same compared to the one obtained
when applying ERHC on the original training set, while in BL, SH,
TXR, BN and YS datasets the accuracy improves.

http://sci2s.ugr.es/keel/datasets.php

BCI’19, September 26–28, 2019, Sofia, Bulgaria P. Ponos et al.

Table 2: Comparison of RHC, ERHC, and pmRHC/pmERHC 8 through 64 in terms of Reduction Rate (RR(%)), Accuracy
(ACC(%)) and Preprocessing Cost (PC (millions of distance computations))

Data RHC pmRHC pmRHC pmRHC pmRHC
8 subsets 16 subsets 32 subsets 64 subsets

BL Acc 68.64 63.28 67.73 71.30 76.53
RR 78.00 71.12 67.44 65.64 59.92
PC 0.05 0.002 0.001 0.00016 0.00005

KDD Acc 99.39 84.49 87.66 90.17 92.08
RR 99.19 98.32 97.80 97.15 96.34
PC 81.59 6.741 2.287 0.880 0.315

LS Acc 88.95 66.41 68.73 72.11 75.03
RR 89.84 84.41 82.04 78.87 74.06
PC 1.693 0.0848 0.0286 0.0097 0.0031

LIR Acc 93.59 82.86 83.90 85.27 86.02
RR 88.08 71.87 64.77 56.31 46.83
PC 41.844 1.7478 0.6021 0.1919 0.0629

MGT Acc 71.97 62.13 62.49 63.85 64.89
RR 73.76 70.79 69.77 68.32 66.40
PC 4.082 0.2668 0.1073 0.0417 0.0159

MN2 Acc 94.68 92.39 89.75 88.10 83.76
RR 96.47 81.19 73.61 66.32 57.41
PC 0.007 0.00079 0.00027 0.00008 0.00002

PD Acc 98.30 92.61 93.79 94.92 96.25
RR 96.52 91.84 88.77 84.89 79.19
PC 2.882 0.1708 0.0591 0.0203 0.0075

PH Acc 85.59 69.51 70.90 71.49 71.97
RR 80.71 74.10 71.82 69.75 68.06
PC 0.658 0.1708 0.0149 0.0055 0.0019

SH Acc 98.10 88.44 91.15 93.95 95.43
RR 99.55 98.64 98.00 97.07 95.70
PC 16.827 1.5323 0.6121 0.2473 0.0880

TXR Acc 97.04 90.58 92.56 93.75 94.88
RR 94.71 86.81 82.19 75.96 66.55
PC 3.629 0.0961 0.0321 0.0111 0.0038

TN Acc 88.69 73.58 75.90 75.89 77.74
RR 96.63 96.48 96.47 96.15 95.56
PC 1.642 0.0506 0.0148 0.0034 0.0008

ECL Acc 68.76 61.16 64.56 71.37 72.44
RR 67.58 59.30 60.49 67.34 65.72
PC 0.03 0.00081 0.00024 0.00007 0.00006

PM Acc 63.28 59.94 59.27 60.89 60.58
RR 63.58 57.94 57.33 51.40 62.73
PC 0.062 0.003 0.001 0.00034 0.00008

YS Acc 48.85 41.68 42.60 44.03 46.24
RR 49.83 45.08 43.35 46.75 53.42
PC 0.84 0.0171 0.0054 0.0015 0.0004

BN Acc 83.28 68.15 71.27 75.45 79.98
RR 79.68 75.93 74.06 70.12 65.12
PC 0.562 0.0375 0.0146 0.0053 0.0019

ERHC pmERHC pmERHC pmERHC pmERHC
8 subsets 16 subsets 32 subsets 64 subsets

67.62 81.42 85.65 89.97 94.08
86.68 83.44 82.36 80.80 73.80
0.273 0.002 0.001 0.00016 0.00005
99.45 95.51 96.79 97.86 98.10
99.46 98.83 98.48 98.09 97.58
81.59 6.741 2.287 0.880 0.315
89.01 75.43 78.28 81.70 85.38
92.95 90.52 89.10 87.22 84.38
1.693 0.0848 0.0286 0.0097 0.0031
92.69 89.34 89.54 89.94 90.00
92.03 83.38 80.10 77.86 77.74
41.844 1.7478 0.6021 0.1919 0.0629
77.01 71.61 71.65 72.58 73.74
84.46 82.71 81.88 81.26 80.25
4.082 0.2668 0.1073 0.0417 0.0159
95.14 94.46 91.56 89.59 84.11
96.76 85.07 80.21 76.85 67.83
0.007 0.00079 0.00027 0.00008 0.00002
98.63 97.57 97.82 98.01 98.60
97.45 94.22 92.07 89.63 86.52
2.882 0.1708 0.0591 0.0203 0.0075
86.57 78.55 78.60 77.99 76.59
88.05 85.14 84.42 83.65 82.76
0.658 0.1708 0.0149 0.0055 0.0019
98.04 96.15 96.84 98.25 98.82
99.69 99.02 98.50 97.78 96.70
16.827 1.5323 0.6121 0.2473 0.0880
97.36 95.09 96.93 97.66 98.54
95.94 90.75 87.82 84.31 79.53
3.629 0.0961 0.0321 0.0111 0.0038
91.53 82.93 84.40 85.45 87.43
97.58 97.44 97.31 97.16 96.69
1.642 0.0506 0.0148 0.0034 0.0008
73.48 78.20 78.70 77.44 84.21
84.83 82.66 79.84 74.93 87.05
0.175 0.00081 0.00024 0.00007 0.00006
69.79 64.35 67.56 70.97 66.54
80.07 79.00 77.77 77.15 80.14
0.062 0.003 0.001 0.00034 0.00008
50.33 54.48 54.89 55.47 59.25
79.34 78.12 78.52 77.98 77.88
4.215 0.0171 0.0054 0.0015 0.0004
88.00 82.15 85.90 88.69 91.18
90.33 87.53 85.59 83.17 79.93
0.562 0.0375 0.0146 0.0053 0.0019

We plan to further investigate the effect of parallelism on more
state of the art data reduction algorithms, and also examine whether
the phase of evaluation using the testing sets could be applied on
the reduced subsets in a majority vote fashion instead of merging
the reduced sets back to a single reduced set.

7 ACKNOWLEDGMENTS
Research funded by the University of Macedonia Research Com-
mittee as part of the “Principal Research 2019” funding program.

REFERENCES
[1] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, and

Salvador García. 2011. KEEL Data-Mining Software Tool: Data Set Repos-
itory, Integration of Algorithms and Experimental Analysis Framework.
Multiple-Valued Logic and Soft Computing 17, 2-3 (2011), 255–287. http:
//www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/
mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-255-287/

[2] Salvador García, Joaquín Derrac, José Ramón Cano, and Francisco Herrera. 2012.
Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical
Study. IEEE Trans. Pattern Anal. Mach. Intell. 34, 3 (2012), 417–435. https:
//doi.org/10.1109/TPAMI.2011.142

[3] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA data mining software: an update. SIGKDD
Explorations 11, 1 (2009), 10–18.

[4] Ishwarappa and J. Anuradha. 2015. A Brief Introduction on Big Data 5Vs Charac-
teristics and Hadoop Technology. Procedia Computer Science 48 (2015), 319–324.

https://doi.org/10.1016/j.procs.2015.04.188
[5] Beniamino Di Martino, Rocco Aversa, Giuseppina Cretella, Antonio Esposito,

and Joanna Kolodziej. 2014. Big data (lost) in the cloud. IJBDI 1, 1/2 (2014), 3–17.
https://doi.org/10.1504/IJBDI.2014.063840

[6] Stefanos Ougiaroglou, Georgios Arampatzis, Dimitris A. Dervos, and Georgios
Evangelidis. 2017. Generating Fixed-Size Training Sets for Large and Streaming
Datasets. In Advances in Databases and Information Systems - 21st European
Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings. 88–
102. https://doi.org/10.1007/978-3-319-66917-5_7

[7] Stefanos Ougiaroglou and Georgios Evangelidis. 2016. Efficient editing and data
abstraction by finding homogeneous clusters. Ann. Math. Artif. Intell. 76, 3-4
(2016), 327–349. https://doi.org/10.1007/s10472-015-9472-8

[8] Stefanos Ougiaroglou and Georgios Evangelidis. 2016. RHC: a non-parametric
cluster-based data reduction for efficient k-NN classification. Pattern Anal. Appl.
19, 1 (2016), 93–109. https://doi.org/10.1007/s10044-014-0393-7

[9] Muhammad Habib Ur Rehman, Chee Sun Liew, Assad Abbas, Prem Prakash
Jayaraman, Teh YingWah, and Samee U. Khan. 2016. Big Data ReductionMethods:
A Survey. Data Science and Engineering 1, 4 (2016), 265–284. https://doi.org/10.
1007/s41019-016-0022-0

[10] Isaac Triguero, Joaquín Derrac, Salvador García, and Francisco Herrera. 2012.
A Taxonomy and Experimental Study on Prototype Generation for Nearest
Neighbor Classification. IEEE Trans. Systems, Man, and Cybernetics, Part C 42, 1
(2012), 86–100. https://doi.org/10.1109/TSMCC.2010.2103939

[11] Dennis L. Wilson. 1972. Asymptotic Properties of Nearest Neighbor Rules Using
Edited Data. IEEE trans. on systems, man, and cybernetics 2, 3 (July 1972), 408–421.

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June
22, 2010.

http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-255-287/
http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-255-287/
http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-255-287/
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1016/j.procs.2015.04.188
https://doi.org/10.1504/IJBDI.2014.063840
https://doi.org/10.1007/978-3-319-66917-5_7
https://doi.org/10.1007/s10472-015-9472-8
https://doi.org/10.1007/s10044-014-0393-7
https://doi.org/10.1007/s41019-016-0022-0
https://doi.org/10.1007/s41019-016-0022-0
https://doi.org/10.1109/TSMCC.2010.2103939

	Abstract
	1 Introduction
	2 Background Knowledge
	3 The RHC and ERHC Algorithms
	4 The Proposed Algorithms
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusions and Future Work
	7 Acknowledgments
	References

