
AIB2: An Abstraction Data Reduction Technique
based on IB2

Stefanos Ougiaroglou
∗

stoug@uom.gr
Georgios Evangelidis

gevan@uom.gr
Department of Applied Informatics

University of Mecedonia
156 Egnatia str., 54006
Thessaloniki, Greece

ABSTRACT
Data reduction improves the efficiency of k-NN classifier on
large datasets since it accelerates the classification process
and reduces storage requirements for the training data. IB2
is an effective data reduction technique that selects some
training items form the initial dataset and uses them as
representatives (prototypes). Contrary to many other data
reduction techniques, IB2 is a very fast, one-pass method
that builds its reduced (condensing) set in an incremental
manner. New training data can update the condensing set
without the need of the“old”removed items. This paper pro-
poses AIB2, a variation of IB2, which generates new proto-
types instead of selecting them. AIB2 attempts to improve
the efficiency of IB2 by positioning the prototypes in the
center of the data areas they represent. The experimental
study shows that the proposed method performs better than
IB2.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.5.3 [Pattern Recognition]:
Clustering—Algorithms

General Terms
Algorithms, Experimentation

Keywords
k-NN classification, data reduction, prototype selection and
abstraction

1. INTRODUCTION
The k-Nearest Neighbour (k-NN) classification algorithm is
an effective lazy classifier [6]. For each unclassified item x, it

∗Stefanos Ougiaroglou is supported by a scholarship from
the Greek Scholarships Foundation (I.K.Y.)

searches in the available training database and retrieves the
k nearest items (neighbours) to x according to a distance
metric. Then, x is assigned to the class where the most re-
trieved k nearest neighbours belong to. The k-NN classifier
has some properties that make it a popular classifier: (i) it
is considered to be an accurate classifier, (ii) it has many ap-
plications, (iii) it is easy to implement, and (iv) predictions
result from an easy to understand procedure.

On the other hand, the k-NN classifier has two main draw-
backs. The first one is the high computational cost involved.
Since all distances between the unclassified items and the
available training data must be estimated, the computa-
tional cost is high, and thus, classification is a time consum-
ing process. In cases of very large datasets, the use of k-NN
classifier may be even prohibitive. The second drawback
is the high storage requirements for the Training Set (TS).
Contrary to the eager classifiers that can discard the training
data after the construction of the classification model (e.g.,
decision trees [9]), k-NN classifier needs all training data
available for accessing when a new item has to be classified.
These two weaknesses render k-NN classifier inefficient for
large datasets.

Multi-attribute indexes [10] can efficiently accelerate the
nearest neighbours search and speed-up k-NN classifier. How-
ever, storage requirements increase, since in addition to the
training data, the index must be stored, too. Moreover, in-
dexes can be applied only on datasets with moderate dimen-
sionality (e.g., 2-10). In higher dimensions, the phenomenon
of dimensionality curse makes even sequential scans more
effective than indexes, thus, it is essential to first apply a
dimensionality reduction technique.

Many Data Reduction Techniques (DRTs) have been pro-
posed to address both weaknesses. Contrary to indexes,
they can be used on data with high dimensionality. DRTs
pre-process the TS and build a small representative set of
it, usually called Condensing Set (CS). The goal is to re-
duce the storage requirements and computational cost of
the classifier and at the same time keep classification ac-
curacy at high levels. DRTs are distinguished into Proto-
type Selection [7] and Prototype Abstraction [11] algorithms
and differ on the way they build their CS. Prototype selec-
tion algorithms select items from TS and place them in CS
as representatives (prototypes), whereas, prototype abstrac-
tion algorithms generate prototypes by summarizing similar



TS items. Each prototype in CS represents a specific data
area of the multidimensional space.

IB2 belongs to the popular family of Instance-Based Learn-
ing (IBL) algorithms [3, 2]. IB2 is an one-pass incremen-
tal prototype selection DRT. Actually, it is based on the
earliest and well known prototype selection DRT, CNN-
rule [8]. Contrary to CNN-rule and many other state-of-
the-art DRTs, IB2 can build its CS in an incremental man-
ner. It can take into consideration new TS items after
the CS construction and without needing the old removed
items. Hence, it can be used in dynamic/streaming environ-
ments [1] where new training data is gradually available. In
addition, the incremental nature of IB2 allows its execution
on training sets that cannot fit into main memory.

In this paper, we attempt to improve the performance of
IB2 by considering the idea of prototypes abstraction. Our
contribution is the development and evaluation of an ab-
straction version of IB2, we call Abstraction IB2 (AIB2).
The proposed DRT retains all the properties of IB2, but it
is faster and achieves higher reduction rates and improved
accuracy.

CNN-rule and IB2 are presented in Section 2. Section 3
describes in detail the proposed AIB2 algorithm. Section 4
presents an experimental study where k-NN is applied on
the original training sets and the corresponding condensing
sets produced by CNN, IB2 and AIB2 on seven datasets.
Section 5 concludes the paper.

2. CNN-RULE AND IB2 ALGORITHMS
The Condensing Nearest Neighbour (CNN) rule [8] is the
earliest and also a reference prototype selection DRT in the
context of k-NN classification. CNN-rule (and many other
DRTs) builds its CS based on the following simple idea.
Items that lie in the “internal” data area of a class (i.e., far
from class decision boundaries) are useless during the clas-
sification process. Thus, they can be removed without loss
of accuracy. By adopting this idea, CNN-rule tries to place
into CS only the items that lie in the close-class-border data
areas. These are the only essential items for the classifica-
tion process.

CNN-rule tries to keep the close-class-border items as follows
(see Algorithm 1). Initially, a TS item is moved in CS (line
2). Then, CNN-rule applies the 1-NN rule and classifies the
items of TS by scanning the items of CS (line 6). If an item
is misclassified, it is moved from TS to CS (lines 7–11). The
algorithm continues until there are no moves from TS to CS
during a complete scan of TS (line 13). This ensures that
the content of TS is correctly classified by the content of
CS. The remaining content of TS is discarded (line 17).

CNN-rule considers that misclassified items are probably
close to decision boundaries and so they must be included
in CS. An advantage of the algorithm is that it is a non-
parametric approach. It determines the number of the pro-
totypes automatically, without user-defined parameters. A
drawback is that the resulting CS depends on the order that
class labels of items enter the CS. Thus, CNN-rule builds
a different CS by examining the same training data in a
different order.

Algorithm 1 CNN-rule

Input: TS Output: CS

1: CS ← ∅
2: pick an item of TS and move it to CS
3: repeat
4: stop← TRUE
5: for each x ∈ TS do
6: NN ← Nearest Neighbour of x in CS
7: if NNclass 6= xclass then
8: CS ← CS ∪ x
9: TS ← TS − x

10: stop← FALSE
11: end if
12: end for
13: until stop == TRUE {no move during a pass of TS}
14: discard TS
15: return CS

Algorithm 2 IB2

Input: TS Output: CS

1: CS ← ∅
2: pick an item of TS and move it to CS
3: for each x ∈ TS do
4: NN ← Nearest Neighbour of x in CS
5: if NNclass 6= xclass then
6: CS ← CS ∪ x
7: end if
8: TS ← TS − x
9: end for

10: return CS

Furthermore, CNN-rule cannot handle new training data,
i.e., is non-incremental. The algorithm involves multiple
passes over the data and it cannot use training data available
at a later time to update its CS. To construct an updated CS,
CNN-rule needs the complete TS (new and old data), thus,
the items of TS that do not enter the original CS should be
retained. In addition, CNN-rule requires that all training
items are memory resident.

Although IB2 is based on CNN-rule, it is faster and in-
cremental. Therefore, it can handle new training data or
datasets that cannot fit into memory. Actually, IB2 is an
one-pass version of CNN-rule (see Algorithm 2) and works
as follows. When a new TS item x arrives (line 3), it is clas-
sified by the single nearest neighbour rule by scanning the
contents of the current CS (line 4). If x is wrongly classified,
it is placed in CS (lines 5-7). Then, x is discarded since it
has been examined (line 8).

Similarly to CNN-rule, IB2 is non-parametric and its CS
highly depends on the order items in TS. Contrary to CNN-
rule, the CS built by IB2 does not ensure that it can correctly
classify all examined training data.

IB2 is very fast because it is a one pass algorithm. Training
data segments can update an existing CS in a simple manner
and without considering the “old” (removed) data that had
been used for CS construction. Each new TS item can be
examined, be placed or not in CS, and then, removed. Addi-
tionally, IB2 can handle new class labels. All these proper-



ties render IB2 an appropriate DRT for dynamic/streaming
environments where new training data may be gradually
available or for training databases which cannot fit into the
device’s memory.

3. THE PROPOSED AIB2 ALGORITHM
The proposed AIB2 algorithm is a prototype abstraction
version of IB2. Therfore, AIB2 is a non-parametric, fast,
one-pass DRT that can handle new class labels. In addition,
it is also appropriate for dynamic/streaming environments
and can be applied on datasets that cannot fit into memory.
Of course, like IB2, AIB2 does not take into account the
phenomenon of concept drift [12] that may exist in data
streams. IBL-DS [5] belongs to the IBL family of algorithms
and can deal with this phenomenon.

The main difference between AIB2 and IB2 is the following.
The TS items that are correctly classified by the 1-NN rule
are not ignored. They contribute to the CS construction
by updating their nearest prototype in CS. The main idea
behind AIB2 is that prototypes should be at the center of the
data area they represent. To achieve this, AIB2 adopts the
concept of prototype weight. Each prototype has a weight
value as an extra attribute that denotes the number of TS
items it represents. The weight values are used for updating
the prototype attributes in the multidimensional space.

AIB2 is presented in Algorithm 3. Initially, CS is populated
by an item of TS whose weight is initialized to 1 (lines 2–3).
For each TS item x, AIB2 searches in CS and retrieves its
nearest prototype NN (line 5). If x is misclassified, it is
placed in CS and its weight is initialized to one (lines 6–
8). If x is correctly classified, NN ’s attributes are updated
by taking into consideration its current weight and the at-
tributes of x. Effectively, NN “moves” towards x in the
multidimensional space (lines 10–12). Finally, the weight of
NN is increased by 1 (line 13) and x is removed (line 15).

Algorithm 3 AIB2

Input: TS Output: CS

1: CS ← ∅
2: pick an item y of TS and move it to CS
3: yweight ← 1
4: for each x ∈ TS do
5: NN ← Nearest Neighbour of x in CS
6: if NNclass 6= xclass then
7: xweight ← 1
8: CS ← CS ∪ x
9: else

10: for each attribute attr(i) do

11: NNattr(i) ←
NNattr(i) ×NNweight + xattr(i)

NNweight + 1
12: end for
13: NNweight ← NNweight + 1
14: end if
15: TS ← TS − x
16: end for
17: return CS

By updating the prototypes, AIB2 ensures that each proto-
type lies near the center of the data area it represents. The
idea is that a CS built by AIB2 will contain better repre-
sentatives compared to the CS built by IB2 and will achieve

Table 1: Dataset description

dataset Size Attr. Classes

Letter Recognition (LR) 20000 16 26
Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2

higher accuracy during classification. Furthermore, we ex-
pect that updating the prototypes will reduce the items that
enter the CS (lines 6–8), and thus, AIB2 will achieve higher
reduction rates and lower preprocessing cost compared to
IB2.

4. PERFORMANCE EVALUATION
4.1 Experimental setup
The three presented DRTs were evaluated using seven real
life datasets distributed by the KEEL dataset repository1 [4]
and summarized in Table 1. All datasets were used without
applying data normalization. Datasets MGT, LS and TXR
are distributed sorted on the class label. This affects all
examined DRTs because their performance depends on the
order of data in TS. Hence, we randomized the items of these
datasets. The three algorithms were implemented in C and
the Euclidean distance was the distance metric used.

We did not include more DRTs in our experimental study
because our purpose was to focus on incremental DRTs. Of
course, CNN-rule is a non-incremental DRT, but it is con-
sidered a reference DRT and is being used in most research
papers for comparison purposes. In addition, CNN-rule is
the ancestor of IB2 and AIB2 and it makes sense to use it
in our experiments.

The three DRTs were evaluated by estimating three mea-
surements: (i) Accuracy (ACC) and the corresponding k
value that was used, (ii) Reduction Rate (RR), and, (iii)
Preprocessing Cost (PC) in terms of distance computations.
Accuracy was estimated by executing the k-NN classifier
over the CS built by each DRT. For each dataset and DRT,
we report the average values of these measurements obtained
via five-cross-fold validation. We used the five already con-
structed pairs of training and testing sets distributed by the
KEEL repository. For every dataset and DRT, we report
the k value that achieved the highest accuracy. In effect,
we ran the five-cross-fold validation routine several times
for different k values and selected the best one. Of course,
all measurements were estimated after the arrival of all TS
items. For k>2, two or more classes can be the most com-
mon. Such ties during nearest neighbour voting were re-
solved by assigning the new item to the class of the single
nearest neighbour.

4.2 Comparisons
The results of our experiments are presented in Table 2.
Each column lists the results related to a classifier. Best

1http://sci2s.ugr.es/keel/datasets.php



measurements are in bold. PC measurements are in million
distance computations. For reference, Table 2 presents the
accuracy measurements obtained by the k-NN classifier on
the original TS (Conventional k-NN classifier).

Although the three DRTs did not reach the accuracy levels
of conv-k-NN, they were very close to them. With the excep-
tion of LR and TXR, CNN-rule achieved higher accuracies
than IB2 and AIB2. However, it required much higher pre-
processing cost and it achieved lower reduction rates than
IB2 and AIB2.

As we expected, the proposed algorithm achieved better per-
formance than IB2 in all datasets and in terms of all compar-
ison criteria. In the LR and TXR datasets, AIB2 achieved
higher accuracy than CNN-rule. Although, we expected
even better performance, we believe that the improvements
achieved by AIB2 are noteworthy.

Table 2: DTR Comparison in terms of Accuracy
(ACC(%)), Reduction Rate (RR(%)) and Preprocessing
Cost (PC(millions of computations))

Dataset
Conv.

CNN IB2 AIB2
k-NN

LR

ACC: 96.01 92.84 91.98 94.12
k: 4 1 1 1

RR: - 83,54 85.66 88.12
PC: - 163.03 23.36 20.10

MGT

ACC: 81.32 80.71 79.84 80.36
k: 14 18 38 42

RR: - 60.08 70.60 71.90
PC: - 281.49 34.61 33.05

PD

ACC: 99.37 98.68 98.04 98.33
k: 4 1 1 1

RR: - 95.36 96.23 97.19
PC: - 11.75 1.78 1.38

LS

ACC: 91.22 90.35 89.37 89.42
k: 4 6 6 1

RR: - 80.22 84.62 86.72
PC: - 17.99 2.22 1.92

SH

ACC: 99.82 99.77 99.74 99.72
k: 1 1 1 1

RR: - 99.37 99.44 99.46
PC: - 45.30 8.26 7.89

TXR

ACC: 99.02 97.16 96.35 97.69
k: 4 1 1 1

RR: - 91.90 93.33 94.95
PC: - 5.65 0.84 0.66

PH

ACC: 90.10 87.83 85.77 86.22
k: 1 1 4 4

RR: - 76.04 80.85 81.75
PC: - 13.45 1.96 1.84

Avg
ACC: 93.84 92.48 91.58 92.26
RR: - 83,79 87.25 88.58
PC: - 76.95 10.43 9.55

5. CONCLUSIONS
Data reduction is an important issue in the context of k-
NN classification. This paper proposed the AIB2 algorithm,
an abstraction DRT that is based on the well-known IB2
algorithm. The main concept behind AIB2 is that each gen-

erated prototype should be at the center of the data area
it represents. The experimental results illustrate that AIB2
can achieve higher reduction rates and classification accu-
racy and lower preprocessing cost than IB2.

6. REFERENCES
[1] C. Aggarwal. Data Streams: Models and Algorithms.

Advances in Database Systems Series. Springer
Science+Business Media, LLC, 2007.

[2] D. W. Aha. Tolerating noisy, irrelevant and novel
attributes in instance-based learning algorithms. Int.
J. Man-Mach. Stud., 36(2):267–287, Feb. 1992.

[3] D. W. Aha, D. Kibler, and M. K. Albert.
Instance-based learning algorithms. Mach. Learn.,
6(1):37–66, Jan. 1991.

[4] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac,
and S. Garćıa. Keel data-mining software tool: Data
set repository, integration of algorithms and
experimental analysis framework. Multiple-Valued
Logic and Soft Computing, 17(2-3):255–287, 2011.

[5] J. Beringer and E. Hüllermeier. Efficient
instance-based learning on data streams. Intell. Data
Anal., 11(6):627–650, Dec. 2007.

[6] B. V. Dasarathy. Nearest neighbor (NN) norms : NN
pattern classification techniques. IEEE Computer
Society Press, 1991.

[7] S. Garcia, J. Derrac, J. Cano, and F. Herrera.
Prototype selection for nearest neighbor classification:
Taxonomy and empirical study. IEEE Trans. Pattern
Anal. Mach. Intell., 34(3):417–435, Mar. 2012.

[8] P. E. Hart. The condensed nearest neighbor rule.
IEEE Transactions on Information Theory,
14(3):515–516, 1968.

[9] L. Rokach. Data Mining with Decision Trees: Theory
and Applications. Series in machine perception and
artificial intelligence. World Scientific Publishing
Company, Incorporated, 2007.

[10] H. Samet. Foundations of multidimensional and metric
data structures. The Morgan Kaufmann series in
computer graphics. Elsevier/Morgan Kaufmann, 2006.

[11] I. Triguero, J. Derrac, and S. G. andFrancisco Herrera.
A taxonomy and experimental study on prototype
generation for nearest neighbor classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 42(1):86–100, 2012.

[12] A. Tsymbal. The problem of concept drift: definitions
and related work. Technical Report TCD-CS-2004-15,
The University of Dublin, Trinity College, Department
of Computer Science, Dublin, Ireland, 2004.


