
Fast tree-based classification via homogeneous
clustering

Georgios Pardis1, Konstantinos I. Diamantaras1[0000−0003−1373−4022],
Stefanos Ougiaroglou1,2[0000−0003−1094−2520], and

Georgios Evangelidis2[0000−0003−1639−2152]

1 Department of Information and Electronic Engineering,
International Hellenic University, 57400 Sindos, Greece
george.pardis@gmail.com, kdiamant@it.teithe.gr

2 Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 54636 Thessaloniki, Greece

{stoug, gevan}@uom.edu.gr

Abstract. Data reduction aims to reduce the number of training data
in order to speed-up the classifier training. They do that by collecting
a small set of representative prototypes from the original patterns. The
Reduction by finding Homogeneous Clusters algorithm is a simple data
reduction technique that recursively utilizes k-means clustering to build
a set of homogeneous clusters. The means of the clusters constitute the
set of the prototypes. Based on the same idea, we propose two new classi-
fiers, which recursively produce homogeneous clusters and achieve higher
performance than current homogeneous clustering methods with signifi-
cant speed up. The key idea is the development of a tree data structure
that holds the constructed clusters. Tree nodes consist of clustering mod-
els. Leaves correspond to homogeneous clusters where the corresponding
class label is stored. Classification is performed by simply traversing the
tree. The two algorithms differ on the clustering method used to build
tree nodes: the first uses k-means while the second applies EM clus-
tering. The proposed algorithms are evaluated in different datasets and
compared with well-known methods. The results demonstrate very good
classification performance combined with large computational savings.

Keywords: Classification, k-means, EM, Prototype Generation

1 Introduction

Handling large volumes of training data in classification systems is an open
topic that has attracted the interest of the research community. The motivation
behind all the efforts is the fast training process as well as the fast and accurate
classification. In this context, many Data Reduction Techniques (DRTs) [5, 9]
have been proposed in an attempt to reduce the classification cost of the k-
Nearest Neighbour classifier (k-NN) [2]. However, DRTs can be also applied to
eager classifiers [7]. The goal of DRTs is to build a small representative set of
the training set. This set is called condensing set and has the advantage of low



2 Pardis et al

computational cost without sacrificing accuracy. A DRT can be either Prototype
Selection (PS) [5] or Prototype Generation (PG) [9]. The DRTs that belong to
first category select representative prototypes form the original training set. On
the other hand, the DRTs that adopt the PG approach generate prototypes by
summarizing similar items. Most DRTs are based on a simple idea: The instances
that lie far from the class decision boundaries are redundant and increase the
computational cost. Hence, DRTs try to select or generate many prototypes for
the close borders areas. It is worth mentioning that the editing algorithms is a
special subcategory of PS that aim to remove noise.

Reduction by finding Homogeneous Clusters (RHC) [8] is a simple and fast
DRT that is based on a recursive procedure that builds homogeneous clusters,
i.e. clusters that contains items of a specific class. For each non-homogeneous
cluster, RHC applies k-means clustering using as initial seeds the means of the
classes that are present in the cluster. This procedure is repeated on all non-
homogeneous clusters and terminates when all become homogeneous. The means
of the homogeneous clusters constitute the condensing set.

RHC discards the means of the non-homogeneous clusters. However, they can
be used to build a tree data structure, where the non-leaf nodes store the means of
non-homegeneous clusters while the leaf-nodes store the means of homogeneous
clusters. Thus, instead of applying k-NN over the condensing set (i.e., the set
of leaf nodes), the classification could be performed by traversing the tree. This
simple idea constitutes the motive behind the present work. The contribution of
the paper is the development of two classifiers that utilize a tree-based model.
When an unclassified instance is to be classified, the prediction process of the
proposed algorithms traverses the tree and the instance gets assigned to the
unique class stored in the leaf node. The two algorithms differ to each other on
the clustering algorithm that they use, i.e., k-means and EM, respectively.

The rest of the paper is organized as follows: Section 2 reviews RHC and
ERHC. Section 3 presents in detail the proposed tree-based classifiers. Section 4
presents the results of the experimental study. Section 5 concludes the paper.

2 The RHC and ERHC Algorithms

The RHC algorithm is a non-parametric PG algorithm that recursively applies
k-means and keeps on constructing clusters until all of them are homogeneous.
Initially, RHC considers the whole training set as a non-homogeneous cluster.
The algorithm begins by computing the mean for each class by averaging the
attribute values of the corresponding instances. Therefore, for a dataset with n
classes, RHC computes n class means. Then, RHC executes k-means using the
n aforementioned class-means as initial seeds and builds n clusters. For each
homogeneous cluster, its mean is placed in the condensing set as prototype. For
each non-homogeneous cluster, the above procedure is applied recursively. RHC
stops when all clusters are homogeneous. In the end, the condensing set contains
all the mean items of the homogeneous clusters. Note that using the class means
as initial means for k-means clustering, the number of clusters is determined



Fast tree-based classification via homogeneous clustering 3

(a) initial data (b) initial class-means (c) k-means results

(d) Cluster-mean and
class-means in a non-
homogeneous cluster

(e) k-means on a
non-homogeneous
cluster

(f) final set of homo-
geneous cluster-means
(condensing set)

Fig. 1: Data generation through RHC

automatically. Figure 1 demonstrates the execution of RHC on a dataset with
two classes. The algorithm recursively identifies three homogeneous clusters, and,
in the end, the initial dataset is replaced by only three prototypes.

RHC generates more prototypes for the close-class-border data areas and less
for the central class data areas. Therefore, datasets with many classes and noisy
items create more prototypes and thus lower reduction rate is achieved.

Editing and Reduction through homogeneous clusters (ERHC) [6] is a simple
variation of RHC. It is based on a following idea: a cluster that contains only one
item is probably noise. ERHC removes that type of clusters. Therefore, ERHC
is more noise tolerant than RHC and achieves higher accuracy and reduction
rates as well as lower computational cost especially on datasets with noise.

3 The Proposed Algorithms

In this paper, we propose two classifiers. Both recursively apply clustering meth-
ods to create a tree data structure whose leaves represent homogeneous clusters.
The first algorithm applies k-means while the second one employs EM cluster-
ing [3]. The nodes store cluster models trained on items belonging to more than



4 Pardis et al

Algorithm 1 Proposed algorithms

Input: TS
Output: HomogeneousTree

1: HomogeneousTree← ∅
2: queue← enqueue(clusters obtained by applying EM or k −means on TS)
3: repeat
4: C ← dequeue(queue)
5: m← trained model of C
6: if C is homogeneous then
7: Insert leaf m in HomogeneousTree
8: else
9: Insert internal node m in HomogeneousTree

10: queue← enqueue(clusters obtained by applying EM or k −means on C
11: end if
12: until IsEmpty(queue)
13: return HomogeneousTree

one classes, i.e., they are non-homogeneous. The idea behind this is that, during
classification stage, instead of comparing the distance between each unclassified
item with all prototypes, the algorithm will only compare the distances to the
closest ones. Also, the homogeneous clustering technique comes up with a weak-
ness. Since more prototypes are generated to close-class-borders, datasets with
many classes and noisy items create more prototypes and thus lower reduction
rate is achieved. To overcome this weakness, the proposed algorithms remove the
noise with a smart technique that leads to a higher rate of reduction without
negatively affecting the processing cost, as the editing algorithms usually do.

The two algorithms operate in the same way and the only difference is the
applied clustering technique. Initially, they consider the whole training set to
be a non-homogeneous cluster. If the cluster contains items from c classes, they
compute c clusters and then apply k-means or EM on each cluster recursively.
The model is saved in the tree as a root node and the children of this node are the
c different clusters. For each child node, homogeneity is checked. If the cluster
is homogeneous or is “almost” homogeneous (i.e., a large percentage of its items
share the same class label) this node becomes an appropriately labeled leaf.
In case of a large percentage of homogeneity, the small remaining percentage
of items probably lies in a region of a different class (noise) or lies close to a
decision-boundaries region, and thus, it is removed and the node is considered
to be homogeneous. If the cluster node is not homogeneous this procedure is
applied recursively. Each unclassified item is classified only by descending the
tree. The pseudo-code in Algorithm 1 describes the process.

3.1 Training HC EM

The first algorithm (HC EM) uses EM as a training method. In the beginning,
the whole dataset is given to the method. The method checks if the dataset



Fast tree-based classification via homogeneous clustering 5

consists of items of only one class and if it does, this set is homogeneous so a leaf
is created that carries the label of this class. In case it is not homogeneous, the
method finds the most popular label and compares its items with all the rest.
If the percentage of the most popular label is more than ninety-five, the set is
considered as homogeneous and a leaf is created carrying this label. In case there
are less than five items in total, a leaf that carries the label of the most popular
class is created. The numbers five and ninety-five were chosen after a trial and
error procedure to find the combination that gives the best results on average.
Almost always, the initial dataset is not homogeneous so the algorithm will try
to find the best parameters to create an effective model. The first parameter
that the training method uses, is the weight of each class. The other parameters
are the number of classes, the means of each class and the initial precisions
[4]. Now that the model is ready, we train it using the dataset and it produces
some predictions about the class each item belongs to. In this point, we create
different clusters consisting of the items of each cluster label that the model
predicted. Then, we produce a node that carries the trained model and has as
many children as the different clusters created before. For each different child
cluster we repeat the whole training procedure from the beginning given as input
the set of items with their real class label and not the predicted one.

3.2 Training HC KMEANS

HC KMEANS is the second of the proposed algorithms. It uses the k-means
as a training method. The reason we decided to construct HC KMEANS is
because although the EM leads to better results, it is slow. By using the k-
means, we achieve faster execution, without a significant cost in accuracy. The
first steps of the training procedure are the same as we described for the HC EM
above. The first difference is that the number of the minimum items capable to
consist a cluster is three and the percentage of superiority of a class that can
make it a homogeneous cluster is ninety-eight. Again, these numbers were chosen
after a trial and error procedure. The other difference is that the model created
takes as a parameter only the number of the different classes and the mean
(representative) of each one. The rest of the procedure is the same. A node is
created and contains the trained model and the different child clusters.

Figure 2 visualizes the training procedure. Once the training set is loaded in
the root of the tree, Expectation Maximization or k-means algorithm trains a
model to predict as many clusters as the different classes in the set. This model
is stored in the node. For every cluster we test if there are any misclassified
items and the procedure repeats until all clusters are homogeneous. In Figure
3, one can visualize a complete example of training when using k-means. The
initial dataset contains three class labels. Eventually, a tree model is constructed
using recursive application of k-means. The nodes of the tree contain the cluster
models, in our case cluster centroids and a class label. The leaves of the tree
correspond to the homogeneous clusters whose items form the initial dataset.



6 Pardis et al

(a) The creation of
the first leaf

(b) First node com-
pleted

(c) First two nodes
completed

(d) The completed
tree structure

Fig. 2: General Training procedure

(a) Initial dataset with
mi indicating the class
representatives

(b) Resulting clusters af-
ter applying k-means us-
ing mi’s as initial seeds.
c3 is homogeneous.

(c) Computing class rep-
resentatives m1i and m2i

for clusters c1 and c2, re-
spectively.

(d) Resulting clusters af-
ter applying k-means on
c1 and c2. c11, c12 and
c22 are homogeneous.

(e) Resulting clusters af-
ter applying k-means on
c21. c211 and c212 are
homogeneous.

(f) The completed tree struc-
ture that replaces the ini-
tial dataset. Notice the labeled
leaves.

Fig. 3: HC KMEANS Training procedure. In the final model, leaves correspond
to the centroids of the homogeneous clusters and internal nodes to the centroids
of the non-homogenous clusters.



Fast tree-based classification via homogeneous clustering 7

Fig. 4: Classification procedure

3.3 Prediction procedure

Each unclassified item descends the tree structure and it ends up in a leaf whose
cluster label adopts as the predicted one. If the adopted cluster label matches
the class label of the item then, the item has been classified correctly. At the
beginning, the item will be at the root of the tree and the trained model of the
node, which had been stored in the training procedure, will be used to predict
the cluster label. Then, it will descend to the child cluster whose cluster label
matches the predicted one. If the child is a leaf, the item is assigned to the cluster
label of the leaf, otherwise the procedure is repeated until a leaf is reached.

Figure 4 illustrates the prediction procedure. The predicted label in this
example matched the cluster labels of internal nodes 1 and 5 and finally of the
leaf node 15. It is possible that during the descend the item may get assigned
to different classes until it adopts the final predicted cluster label of a leaf. As
already mentioned, the trained model that is stored in each node predicts a
cluster label for each item. The way each model makes that prediction is related
to the algorithm we use. In case of k-means, the only criterion is the Euclidean
distance which determines how similar an item is to a group of items. The model
predicts the closest cluster mean each testing sample belongs to. On the other
hand, EM uses the weight of each cluster, the means of each mean and the
precisions, to create a likelihood logarithm value of the most probable mixture
component for the given sample.

Each one of the clusters of a parent node, will be dominated by data items
belonging to a certain class label. This means that the model created a cluster
which consists of items with similar properties. It is normal for some items to
be mislabelled at first, because their properties are more alike those of items
belonging to a different label than theirs. These items may constitute noise and
in most cases they lay in the border of two or more different classes. In some
cases, these items may be a very small cluster within the boundaries of a bigger



8 Pardis et al

one. In our tree structure, during the prediction procedure for an item each
new model will predict a new label that may or may not be the same with the
previously predicted one. However, statistically, a new label is more likely to be
the same as the previous one. The schema of the algorithm we created, leads to
greater accuracy and exceptionally low classification costs altogether. Each item
needs at most as many predictions as the depth of the tree to be classified. In
most of the datasets we tested our algorithm on, the depth was not over three.

4 Performance Evaluation

4.1 Experimental Setup

The proposed algorithms were evaluated using fourteen datasets distributed by
the KEEL repository [1] and summarized in Table 1. For comparison purposes,
we used the Conventional k-NN classification (with k = 1), RHC, ERHC and
the Decision Tree C4.5 algorithms. We selected these methods because: like RHC
and ERHC, our algorithms are based on the concept of homogeneity. Also, the
Decision Tree (DT) C4.5 constructs a tree structure similar to ours. It is also,
one of the most well-known algorithms and one of the best in data mining [10].

The thirteen datasets (except the KDD dataset) were used without data
normalization. Also, we wanted to evaluate our algorithms on datasets with
noise. We built two additional datasets by adding 10% random noise in the LS
and PD datasets. We refer to these datasets as LS10 and PD10 respectively. The
noise was added by setting the class label of the 10% of the training items to a
randomly chosen different class label.

For each dataset and algorithm, we report three average measurements ob-
tained via five-fold cross-validation: (i) Accuracy, (ii) Training time in seconds
and (iii) Testing cost in total number of distance computations. For all datasets
(except the KDD dataset), we used the five already constructed pairs of train-
ing/testing sets hosted by KEEL. Algorithm implementations were written in
Python and all the experiments were done on an 8GB laptop with an AMD
A8-6410 CPU and Windows 10 operating system.

The original form of KDD has 41 attributes. However, for simplifying the
experimentation process, we removed the three nominal and the two fixed value
attributes that are present in the dataset. In addition, we removed all the du-
plicates. Furthermore, the attribute value ranges of the KDD dataset vary ex-
tremely. Therefore, we normalized them in the range [0, 1]. We then randomized
the transformed KDD dataset and divided it into the appropriate folds.

In order not to favor our algorithms against DT C4.5, after a trial and error
procedure, we determined the maximum depth of the DT C4.5 that gives the best
average results for all datasets. Maximum depth can be used as a parameter to set
a limit on how deep a tree can be. The depth that gave the best results is nineteen
(19), although the results for different values do not have significant difference
in classification accuracy, especially for the values that are close to the chosen
one. Our measurements show that both k-means and EM implementations of the
proposed algorithms are superior to the best tuned classification decision trees.



Fast tree-based classification via homogeneous clustering 9

Table 1: Dataset description
Dataset Size Attributes Classes

Letter Recognition (LR) 20000 16 26

Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10

Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7

Texture (TXR) 5500 40 11

Phoneme (PH) 5404 5 2

KddCup (KDD) 494020/141481 36 23

Balance (BL) 625 4 3

Banana (BN) 5300 2 2

Ecoli (ECL) 336 7 8

Yeast (YS) 1484 8 10

Twonorm (TN) 7400 20 2

MONK 2 (MN2) 432 6 2

4.2 Results and Discussion

Table 2 reports the accuracy results including the conventional 1-NN on the ini-
tial datasets. Table 3 reports the time needed to train the classification models.
1-NN is not included there, since as a lazy classifier it does not build any model.
Table 4 reports the total number of distances computed during testing. Notice
that for HC EM, we report the number of likelihood functions computed. It may
by the case that these computations are slightly more expensive than plain eu-
clidean distance computations. Also, we do not report the testing cost for C4.5
since C4.5 outperforms all the other algorithms during testing by traversing its
trees using plain comparisons and not distance computations. The tests confirm
that HC EM algorithm achieves the highest accuracy, with 1-NN and ERHC be-
ing close, and clearly outperforms all the other algorithms that perform distance
computations during testing, with HC KMEANS being a close second.

Among the two proposed algorithms, we observe that HC EM has better re-
sults in accuracy than HC KMEANS. However, the total training process time is
about twice as much for HC EM compared to HC KMEANS, which we attribute
to the higher computational cost of EM. The lower testing times are due to the
higher rates of reduction HC EM achieves. That briefly means that the depth of
the produced tree is smaller and so the computations made are less. Regarding
the performance of the algorithms on the noisy datasets, ERHC achieves the
best overall accuracy, with HC EM achieving the highest accuracy in PD10. We
attribute this to the pruning mechanism used by HC EM.

It must be noted that our tree-based approach resembles the well-known deci-
sion tree (DT) models. However, there is a major difference on the discrimination
function applied in each node of the tree. In a typical classification tree, applied
on numerical data, each node corresponds to an area in the input space which is
divided by a linear separating surface. This surface must be perpendicular to one



10 Pardis et al

of the data dimensions. Clearly, imposing such a restriction limits the separating
capabilities of DTs. Nonlinear discriminating surfaces as well as linear surfaces
forming some random angle with respect to the axes are not allowed. In our case
each tree node is divided using the much more versatile Gaussian split, in the
case of the HC EM, or the Voronoi tessellation in the case of HC KMEANS. As
Table 2 shows, the results of the DT models are inferior to our HC EM method
in most of the cases we have studied. In some cases the difference is significant,
such as, for example, the case of the TN (HC EM accuracy = 97.66%, vs. DT
accuracy = 85.42%, a difference of 12.24%) and BL datasets (HC EM accuracy
= 91.61%, vs. DT accuracy = 76.94%, a difference of 14.67%). The highest ac-
curacy difference in favor of the DT models is observed for the LS dataset where
HC EM accuracy = 81.26%, and DT accuracy = 85.04%, a difference of 3.78%).

We can claim that our approach is a decision tree method with nonlinear
discriminating surfaces per node.

Table 2: Experimental results: Accuracy (%)
Dataset 1-NN DT RHC ERHC HC HC

C4.5 KMEANS EM

LR 95.83 87.09 93.61 92.89 90.33 91.27

MGT 78.14 83.06 72.45 76.94 76.70 85.38

PD 99.35 96.21 98.30 98.63 97.78 97.71

LS 90.60 85.04 89.08 89.16 88.02 81.26

SH 99.82 99.98 99.05 98.69 98.48 99.73

TXR 99.02 92.68 96.96 97.22 95.98 99.84

PH 90.10 87.02 85.70 86.72 85.29 85.98

KDD 99.71 99.77 99.39 99.39 99.44 99.39

BL 78.40 76.94 69.52 75.97 78.06 91.61

BN 86.91 87.08 84.32 84.32 88.93 86.99

ECL 79.78 74.62 69.19 79.19 74.64 73.43

YS 52.02 52.74 48.48 53.00 50.77 52.00

TN 94.88 85.42 89.41 91.55 97.82 97.66

MN2 90.51 100 94.62 95.08 98.35 100

PD10 89.50 87.29 77.15 97.25 85.57 97.45

LS10 82.02 80.25 79.81 87.08 81.98 80.92

Avg 87.91 85.95 84.19 87.69 86.76 88.79

5 Conclusions

The two proposed algorithms are simple PG algorithms that achieve high perfor-
mance. They improve the quality of the training data and as a consequence the



Fast tree-based classification via homogeneous clustering 11

Table 3: Experimental results: Training time (seconds)
Dataset DT RHC ERHC HC HC

C4.5 KMEANS EM

LR <1 32.85 30.94 20.46 261.10

MGT 1.11 71.25 82.94 42.35 55.88

PD <1 5.22 5.20 3.06 30.79

LS <1 7.80 8.64 5.39 21.41

SH <1 8.94 9.23 4.60 44.86

TXR <1 3.77 3.97 3.00 5.22

PH <1 12.80 13.34 7.76 20.97

KDD 4.38 26.41 25.71 7.79 20.45

BL <1 1.19 1.16 <1 1.49

BN <1 11.11 11.40 6.05 4.08

ECL <1 1.50 <1 <1 1.83

YS <1 8.65 5.72 2.73 13.81

TN <1 7.86 6.51 <1 <1

MN2 <1 <1 <1 <1 <1

PD10 <1 30.32 23.67 26.57 39.83

LS10 <1 16.22 12.00 14.10 42.05

Table 4: Experimental results: Distance computations in thousands. For HC EM,
likelihood functions computed in thousands.

Dataset 1-NN RHC ERHC HC HC
KMEANS EM

LR 64000 7573 5057 405 254

MGT 57881 15219 8984 440 252

PD 19335 673 492 96 44

LS 6625 669 466 72 33

SH 538228 2465 1679 501 135

TXR 4840 257 196 40 30

PH 4673 899 557 78 57

KDD 3202767 6581 5234 78 56

BL 62 13 8 5 0.7

BN 4494 217 196 70 40

ECL 18 5 2 2 2

YS 352 176 72 20 23

TN 8761 286 212 33 11

MN2 30 1 1 1.6 1.4

PD10 19335 5205 2567 228 139

LS10 6625 1605 792 122 70

Avg 246127 2615 1657 137 72

accuracy through fast preprocessing that removes noisy and mislabeled training
items. The main advantage is that the two algorithms use a tree structure of



12 Pardis et al

trained models that lead to improved accuracy and significantly less computa-
tions, since a misclassified item in a parent node can correct its predicted label
in the child node computation.

The algorithms were experimentally evaluated on known datasets and com-
pared to RHC and ERHC, two very fast and effective algorithms, the conven-
tional 1-NN classifier and the C4.5 decision tree which is an popular algorithm
in data mining. We measured the accuracy, the training time and the testing
cost. Through experimental studies, we have demonstrated that they have met
the goals for which they were developed and led to improved performance.

References

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: Keel data-mining
software tool: Data set repository, integration of algorithms and experimental
analysis framework. Multiple-Valued Logic and Soft Computing 17(2-3), 255–287
(2011)

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (Sep 2006). https://doi.org/10.1109/TIT.1967.1053964, http://dx.
doi.org/10.1109/TIT.1967.1053964

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological) 39(1), 1–22 (1977)

4. scikit-learn developers: Scikit-learn user guide. Scikit-learn.org (March 2019)
5. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection

for nearest neighbor classification: Taxonomy and empirical study.
IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (Mar 2012).
https://doi.org/10.1109/TPAMI.2011.142, http://dx.doi.org/10.1109/TPAMI.

2011.142

6. Ougiaroglou, Stefanosand Evangelidis, G.: Efficient editing and data abstraction
by finding homogeneous clusters. Annals of Mathematics and Artificial Intelli-
gence 76(3), 327–349 (2015). https://doi.org/10.1007/s10472-015-9472-8, http:

//dx.doi.org/10.1007/s10472-015-9472-8

7. Ougiaroglou, S., Diamantaras, K.I., Evangelidis, G.: Exploring
the effect of data reduction on neural network and support vec-
tor machine classification. Neurocomputing 280, 101 – 110 (2018).
https://doi.org/https://doi.org/10.1016/j.neucom.2017.08.076, http://www.

sciencedirect.com/science/article/pii/S0925231217317757, applications of
Neural Modeling in the new era for data and IT

8. Ougiaroglou, S., Evangelidis, G.: RHC: Non-parametric cluster-based data reduc-
tion for efficient k-nn classification. Pattern Analysis and Applications 19(1), 93–
109 (2016)

9. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. Trans. Sys. Man Cyber
Part C 42(1), 86–100 (Jan 2012). https://doi.org/10.1109/TSMCC.2010.2103939,
http://dx.doi.org/10.1109/TSMCC.2010.2103939

10. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg,
D.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1),



Fast tree-based classification via homogeneous clustering 13

1–37 (Jan 2008). https://doi.org/10.1007/s10115-007-0114-2, https://doi.org/

10.1007/s10115-007-0114-2


