
Generating fixed-size training sets for large and
streaming datasets

Stefanos Ougiaroglou1,2, Georgios Arampatzis1, Dimitris A. Dervos1, and
Georgios Evangelidis2

1 Dept. of Information Technology, Alexander TEI of Thessaloniki,
57400 Sindos, Greece

stoug@uom.edu.gr, arampatzisgi@gmail.com, dad@it.teithe.gr
2 Dept. of Applied Informatics, School of Information Sciences,

University of Macedonia, 54636 Thessaloniki, Greece
gevan@uom.gr

Abstract. The k Nearest Neighbor is a popular and versatile classifier
but requires a relatively small training set in order to perform adequately,
a prerequisite not satisfiable with the large volumes of training data that
are nowadays available from streaming environments. Conventional Data
Reduction Techniques that select or generate training prototypes are also
inappropriate in such environments. Dynamic RHC (dRHC) is a proto-
type generation algorithm that can update its condensing set when new
training data arrives. However, after repetitive updates, the size of the
condensing set may become unpredictably large. This paper proposes
dRHC2, a new variation of dRHC, which remedies the aforementioned
drawback. dRHC2 keeps the size of the condensing set in a convenient,
manageable by the classifier, level by ranking the prototypes and remov-
ing the least important ones. dRHC2 is tested on several datasets and
the experimental results reveal that it is more efficient and noise tolerant
than dRHC and is comparable to dRHC in terms of accuracy.

Keywords: k-NN Classification, Data Reduction, Prototype Genera-
tion, Data Streams, Clustering

1 Introduction

The problem of handling fast data streams [1] or large datasets that cannot
reside in main memory has attracted the attention of the Data Mining and
Machine Learning research communities. Moreover, researchers focus on how to
run data mining algorithms on devices with limited memory (e.g., sensor devices)
avoiding data transferring costs to powerful processing servers. Classification is
a typical data mining task that has many applications on all aforementioned
environments.

Classification algorithms (or classifiers) try to assign unclassified items to a
set of predefined classes, on the basis of the available training dataset, i.e., a set of
already classified items. Classifiers can be either model-based (eager) or instance-
based (lazy). Both aim at accurate class prediction but they differ on how they

2 S. Ougiaroglou et al

work. An eager classifier pre-processes the training set and builds a model that is
then used to classify unclassified items. In contrast, lazy classifiers do not build
any model. They classify a new item by scanning the whole training set. The
size and the quality of the training set is vital for both types of classifiers. These
factors determine the effectiveness and the efficiency of the classifier. However, if
the size of the training set is very large, the usage of any classifier is prohibitive
due to the high computational cost involved.

k-Nearest Neighbors (k-NN) is a well-known and extensively used lazy clas-
sifier [5]. When an unclassified item arrives, the algorithm scans the available
training data and retrieves the k nearest items or neighbors to it according to a
distance metric (e.g., Euclidean distance). Then, the unclassified item is assigned
to the most common class among the classes of the k nearest neighbors.

The k-NN classifier is an effective classifier especially when it is used on small
training sets. For larger training sets, its performance degrades because all dis-
tances between the new item and the training data items must be computed.
In addition, contrary to the eager classifiers that can discard the training data
after the construction of the classification model, the k-NN classifier has higher
storage requirements since it must have the training set always available. In
addition, k-NN classifier is not noise tolerant. Noise misleads the classifier and
downgrades classification accuracy. The application of a Data Reduction Tech-
nique (DRT) that builds a small representative (condensing) set of the initial
training data as a preprocessing step can deal with these weaknesses.

Since the k-NN classifier does not build any classification model, it can be
easily adapted in streaming environments [1]. However, it can be used only on
a portion of a training stream (e.g., a data window thresholded by the user).
Another approach could be the maintenance of a condensing set built from the
data stream.

Dynamic RHC (dRHC) [12] is a DRT that incrementally builds its condensing
set. A new training data segment can be used to update an existing condensing
set without applying the prototype generation procedure from scratch over the
complete training data (new and old training data). Therefore, dRHC is appro-
priate for dynamic environments where new training data becomes gradually
available and for very large datasets that can not fit in main memory.

The experimental results presented in [12] demonstrate that dRHC is a fast
DRT, achieves high reduction rates and does not degrade the classification ac-
curacy achieved by the k-NN classifier on the original training set. However,
after repetitive updates of the condensing set, its size may exceed the size of
the available memory. This observation is behind the motivation of the present
work. The contribution is the development of a new version of dRHC that reme-
dies this drawback by keeping the size of the condensing set fixed. In particular,
the paper proposes dRHC2 that ranks the prototypes and removes the weakest
ones when the size of the condensing set exceeds a predefined threshold value.
The experimental study shows that dRHC2 is faster than dRHC while keeping
accuracy at high levels.

Generating fixed-size training sets 3

The rest of this paper is structured as follows: Section 2 discusses the back-
ground knowledge on DRTs and their limitations. Section 3 reviews the dRHC
algorithm. Section 4 considers in detail the proposed dRHC2 algorithm. In Sec-
tion 5, both algorithms are experimentally compared to each other on fourteen
datasets. The experimental results are validated by the Wilcoxon signed rank
test. Section 6 concludes the paper and proposes directions for future work.

2 Background knowledge

Data Reduction Techniques can be grouped into two main categories: (i) Proto-
type Selection (PS) algorithms that collect representative items (or prototypes)
from the initial training set [8] , and, (ii) Prototype Generation (PG) algorithms
that generate prototypes by summarizing on similar items [15]. PS algorithms
can be either condensing or editing. The latter aim for improved classification ac-
curacy by removing noise from the training data and by “cleaning” the decision
boundaries between the discrete classes. On the other hand, PS-condensing and
PG algorithms aim for data condensation, i.e., the construction of a condensing
set of the initial training data.

Most PS-condensing and PG algorithms are based on a simple observation:
the items that do not define the decision boundaries between classes can be
removed without loss of accuracy. Consequently, PS-condensing algorithms try
to collect only the items that are close to the decision boundaries (border items).
On the other hand, PG algorithms generate many prototypes for the close-border
areas and few for the “internal” data areas. It is worth mentioning that most of
the PG and PS-condensing algorithms are sensitive to noise. Hence, for training
sets with noise, an editing algorithm must be applied beforehand.

A great number of DRTs have been proposed in the literature. PS and PG
algorithms are reviewed, categorized and compared to each other in [15] and [8],
respectively. Although there are some exceptions (e.g., IBL algorithms [2, 4]),
DRTs are usually memory-based. This implies that the whole training set must
reside in main memory. This property renders DRTs inappropriate for very large
training sets that cannot fit into the device’s memory or for devices with limited
memory (e.g., sensor devices) without transferring data to a server over the
network for processing.

Furthermore, these DRTs cannot consider new training items after the con-
struction of the condensing sets, i.e., they cannot update their condensing set in
a dynamic manner. Suppose that a DRT is applied over a training set TS and
builds a condensing set. Moreover, suppose that new training items D become
available. For the construction of an updated condensing set, the DRT must run
from scratch over the complete training set TS∪D. Therefore, all training items
must always be available. Hence, DRTs are inappropriate for dynamic/streaming
environments where new training items become gradually available. The Dy-
namic RHC is a PG algorithm that can be used in dynamic/streaming environ-
ments [12].

4 S. Ougiaroglou et al

3 The dRHC algorithm

Dynamic RHC (dRHC) is a descendant of the Reduction through Homogeneous
Clusters (RHC) algorithm [12, 11]. The latter is based on the concept of cluster
homogeneity. RHC utilizes k-means clustering. Initially, it considers the training
set with D classes as a non-homogeneous cluster C. The algorithm computes a
class-mean for each class in C by averaging on the corresponding items. Then,
k-means clustering is applied on C by using these class-means as initial seeds
and D clusters are formed. Each item in C is assigned to one of the D clusters.
Then, RHC examines the D clusters. If a cluster is homogeneous (i.e., has items
of only one class), its cluster-mean constitutes a prototype and is placed in the
condensing set. If a cluster is non-homogeneous, the aforementioned procedure is
applied recursively on it. RHC terminates when there are no non-homogeneous
clusters left. In other words, each homogeneous cluster contributes a prototype.

RHC builds many prototypes for close-border areas and fewer for the “in-
ternal” areas. By using the class-means as initial seeds for k-means clustering,
quick discovery of large homogeneous clusters is feasible (the larger clusters dis-
covered, the higher reduction rates achieved). The main disadvantage of RHC is
that it is memory-based. Moreover, it cannot cope with training sets that cannot
fit in memory or streaming data.

The dRHC algorithm retains all the properties of RHC. In addition, it can
also manage large or streaming datasets by considering the available data in
the form of data segments. The application of dRHC involves two phases (see
Figure 1): (i) initial condensing set construction and (ii) condensing set update.
The initial condensing set construction phase is executed only once, when the
first data segment arrives. The following data segments are processed by the con-
densing set update phase. The initial condensing set construction phase is almost
identical to RHC. The only difference is that each prototype of the Condensing
Set (CS) stores a weight attribute that counts how many items are represented
by the specific prototype. The condensing set update phase uses the prototypes
of the current condensing set and the items of a new data segment in order to
build a set of initial clusters and then it proceeds similarly to RHC.

The condensing set update phase can be easily understood by considering
Algorithm 1. The algorithm has two input parameters: an already constructed
(old) condensing set (OCS) and a data segment (Seg) with new training items.
The output is an updated (new) condensing set (NCS). The condensing set
update phase utilizes a queue (Q) data structure to hold the unprocessed clusters
(lines 2–3). Initially, the condensing set update phase initializes as many clusters,
as the number of prototypes in OCS (lines 3–6). Each cluster contains only the
prototype. Then, for each item x in Seg, the algorithm identifies the nearest
prototype and assigns x to the corresponding cluster (lines 7–11). All items
in Seg have weight = 1. Hence, each cluster contains an old prototype with
weight >= 1 and items (from Seg) with weight = 1. The clusters are enqueued
to Q for further processing (lines 12–14).

The condensing set update phase generates the updated condensing set NCS
considering the weight values. For each homogeneous cluster, it computes the

Generating fixed-size training sets 5

Fig. 1. Classification using dRHC

weighted mean of the cluster (lines 19–22). For each non-homogeneous cluster
C, a weighted mean is estimated for each class in C (lines 24–29). Like RHC,
dRHC utilizes the weighted class means as initial seeds for k-Means clustering
(line 30). Of course, dRHC uses the version of k-means that computes the cluster
means by considering the corresponding weights. Thus, a vector attribute aj ,
j = 1, 2, . . . , n of a class or cluster mean mC (lines 20, 26) is computed by the
following formula:

mC .aj =

∑
xi∈C xi.aj × xi.weight∑

xi∈C xi.weight

k-means clustering builds as many clusters as the number of different classes
in C. They are enqueued to Q for further processing. The repeat-until loop
(lines 17,35) ends when all clusters become homogeneous, i.e., when Q is empty.
Note that old prototypes usually have weights greater than one and have higher
influence in the computation of a new weighted class or cluster mean than any
item of a new data segment, whose weight is one.

An example of the execution of the condensing set update phase is depicted
in Figure 2. More specifically, Figure 2(a) presents an existing condensing set
created by either the initial CS construction phase or by a previously executed
condensing set update phase. The condensing set has three prototypes with the
corresponding weights. Suppose that a segment with seven new training items
is available and is about to be processed (Figure 2(b)). Each new item has a
weight equal to one. The first step is the assignment of each new item to the
cluster of the nearest prototype (Figure 2(c)). The new items assigned to cluster
A have the same class as the class of the prototype in A. Therefore, the prototype
“moves” towards the new items (Figure 2(d)). This is achieved by computing
the weighted mean in A. The latter constitutes the new prototype and is placed
in the condensing set along with its new weight. On the other hand, there is no
item that has been assigned to cluster B. Hence, the corresponding prototype
remains unchanged. Cluster C becomes non-homogeneous. For each class in C,

6 S. Ougiaroglou et al

Algorithm 1 dRHC: condensing set update phase

Input: OCS, Seg
Output: NCS

1: {Queue Initialization}
2: Q← ∅
3: CLi← ∅ {empty list of clusters}
4: for each prototype m ∈ OCS do
5: add new cluster C = {m} in CLi
6: end for
7: for each item x ∈ Seg do
8: x.weight = 1
9: find the Cluster Cx ∈ CLi with the nearest to x prototype
10: Cx ← Cx ∪ {x} {The mean of Cx is not recomputed}
11: end for
12: for each cluster C in CLi do
13: Enqueue(Q, C)
14: end for
15: {Construction of NCS}
16: NCS ← ∅
17: repeat
18: C ← Dequeue(Q)
19: if C is homogeneous then
20: m← weighted mean of C
21: m.weight←

∑
xi∈C xi.weight

22: NCS ← NCS ∪ {m}
23: else
24: M ← ∅ {M is the set of weighted class means}
25: for each class L in C do
26: mL ← weighted mean of L
27: mL.weight←

∑
xi∈L xi.weight

28: M ←M ∪ {mL}
29: end for
30: NewClusters ← k-means(C, M)
31: for each cluster NC ∈ NewClusters do
32: Enqueue(Q, NC)
33: end for
34: end if
35: until IsEmpty(Q)
36: return NCS

Generating fixed-size training sets 7

a weighted class mean is computed, k-means is executed and two homogeneous
clusters are built (see Figure 2(d,e)). Finally, a weighted cluster mean for each
cluster is computed and its weight is estimated. They constitute new prototypes
and they are placed in the condensing set (Figure 2(f)).

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of execution of the condensing set update phase of dRHC

In the experimental study presented in [12], RHC and dRHC were compared
to each other and against state-of-the-art PS [9, 2, 10, 17] and PG [14] algorithms.
It turns out that dRHC is the fastest algorithm (with the lowest preprocessing
cost) and builds the smallest condensing set without loss of classification accu-
racy.

4 The proposed dRHC2 algorithm

Although dRHC seems to be appropriate for large training datasets or stream-
ing environments, it has a major drawback: after repetitive executions of the
condensing set update phase, the condensing set may become very large. There-
fore, there is a need to keep the size of the condensing set fixed. The dRHC2
algorithm is a new version of dRHC that copes with this drawback.

dRHC2 accepts an input parameter that is the desirable maximum size of
the condensing set. In effect, dRHC2 executes similarly to dRHC, but when

8 S. Ougiaroglou et al

the size of the condensing set exceeds the maximum size (T), the algorithm
removes prototypes to save space. In other words, dRHC maintains the size of
the condensing set equal to T by removing the least important prototypes from
the updated condensing set. Thus, dRHC2 introduces a post-processing step in
the condensing set update phase presented in Section 3. T is adjusted by the user
taking into account the trade-off between accuracy and computational cost, the
level of noise in the data and of course the system limitations.

The dRHC2 algorithm includes a mechanism that ranks the prototypes ac-
cording to their importance. Next, it retains only the T first prototypes and
removes the rest. An essential role to the determination of the prototypes’ “im-
portance” plays the concept of prototype weight. One may claim that a prototype
with high weight value is more important than a prototype with lower weight.
This is not absolutely true. If a prototype was generated in a recent condensing
set update phase, it probably has a lower weight value than an older prototype.
Therefore, it is doomed to be discarded. On the other hand, an old prototype
that has survived many executions of the condensing set update phase, probably
has a high weight value. Thus, the latter tends to be favored against the new
prototypes and will survive in the condensing set. Consequently, if dRHC2 ranks
the prototypes according to their weight, it may discard most of the prototypes
arriving in later stages.

In order to more appropriately rank the prototypes, dRHC2 keeps a counter
of the data segments that have arrived and adds an extra attribute to each pro-
totype that denotes the number (r) of the data segment on which the prototype
was generated. After each execution of the condensing set update phase, dRHC2
ranks the prototypes according to a measure called AnA, which stands for Av-
erage number of Arrivals and takes into account the weight and the age of each
prototype. In effect, AnA estimates the prototype weight per data segment. AnA
is computed as follows:

AnA =
w

ds− r + 1

where

– w is the prototype weight that is the number of items summarized together
and represented by the specific prototype

– r is the number of the data segment on which the prototype was generated
– ds is the number of the current data segment

By using AnA, no prototypes are favored in the ranking. The AnA of the
most recent prototypes, i.e., the ones created by the last condensing set update
phase, is equal to their w. On the other hand, the AnA of older prototypes is
practically their w divided by their age.

Algorithm 4 summarizes the post-processing step introduced by dRHC2. This
step is the only difference between dRHC and dRHC2. The algorithm accepts
the set maximum condensing set size T and the condensing set produced by
either the initial condensing set construction phase or a condensing set update
phase (NCS) as input parameters. When |NCS| > T , the algorithm returns a
new condensing set NCS with |NCS| = T .

Generating fixed-size training sets 9

Algorithm 2 dRHC2: Post-processing step

Input: NCS, T
Output: NCS

1: if |NCS| > T then
2: NCS ← keep the T prototypes with the highest AnA
3: end if
4: return NCS

In case of data with noise, dRHC inevitably generates prototypes that rep-
resent noisy items. However, these prototypes usually have low weight and AnA
values. If we adopt dRHC2 instead of dRHC, these prototypes are eventually
removed. Therefore, we expect dRHC2 to handle noisy training data and, in
such cases, achieve higher accuracy than dRHC.

One can claim that dRHC2 maintains a condensing set that adapts according
to the concept drift [16] that may exist in the data stream. This assumption may
not be absolutely correct. The newly generated prototypes or the prototypes that
are updated after a condensing set update are not favored against the older ones.

5 Performance Evaluation

5.1 Experimental setup

The performance of dRHC2 was tested against dRHC using fourteen datasets
distributed by the KEEL dataset repository3 [3]. Table 1 summarizes on the
datasets used. In the experimental study presented in [12], RHC and dRHC were
evaluated against five state-of-the-art data reduction techniques [9, 2, 10, 17, 14]
on the same fourteen datasets. Therefore, we “indirectly” compare dRHC2 to
these techniques. The reader can execute dRHC and dRHC2 over the particular
datasets using WebDR4 [13]

The Euclidean distance was adopted as the distance metric. All algorithms
were implemented in C. Except KDD, all the other datasets were used without
normalization. We randomized the datasets that were distributed sorted on the
class label. For each dataset and algorithm, three average measurements obtained
via five-fold cross-validation were estimated: (i) Accuracy (ACC), (ii) Reduction
Rate (RR), and, (iii) Preprocessing Cost (PC) in terms of distance computations.
To be fair, we should notice that PC measurements do not include the small cost
overhead introduced by the ranking of the prototypes. Accuracy was estimated
by running k-NN classification with k = 1. Note that we did not use special
evaluation methods for data streams (e.g., test-then-train) [7], since the used
datasets do not exhibit concept drift.

For KDD, we removed the three nominal and the two fixed-value attributes
that exist in the dataset. Moreover, KDD contains many duplicates that were

3 http://sci2s.ugr.es/keel/datasets.php
4 https://atropos.uom.gr/webdr

10 S. Ougiaroglou et al

Table 1. Dataset description

Dataset Size Attributes Classes
Memory/
Buffer size

Letter Image Recognition (LIR) 20,000 16 26 2,000
Magic G. Telescope (MGT) 19,020 10 2 1,902

Pen-Digits (PD) 10,992 16 10 1,000
Landsat Satellite (LS) 6,435 36 6 572

Shuttle (SH) 58,000 9 7 1,856
Texture (TXR) 5,500 40 11 440
Phoneme (PH) 5,404 5 2 500
Balance (BL) 625 4 3 100
Pima (PM) 768 8 2 100
Ecoli (ECL) 336 7 8 200
Yeast (YS) 1,484 8 10 396

Twonorm (TN) 7,400 20 2 592
MONK 2 (MN2) 432 6 2 115
KddCup (KDD) 141,481 36 23 4,000

also removed. The attribute ranges of KDD vary extremely. We normalized them
to the [0, 1] range.

The dRHC and dRHC2 algorithms consume data in the form of data seg-
ments. Thus, the training sets of the datasets were split into segments of a specific
size. The data segment that we adopted for each dataset is presented by the last
column in Table 1. The segment size corresponds to either the size of the buffer
that accepts data from a stream or the size of the available memory (scenario of
limited main memory and/or large datasets). The experimental study presented
in [12] shows empirically that the size of the data segment does not affect the
performance of dRHC. Therefore, we did not conduct experiments with differ-
ent segment sizes. The performance measurements were estimated following the
arrival of all the data segments.

The dRHC2 algorithm accepts as an input parameter the set maximum con-
densing set size (T). For each dataset, T was adjusted to a certain percentage of
the size of the condensing set generated by dRHC. The T values chosen were the
85%, 70%, 55% and 40% of the size of the condensing sets constructed by dRHC.
In other words, when dRHC builds a condensing set with 1000 prototypes, four
experiments were conducted to evaluate the performance of dRHC2 with the
following T values: T = 850, T = 700, T = 550, T = 400.

5.2 Comparisons

Table 2 presents the performance measurements of dRHC and dRHC2. The best
measurements are highlighted in boldface. The preprocessing cost measurements
are in million distance computations. Although, both dRHC and dRHC2 are
adopted when the conventional k-NN classifier cannot be applied due to its
limitations, for reference, we report the accuracy measurements achieved by
applying k-NN on the original complete training set.

Obviously, the lower the T value used, the higher reduction rates achieved,
the lower preprocessing cost needed and, of course, the faster the classifier is.
Therefore, the results that concern RR and PC measurements are to be expected

Generating fixed-size training sets 11

Table 2. Comparison of dRHC2 and dRHC in terms of Accuracy (ACC(%)), Reduction
Rate (RR(%)) and Preprocessing Cost (PC (millions of distance computations))

ACC (%) RR (%) PC (M)

Data T % 1NN dRHC dRHC2 dRHC dRHC2 dRHC dRHC2

LIR

85:

95.83 93.92

93.40

88.18

89.95

19.57

19.18
70: 92.84 91.73 17.72
55: 91.85 93.50 15.36
40: 90.08 95.27 12.29

MGT

85:

78.14 72.97

74.19

74.62

78.42

26.03

25.85
70: 74.64 82.24 24.41
55: 75.11 86.04 21.71
40: 75.97 89.95 17.73

PD

85:

99.35 98.49

98.60

97.23

97.65

1.44

1.41
70: 98.63 98.06 1.32
55: 98.34 98.48 1.16
40: 97.73 98.90 0.93

LS

85:

90.60 88.50

88.61

88.35

90.09

1.53

1.51
70: 88.53 91.84 1.42
55: 88.58 93.59 1.27
40: 87.89 95.34 1.03

SH

85:

99.82 99.70

99.69

99.50

99.58

7.98

7.61
70: 99.61 99.65 6.91
55: 99.56 99.72 5.95
40: 99.37 99.80 4.73

TXR

85:

99.02 97.60

97.38

94.95

95.71

0.68

0.67
70: 97.00 96.46 0.62
55: 96.46 97.23 0.53
40: 95.76 97.98 0.43

PH

85:

90.10 85.38

86.14

82.34

84.99

1.64

1.62
70: 85.62 87.65 1.52
55: 85.21 90.29 1.33
40: 84.88 92.95 1.08

BL

85:

78.40 70.56

71.84

78.12

81.40

0.029

0.029
70: 73.12 84.60 0.027
55: 77.28 88.00 0.025
40: 81.60 91.20 0.021

PM

85:

68.36 63.93

65.23

65.11

70.41

0.064

0.063
70: 67.96 75.61 0.060
55: 68.09 80.81 0.055
40: 68.23 86.02 0.046

ECL

85:

79.78 71.46

74.73

68.92

73.61

0.015

0.015
70: 76.22 78.44 0.015
55: 78.28 82.90 0.014
40: 79.75 87.73 0.013

YS

85:

52.02 48.38

48.31

51.23

58.59

0.306

0.306
70: 48.65 65.91 0.306
55: 48.99 73.23 0.278
40: 52.83 80.47 0.244

TN

85:

94.88 93.08

94.03

95.37

96.06

0.695

0.688
70: 94.54 96.76 0.654
55: 95.45 97.45 0.590
40: 95.93 98.14 0.495

MN2

85:

90.51 97.68

96.28

96.88

97.63

0.0040

0.0039
70: 96.29 97.80 0.0038
55: 94.45 98.27 0.0038
40: 93.52 98.84 0.0040

KDD

85:

99.71 99.42

99.47

99.22

99.34

54.70

53.56
70: 99.51 99.46 49.81
55: 99.50 99.58 43.48
40: 99.48 99.69 34.60

AVG

85:

86.89 84.36

84.84

84.29

86.67

8.19

8.04
70: 85.22 89.01 7.49
55: 85.51 91.36 6.55
40: 85.93 93.73 5.26

12 S. Ougiaroglou et al

since dRHC2 adopts a ceiling value for the maximum size of its condensing set
and maintains it throughout the whole execution. Figure 3 depicts this property
of dRHC2 by presenting diagrams for two indicative datasets. The diagrams
illustrate how the preprocessing cost and the size of the condensing set initially
increases and remains constant when T is reached.

(a) LIR:Preprocessing cost (b) LIR:Data reduction

(c) KDD:Preprocessing cost (d) KDD:Data reduction

Fig. 3. Processing per data segment

The ACC performance measurements for dRHC2 are most promising (see in
Table 2). In cases of datasets with low level of noise, dRHC2 achieves accuracy
comparable to that of dRHC. On the other hand, in cases of datasets with a
high level of noise, dRHC2 achieves higher accuracy than dRHC. This happens
because some less important dRHC prototypes originate from noisy data. These
prototypes probably have low AnA values, they are ranked low, and they get
discarded, eventually. Hence, in cases of datasets with high level of noise, we
observe that dRHC2 with the lowest T value achieves even higher accuracy than
the conventional k-NN classifier.

One final comment concerning the average measurements depicted in the
last row of Table 2: dRHC2 can achieve even better accuracy than dRHC by

Generating fixed-size training sets 13

avoiding the arbitrary growth in size of the condensing set, and by reducing the
preprocessing cost.

5.3 Wilcoxon signed rank test

The experimental study is complemented by providing the results of Wilcoxon
signed rank test [6] to statistically validate the ACC measurements presented
in Table 2. The test compares dRHC and dRHC2 in pairs considering the per-
formance on each dataset. All four versions of dRHC2 (with different T values)
were included in the test. Since dRHC2 is the dominant algorithm in terms of
RR and PC, there is no need to include the corresponding measures in the test.

Table 3 presents the results of the Wilcoxon test. Columns labeled with “w/l”
show the number of wins and losses, respectively. The Wilcoxon value (“Wilc.”
column) shows how significant the difference between the algorithms is. If it is
lower than 0.05, one can claim that the difference is statistically significant. The
results of the test reveal that dRHC and dRHC2 do not statistically differ in
terms of accuracy. Thus, dRHC2 can be used instead of dRHC when there is
need for a condensing set with a fixed size.

Table 3. Results of Wilcoxon signed rank test

Methods
Accuracy

w/l Wilc.
dRHC vs dRHC2 (T=85%) 5/9 0.158
dRHC vs dRHC2 (T=70%) 4/10 0.103
dRHC vs dRHC2 (T=55%) 6/8 0.363
dRHC vs dRHC2 (T=40%) 7/7 0.397

6 Conclusions and future work

The paper reports on dRHC2, a noise-tolerant PG algorithm that maintains a
fixed size condensing set by monitoring a training data stream or by managing
a large dataset which cannot reside in memory. The experimental study yields
promising results. Even when the condensing set generated by dRHC2 is less
than half the size of that generated by dRHC, there is no loss in accuracy and in
many cases the accuracy achieved by dRHC2 is even higher. In addition, because
the size of the condensing set is not arbitrary increased and remains constant,
the preprocessing cost remains low and constant till the end of the execution.

Our plans for future work include the development of variations of dRHC2
that will be able to fully handle data streams with concept drift. This could be
achieved by increasing the importance of newly generated prototypes.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Sys-
tems Series, Springer Science+Business Media, LLC (2007)

14 S. Ougiaroglou et al

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37–66 (Jan 1991), http://dx.doi.org/10.1023/A:1022689900470

3. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework. Multiple-Valued Logic and Soft Computing 17(2-3),
255–287 (2011)

4. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams.
Intell. Data Anal. 11(6), 627–650 (Dec 2007), http://dl.acm.org/citation.cfm?
id=1368018.1368022

5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (Sep 2006), http://dx.doi.org/10.1109/TIT.1967.1053964

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (Dec 2006), http://dl.acm.org/citation.cfm?id=1248547.
1248548

7. Gama, J.a., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 329–338. KDD ’09, ACM, New
York, NY, USA (2009), http://doi.acm.org/10.1145/1557019.1557060

8. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal.
Mach. Intell. 34(3), 417–435 (Mar 2012), http://dx.doi.org/10.1109/TPAMI.

2011.142

9. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Informa-
tion Theory 14(3), 515–516 (1968)

10. Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Trinidad, J.F.M.: A new fast prototype
selection method based on clustering. Pattern Anal. Appl. 13(2), 131–141 (2010)

11. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homo-
geneous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics.
pp. 168–173. BCI ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/
10.1145/2371316.2371349

12. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data re-
duction for efficient k-NN classification. Pattern Analysis and Applications 19(1),
93–109 (2014), http://dx.doi.org/10.1007/s10044-014-0393-7

13. Ougiaroglou, S., Evangelidis, G.: WebDR: A web workbench for data reduction.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning
and Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol.
8726, pp. 464–467. Springer Berlin Heidelberg (2014), http://dx.doi.org/10.

1007/978-3-662-44845-8_36

14. Sánchez, J.S.: High training set size reduction by space partitioning and prototype
abstraction. Pattern Recognition 37(7), 1561–1564 (2004)

15. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. Trans. Sys. Man Cy-
ber Part C 42(1), 86–100 (Jan 2012), http://dx.doi.org/10.1109/TSMCC.2010.
2103939

16. Tsymbal, A.: The problem of concept drift: definitions and related work. Tech.
Rep. TCD-CS-2004-15, The University of Dublin, Trinity College, Department of
Computer Science, Dublin, Ireland (2004)

17. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning al-
gorithms. Mach. Learn. 38(3), 257–286 (Mar 2000), http://dx.doi.org/10.1023/
A:1007626913721

