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Abstract. The one-nearest neighbour classifier is a widely-used time
series classification method. However, its efficiency depends on the size
of the training set as well as the data dimensionality. Although many
speed-up methods for fast time series classification have been proposed,
state-of-the-art, non-parametric data reduction techniques have not been
exploited on time series data. This paper presents an experimental study
where known prototype selection and abstraction data reduction tech-
niques are evaluated on the original and a representation form of seven
time series datasets. The results show that data reduction can even im-
prove the classification accuracy and at the same time reduce the com-
putational cost.
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1 Introduction

Classification methods based on similarity search have been proven to be effec-
tive approaches for time series data. More specifically, the one-Nearest Neighbour
(1NN) classifier is a widely-used method. It works by assigning to an unclassi-
fied time series the class label of its most similar training time series. The main
drawback of similarity-based classifiers is that all similarities between an unclas-
sified time series item and the training time series items must be estimated. For
large and high dimensional time series training sets, the high computational cost
renders the application of such classifiers prohibitive. Time series classification
can be sped-up using indexing, representation and/or data reduction.

Indexing can speed-up classification tremendously, but works well only in
low dimensions. Thus, one must first use a dimensionality reduction technique to
aquire a representation of the original data in lower dimensions. A representation
may be considered as a transformation technique that maps a time series from
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the original space to a feature space, retaining the most important features.
There have been several time series representations proposed in the literature,
mainly on the purpose of reducing the intrinsically high dimensionality of time
series [7].

The main goal of data reduction is to reduce the computational cost of the
kNN classifier and the storage requirements of the Training Set (TS). Data
Reduction Techniques (DRTs) try to build a small representative set of the
initial training data. This set is called the Condensing Set (CS) and has the
benefits of low computational cost and storage requirements while maintaining
the classification accuracy at high levels. DRTs can be divided into two algorithm
categories: (i) Prototype Selection (PS) [4], and, (ii) Prototype Abstraction (PA)
(or generation) [10]. Although both categories have the same motivation, they
differ on the way they build the CS. PS algorithms select some TS items and use
them as representatives, whereas, PA algorithms generate representative items
by summarizing similar TS items.

Data reduction has been recently exploited for fast time series classification.
More specifically, [2] and [11] propose PS algorithms for speeding-up 1NN time
series classification. The disadvantage of these methods is that they are para-
metric. The user must define the CS size through trial-and-error procedures.

The present work has been motivated by the following observations. State-of-
the-art non-parametric PS and PA algorithms have not been evaluated neither
on original time series nor on their reduced dimensionality representations. Also,
a PA algorithm we have previously proposed (RHC [8]) has not been evaluated
on time series data. The contribution of this paper is the experimental evaluation
of two PS algorithms, namely, CNN-rule [5] and IB2 [1], and two PA algorithms,
namely, RSP3 [9] and RHC [8] on time series data. Our experimental study
adopts the time series representation method Piecewise Aggregate Approxima-
tion (PAA) [6, 12] in order to test the effect the combination of data reduction
on dimensionality reduced time series has on classification. PAA is a very simple
dimensionality reduction technique that segments a time series into h consecu-
tive sections of equal-width and calculates the corresponding mean for each one.
The series of these means is the new representation of the original data.

The rest of the paper is organized as follows. Section 2 discusses the details
of the four aforementioned DRTs. Section 3 describes the experimental study
and the obtained results, and Section 4 concludes the paper.

2 Data Reduction Techniques

In this section, we present the four DRTs we use in our experimentation. All
DRTs are based on a simple idea. The data items that do not define decision
boundaries between classes are useless for the classification process. Therefore,
they can be discarded. Thus, they try to select or generate a sufficient number
of items that lie in data areas close to decision boundaries. The DRTs we deal
with in this Section are non-parametric. They automatically determine the size
of CS based on the level of noise and the number of classes in the data (the more
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the classes, the more boundaries exist and, thus, the more items are selected or
generated).

2.1 Prototype Selection algorithms

Hart’s Condensing Nearest Neighbour rule (CNN-rule). CNN-rule [5] is
the earliest and the best known PS algorithm. It uses two sets, S and T . Initially,
a TS item is placed in S, while all the other TS items are placed in T . Then,
CNN-rule tries to classify the content of T by using the 1NN classifier on the
content of S. When an item is misclassified, it is considered to lie in a data area
close to decision boundaries. Thus, it is transferred from T to S. The algorithm
terminates when there are no transfers from T to S during a complete pass of
T . The final set S constitutes the CS. The multiple passes on data ensure that
the remaining items in T are correctly classified by the 1NN classifier on the CS.
The algorithm is based on the following simple idea: items that are correctly
classified by 1NN, are considered to lie in a central-class data area and thus,
they are ignored. In contrast, items that are misclassified, are considered to lie
in a close-class-border data area, and thus, they are placed in CS. The weak
point of the CNN-rule is that the resulting CS depends on the order of items in
TS. This means that different CSs are build by examining the same data in a
different order.

IB2 algorithm. IB2 belongs to the well-known family of IBL algorithms [1].
It is based on CNN-rule. Actually, IB2 is a simple one pass variation of CNN-
rule. Each TS item x is classified using 1NN on the current CS. If x is classified
correctly, it is discarded. Otherwise, x is transferred to CS. Contrary to CNN-
rule, IB2 does not ensure that all discarded items can be correctly classified
by the final content of CS. However, since it is a one-pass algorithm, it is very
fast. In addition, IB2 builds its CS incrementally. New TS items can be taken
into consideration after the CS creation. Thus, IB2 is appropriate for dynamic
(streaming) environments where new TS items may gradually arrive. Also, con-
trary to CNN-rule and many other DRTs, IB2 does not require that all TS data
reside into the main memory. Therefore, it can be applied in devices whose mem-
ory is insufficient for storing all the TS data. Like CNN-rule, IB2 is a data order
dependent algorithm.

2.2 Prototype Abstraction algorithms

RSP3 algorithm. The RSP3 algorithm belongs to the popular family of Re-
duction by Space Partitioning (RSP) algorithms [9]. This family includes three
PA algorithms. All of them are based on the idea of the early PA algorithm of
Chen and Jozwik (CJ) [3] that works as follows. Initially, it retrieves the most
distant items A and B of TS that define its diameter. Then, it divides TS into
two sets. SA includes TS items that are closer to A, while SB includes TS items
that are closer to B. CJ selects to divide the set with the larger diameter. This
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procedure continues until the number of sets becomes equal to a user defined
number. In the end, for each set S, CJ averages the items that belong to the most
common class in S and creates a mean item. The created mean items constitute
the final CS.

RSP1 is a simple variation of CJ that for each final set creates as many mean
items as the number of distinct classes in the set. RSP2 differs on how it selects
the next set that will be divided. Instead of the criterion of the largest diameter,
RSP2 uses the criterion of overlapping degree. RSP3 is based on the concept
of homogeneity. A set is homogeneous when it includes items of only a specific
class. The algorithm continues dividing the created sets until all of them became
homogeneous. Considering RSP3, we observe that the algorithm generates more
prototypes for the close borders data areas and less for the “central” data areas.
RSP3 is the only non-parametric algorithm of the RSP family (CJ included).
All these algorithms do not depend on the order of the data items in TS.

Reduction through Homogeneous Cluster (RHC) algorithm. RHC [8] is
also based on the concept of homogeneity. Initially, the whole TS is considered
as a non-homogeneous cluster C. RHC begins by computing a mean item for
each class (class centroid) in C. Then, it applies k-means clustering on C using
the class centroids as initial means. The clustering procedure builds as many
clusters as the number of classes in C. The aforementioned clustering procedure
is applied recursively on each non-homogeneous cluster. In the end, the centroids
of the homogeneous clusters are stored in CS. By using the class centroids as
initial means for the k-means clustering, the algorithm attempts to quickly find
homogeneous clusters and achieve high reduction rates. RHC is independent on
the order of data in TS. The results of the experimental study in [8] show that
RHC achieves higher reduction rates (smaller CSs) and is faster than RSP3 and
CNN-rule, while the classification accuracy remains at high levels.

3 Experimental Study

3.1 Experimental setup

The four presented DRTs were evaluated on seven time series datasets dis-
tributed by the UCR time-series classification/clustering page3. Table 1 sum-
marizes the datasets used. All datasets are available in a training/testing form.
We merged the training and testing parts and then we randomized the result-
ing datasets. No other data transformation was performed. All algorithms were
coded in C and as a similarity measure we used the Euclidean distance.

We report on the experiment we contacted with a certain value for the pa-
rameter of the PAA representation due to space restrictions. We applied the
PAA representation on time series by setting the number of dimensions equal
to twelve (h=12). Most of the research work provides experimental results with

3 http://www.cs.ucr.edu/∼eamonn/time series data/
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Table 1: Time-series datasets description
Time-series dataset Size (time-series) Length (Attr.) Classes

Synthetic Control (SC) 600 60 6

Face All (FA) 2250 131 14

Two-Patterns (TP) 5000 128 4

Yoga (YG) 3300 426 2

Wafer (WF) 7164 152 2

Sweadish Leaf (SL) 1125 128 15

CBF 930 128 3

values of h ranging from 2 to 20. We found that lower values of h have a negative
effect on the classification accuracy, whereas higher values give time series that
cannot be efficiently indexed by multi-dimensional indexing methods. In our fu-
ture work, we plan to further investigate the effect the dimensionality of time
series has on the performance of classification.

All experiments were run twice, once on the original time series and once on
their 12-dimensional representations. We wanted to test how the combination
of data reduction and dimensionality reduction affects the performance of 1NN
classification.

We evaluated the four DRTs by estimating four measurements, namely, ac-
curacy (ACC), classification cost (CC), reduction rate (RR), and, preprocessing
cost (PC). Cost measurements were estimated by counting the distance compu-
tations multiplied by the number of time series attributes (time series length).
Of course, the RR and CC measurements are related to each other: the lower
the RR, the higher the CC. However, CC measurements can express the cost
introduced by the data dimensionality. We report the average values of these
measurements obtained via five-cross-fold validation.

3.2 Comparisons

Table 2 presents the experimental results. The table includes two parts, one for
the original datasets and one for the datasets obtained after applying PAA on
them. Both table parts include the measurements obtained by applying the 1NN
classifier on the non-reduced data (conventional 1NN). Each table cell includes
the four measurements obtained by first applying a DRT on the original or 12-
dimensional time series datasets (preprocessing step) and then by using 1NN
on the resulting CS (classification step). The cost measurements are in million
distance computations. The PC measurements do not include the small cost
overhead introduced by PAA.

At a glance, we observe that 1NN classification on the 12-dimensional datasets
is very fast. In most cases, the preprocessing and classification cost are extremely
low, while classification accuracy remains at high, acceptable levels. Therefore,
we conclude that one can obtain efficient time series classifiers by combining
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Table 2: Experimental results on accuracy, classification cost, reduction rate and
preprocessing cost

Dataset
Original dimensionality 12 dimensions

Conv.
CNN IB2 RSP3 RHC

Conv.
CNN IB2 RSP3 RHC

1NN 1NN

SC

Acc: 91.67 90.17 89.00 98.33 98.67 98.50 97.00 95.83 98.83 98.17
CC: 3.46 0.67 0.53 1.38 0.09 0.69 0.06 0.05 0.12 0.03
RR: - 80.50 84.67 60.08 97.29 - 90.75 93.13 82.96 95.75
PC: - 7.77 1.31 16.22 1.31 - 0.89 0.13 3.45 0.13

FA

Acc: 95.07 91.60 91.02 95.46 93.02 87.91 83.78 82.31 87.07 84.49
CC: 106.11 19.87 18.38 51.65 12.93 9.72 2.89 2.53 4.80 2.08
RR: - 81.28 82.68 51.32 87.81 - 70.23 74.01 50.58 78.59
PC: - 216.36 48.96 533.70 48.96 - 30.36 5.95 50.91 5.95

TP

Acc: 98.50 94.68 93.60 98.10 93.72 97.56 93.52 91.38 96.66 94.34
CC: 512.00 85.66 76.83 243.51 55.50 48.00 8.22 6.86 20.42 6.69
RR: - 83.27 85.00 52.44 89.16 - 82.89 85.72 57.45 86.06
PC: - 1.169.75 205.95 2085.42 205.95 - 103.86 17.34 196.00 17.34

YG

Acc: 93.76 91.58 89.55 92.85 90.94 92.36 90.39 88.03 91.03 90.03
CC: 742.26 138.56 108.92 229.82 93.85 20.91 4.41 3.50 6.71 3.13
RR: - 81.33 85.33 69.04 87.36 - 78.91 83.26 67.90 85.02
PC: - 1854.74 254.41 4072.30 254.41 - 52.23 8.04 110.56 8.04

WF

Acc: 99.87 99.69 99.62 99.82 99.55 99.79 99.62 99.51 99.40 99.25
CC: 1248.30 13.59 11.72 26.88 9.37 98.55 1.21 1.01 1.86 1.01
RR: - 98.91 99.06 97.85 99.25 - 98.77 98.97 98.11 98.97
PC: - 165.88 31.42 7196.75 31.42 - 15.63 2.57 495.63 2.57

SL

Acc: 52.36 49.87 48.18 52.00 52.80 52.62 49.07 48.62 51.20 51.20
CC: 25.92 15.94 14.80 19.00 12.80 2.43 1.54 1.37 1.78 1.32
RR: - 38.51 42.89 26.69 50.60 - 36.76 43.67 26.69 45.69
PC: - 112.17 31.39 1537.07 31.39 - 11.33 2.86 56.00 2.86

CBF

Acc: 98.39 98.17 97.63 99.78 98.60 100.00 99.57 99.35 99.68 99.57
CC: 17.71 1.29 1.15 1.97 0.40 1.66 0.06 0.06 0.12 0.04
RR: - 92.74 93.49 88.87 97.74 - 96.34 96.56 92.63 97.47
PC: - 15.06 3.50 78.48 3.50 - 0.66 0.19 7.32 0.19

Avg

Acc: 89.94 87.97 86.94 90.91 89.62 89.82 87.57 86.43 89.12 88.15
CC: 379.40 39.37 33.19 82.03 26.42 25.99 2.63 2.20 5.12 2.04
RR: - 79.51 81.87 63.76 87.03 - 79.24 82.19 68.05 83.94
PC: - 505.96 82.42 2217.03 83.37 - 30.71 5.30 131.44 6.57
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prototype selection and abstraction algorithms with time-series dimensionality
reduction representations.

It is worth mentioning that, in three datasets, the two PA algorithms, RSP3
and RHC, achieved higher classification accuracy than the conv-1NN. In the
case of SC dataset, the accuracy improvements were very high. Almost in all
cases, RSP3 achieved the highest accuracy. However, it is the slowest method in
terms of both preprocessing and classification (RSP3 had the lowest reduction
rates). The high PC measurements are attributed to the costly procedure for
finding the most distant items in each created subset (see Subsection 2.2 or [9]
for details).

RHC and IB2 had much lower preprocessing cost than the other two meth-
ods. This happened because IB2 is a one-pass algorithm and RHC is based on
a version of k-Means that is sped-up by the class centroid initializations (see
Subsection 2.2 or [8] for details). In addition, RHC builds the smallest CSs. In
all cases, RHC achieved higher reduction rates than the other DRTs. Thus, the
corresponding classifiers had the lowest classification costs. The classification ac-
curacy achieved by RHC was usually higher than IB2 and CNN-rule. In some
cases, RHC achieved accuracy even higher than RSP3. One can conclude that
RHC is an efficient speed-up method that can deal with all comparison criteria.

No DRT can be considered as the best speed-up choice. If classification accu-
racy is the most critical criterion, RSP3 may be preferable. On the other hand,
if fast classification and/or fast construction of the CS are more critical than
accuracy, RHC may be a better choice.

4 Conclusions

Fast time series classification is a crucial data mining issue. This paper proposed
the use of non-parametric state-of-the-art prototype selection and abstraction
algorithms for fast time series classification.

The experimental study showed that by combining prototype selection and
abstraction algorithms with dimensionality reduction, one can obtain accurate
and extremely fast time series classifiers. In addition, our study showed that the
abstraction algorithms can achieve even higher accuracy that the conventional
1NN classifier.
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