
The Effects of Dimensionality Curse in High Dimensional kNN Search

Nikolaos Kouiroukidis, Georgios Evangelidis
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

Email: {kouiruki, gevan}@uom.gr

Abstract—The dimensionality curse phenomenon states that
in high dimensional spaces distances between nearest and far-
thest points from query points become almost equal. Therefore,
nearest neighbor calculations cannot discriminate candidate
points. Many indexing methods that try to cope with the
dimensionality curse in high dimensional spaces have been
proposed, but, usually these methods end up behaving like
the sequential scan over the database in terms of accessed
pages when queries like k-Nearest Neighbors are examined. In
this paper, we experiment with state of the art multi-attribute
indexing methods and try to investigate when these methods
reach their limits, namely, at what dimensionality a kNN query
requires visiting all the data pages. In our experiments we
compare the Hybrid Tree, the R*-tree, and, the iDistance
Method.

Keywords-high dimensional point indexing; index perfor-
mance comparison; kNN search

I. INTRODUCTION

In many modern applications, like image and video
content indexing and retrieval or time series data mining,
similarity search plays an important role. Images, for exam-
ple, are transformed into high dimensional feature vectors
(points) that describe their most interesting features. Then,
multi-dimensional indexes can be used to index these vectors
and answer similarity queries ([1], [2]). A similarity query,
or kNN query, searches for all the points that are “close”
to a given query point. kNN queries are a special case of
range queries, where, given a query region the index locates
all points contained in it. Since those indexes are external
memory structures, there have been developed sophisticated
and efficient searching algorithms in terms of both time and
accessed pages to answer such queries. But, unfortunately,
all these indexes are affected by the dimensionality curse
problem. According to this problem, above a certain dimen-
sionality, searching for the answer points becomes inefficient
because it costs the same as a plain sequential scan of the
entire dataset ([3], [4]).

In this paper, we explore the degree that the dimensional-
ity curse problem affects various well known and established
indexes. We are interested in determining which indexes
are better suited for kNN queries when k varies. Also, we
are interested in testing the resistance of the indexes as
the dimensionality increases. According to the literature, all
indexes suffer above 10 dimensions [5], but unfortunately,

the papers that introduce new multi-attribute indexes do not
present any experimental results in high dimensions.

The rest of this paper is organized as follows: Section II
briefly describes some popular multidimensional indexes,
and, Section III discusses the k-Nearest Neighbor problem
in high dimensional spaces. Section IV illustrates the dimen-
sionality curse phenomenon, whereas Section V contains
experimental results on k-NN searching in high dimensions
with various indexes. Finally, Section VI concludes the
paper.

II. REVIEW OF POPULAR MULTIDIMENSIONAL INDEXES

We briefly introduce some of the most promising indexing
methods that have been proposed in the literature.

A. Hybrid Tree

This multidimensional indexing structure combines the
advantages of space-based and data-based partitioning meth-
ods. It is very similar to space partitioning methods (like
the kDB-tree [6] and the hB-tree [7]) in that its index nodes
use kd-trees, instead of arrays of bounding rectangles, to
compactly and efficiently represent space partitioning. It
always splits nodes using a single attribute (1-d splitting), but
contrary to space partitioning methods, it allows overlapping
subspaces (bounding rectangles) the way data partitioning
methods do (like the R*-tree) and it avoids cascading node
splits (like the KDB-tree).

In addition to the usual metric distance functions like the
Lp Norms, one can employ different distance functions when
range and kNN queries must be implemented [8].

B. R*-tree

This structure is the most successful variant of the R-
tree family of indexing structures [9]. It indexes Minimum
Bounding Rectangles (MBRs) and its purpose is to minimize
both the coverage and the overlap of the MBRs. It uses
a revised node splitting algorithm and a forced reinsertion
policy in case of a node split. Thus, it uses a method
of incremental tree optimization when reinsertion after a
split takes place. It can index both multidimensional point
data and data with spatial extent. Due to the concentration
of measure phenomenon the discrimination of points is
minimized, and finding kNN points in high dimensionality

looses its meaning and the R*-tree’s performance degrades
to that of the sequential scan.

C. iDistance

The design of this structure was motivated by the follow-
ing three observations [10]:

• The (dis)similarity between data points can be derived
with reference to a chosen reference or representative
point.

• Data points can be ordered based on their distances to
a reference point.

• Distance is essentially a single dimensional value.
The iDistance method maps high-dimensional data in

single dimensional space, thereby enabling reuse of ex-
isting single dimensional indexes, such as the B+tree.
This is done using the following procedure: a data point
p(x0, x1, · · · , xd−1), 0 ≤ xj ≤ 1, 0 ≤ j < d, has an index
key, y, based on the distance from the nearest reference point
Oi as follows:

y = i× c+ dist(p,Oi)

where, c is a constant used to stretch the data ranges,
and, Oi is a pre-defined set of reference points. Essentially,
c serves to partition the single dimension space into regions
so that all points in partition Pi are mapped to the range
[i× c, (i+ 1)× c).

III. K-NEAREST NEIGHBOR QUERIES

Given a set P of points in a high dimensional space and
a query point q, find the k points in P closest to q. This
is the k-nearest neighbor search problem. It has significant
importance to several areas of computer science, like in
searching in multimedia data, pattern recognition, and, data
mining in general. These applications involve very large data
sets and the dimensionality of the data set is usually high as
well. Multidimensional point indexes can be used to speed
up searching is such data sets. Thus, it is very important to
design algorithms that scale well with the database size as
well as with the dimensionality of the data.

The nearest neighbor problem ([11], [12], [5]) is an exam-
ple of a large class of proximity problems whose definition
involves the notion of distance between the input points like
the closest pair problem. Many of these problems have been
firstly investigated in the field of computational geometry,
for example, when the points lie in a space of constant
dimension. The nearest neighbor problem of this kind can
be solved in O(logN) time per query using O(N) storage.
Unfortunately, as the dimensionality grows the complexity
of any index converges to O(N), that is, all points must be
accessed in order to evaluate a NN-query [5].

The exponential dependence of space or time on the
dimensionality, called the “dimensionality curse”, has been
observed in many application settings. The lack of success in
removing the exponential dependence on the dimensionality

led many researchers to deduce that no efficient solution
exists for these problems when the dimensionality is suf-
ficiently large. But, as many researchers showed, in many
cases this exponential dependence on the dimensionality can
be reduced to polynomial if we allow the answers to be
approximate.

This notion of approximation is best explained as follows:
instead of reporting a point p closest to q, the algorithm is
allowed to report any point within distance (1+ε) times the
distance from q to p. This is similar to designing efficient
approximation algorithms for NP-hard problems.

There are two main algorithms that calculate the nearest
neighbor points to a given point in multidimensional spaces
using indexing structures like the R*-tree and its variants,
the SR-tree [13], the Hybrid tree [8], and many more.

The first one is the Branch and Bound algorithm pro-
posed by Rousopoulos et al [14] that uses the MINDIST
and MINMAXDIST metrics to put points for visiting and
examination in an order and to determine the nodes that will
not be further considered for examination (pruning). Node
pruning is accomplished through the use of heuristic meth-
ods. A depth first search is implemented so that when the
current search path cannot obtain all the nearest neighbors,
backtracking is used to examine a neighboring path.

Hjaltason and Samet [15] proposed the second major
algorithm for nearest neighbor searching with its incremental
form applied to R-trees. Candidate objects are found with
an order that is determined from their distance to the query
point, thus, they are ranked. This process is called distance
browsing. Also, this incremental algorithm differs from the
classic kNN in the sense that the number of k nearest
neighbors is not known in advance.

IV. DIMENSIONALITY CURSE

The dimensionality curse in applied mathematics refers
to the problem caused by the exponential increase in vol-
ume associated with adding extra dimensions to a math-
ematical space ([3], [4], [16]). For example, consider a
unit 1-dimensional interval with 100 evenly-spaced sample
points, i.e., each point is 0.01 distance units away from its
neighbors. An equivalent sampling of a 10-dimensional unit
hypercube with a lattice with a spacing of 0.01 between
adjacent points would require 1020 sample points: thus, in
some sense, the 10-dimensional unit hypercube can be said
to be a factor of 1018 “larger” than the unit 1-dimensional
interval. Another way to illustrate the “vastness” of high-
dimensional Euclidean space is to compare the proportion
of a hypersphere with radius r and dimension d, to that of a
hypercube with sides of length 2r, and equivalent dimension.
The volume of such a sphere is:

2rdπd/2

dΓ(d/2)

The volume of the cube would be: (2r)d.

As the dimensionality d increases, the hypersphere’s vol-
ume becomes insignificant relative to that of the hypercube.
This can clearly be seen by computing their ratio as the
dimension d goes to infinity:

πd/2

d2d−1Γ(d/2)
→ 0

where Γ is the Gamma function: Γ(n) = (n−1)!, d → ∞.
Thus, in some sense, nearly all of the high-dimensional

space is “far away” from the centre, or, to put it another way,
the high-dimensional unit space can be said to consist almost
entirely of the “corners” of the hypercube, with almost no
“middle”.

The curse of dimensionality can also be considered from
another perspective [17]. In high dimensional space, most of
the volume is close to the surface of the data space, as shown
in the following example. Let us have the d-dimensional
unit hypercube. In order to consider the region close to the
surface, let us assume we only consider the locus of points
with distance ≤ 0.05 from the surface. This defines a hollow
cube with a volume V = 1−(1−2×0.05)d. For d = 3, V =
1−0.93 = 0.27, for d = 10, V = 1−0.910 = 0.65, and, for
d = 15, V = 1−0.915 = 0.79. Actually, in any size and any
shape of data space, the above property is satisfied. Because
of this property, if data objects are uniformly distributed
in space, progressively more of them will be close to the
surfaces of the data spaces when the number of dimensions
increases. Let the center of the cube be the query object.
We can see that the above property causes two effects on
the nearest neighbor search. First, if the number of objects
is fixed, the average distance of the nearest neighbor will be
increased as the dimension increases. Second, the distances
of all objects from the center are becoming more and more
similar when the number of dimensions increases.

In the multidimensional indexing data literature, dimen-
sionality curse also appears as “the concentration of mea-
sure” or “the effect on distance functions” ([18], [19]).

Given a single distribution, the minimum and the maxi-
mum occurring distances have been shown to become indis-
cernible, since the ratio of the difference of the minimum
and maximum values and the minimum value converges to
0:

lim
d→∞

distmax − distmin

distmin
→ 0

This is often cited as “distance functions losing their
usefulness in high dimensionality”. However, recent research
indicates that the mere number of dimensions is not the prob-
lem, since relevant additional dimensions can also increase
the contrast. In addition, the resulting ranking remains useful
in discerning close and far neighbors. However, irrelevant
(“noise”) dimensions reduce the contrast, as expected.

The dimensionality curse in high dimensional indexing
methods is related to what we call Lp norm. The definition
of Lp norm is:

‖x‖p = (
n∑

i=1

|xi|p)1/p

The L2 norm, or Euclidean distance metric, is the most
commonly used metric, while the L1 norm is the Manhattan
distance metric. Distance functions that rely on these norms
in metric spaces have the following three common proper-
ties. The distance functions are defined as d : U×U → R+,
where U is the universe of the objects.

1) d(x, y) = 0 ⇔ x = y
2) d(x, y) = d(y, x), symmetry
3) d(x, z) ≤ d(x, y) + d(y, z), triangle inequality
These three properties are valid for many reasonable

similarity functions. Recent research shows that, in high
dimensional spaces, the validity of the Lp norm in measuring
the similarity between data points is sensitive to the value
of p. For example, the Manhattan distance metric (L1

norm) is consistently more preferable than the Euclidean
distance metric (L2 norm) for high dimensional data mining
applications ([16], [20]). Furthermore, a natural extension of
the Lp norm to fractional distance metrics is introduced and
examined from both the theoretical and empirical perspec-
tives. The fractional distance metric is defined in the same
manner with the exception that p belongs to (0, 1).

From the theoretical perspective, fractional distance met-
rics provide better divergence between the maximum and
minimum distances to a given query point than integral
distance metrics. This feature makes a proximity query more
meaningful and stable. Empirical studies also demonstrate
that fractional distance metrics can significantly improve the
effectiveness of some standard classification and clustering
algorithms such as kNN and k-means on high dimensional
datasets. In the meantime, fractional distance measures
have been applied to content-based image retrieval and
the experiments also show that retrieval performances of
these measures consistently outperform the Manhattan and
Euclidean distance metrics when used with a wide range of
high-dimensional visual features.

In the following section, we demonstrate how some of the
most promising multidimensional indexing structures behave
in high dimensionality, and, especially, in what dimension
given a specific dataset size, kNN searches access as many
data pages as a plain sequential scan.

V. EXPERIMENTAL EVALUATION

The implementations of the three indexes we tested are
available on the web. Since we were interested in testing
kNN performance only, we fixed certain parameters in our
experiments. We chose to insert 100K uniformly distributed
points and we varied the dimensionality from 2 to 24. We
also chose a fixed page size of 4KB for all indexes. In some
cases we had to modify the original code in order to collect
the required statistics. For example, in the case of iDistance,

Figure 1. 1NN performance

we chose 64 reference points and we also added counters to
compute the size of the B+-tree and the number of retrieved
nodes during the queries. The experiments were conducted
on a plain Pentium IV computer with 512MB of RAM and
a 120GB hard disk running Debian GNU/Linux.

We present the results of our experiments for k = 1,
k = 5 and k = 10. In all cases, we plot the ratio of visited
data nodes over the total number of data nodes versus the
dimensionality when answering the respective kNN queries.
For k = 1, the Hybrid Tree outperforms all indexes since
by design it minimizes node overlapping (Figure 1). For
k = 5 and k = 10 we obtain similar results, with the
R*-tree slightly outperforming the Hybrid tree in higher
dimensions. The iDistance is always worse that the other
two indexes in low to medium dimenions, but it achieves
similar performance above 20 dimensions. This is attributed
to the fact that the iDistance was designed to perform well
in high dimensions. The iDistance is always better than
sequential scan albeit by only 5%–10% in high dimensions
[10] (Figures 2 and 3).

Finally, we confirm the findings of previous researchers
and we observe that the “dimensionality curse” phenomenon
renders all indexes unusable in medium dimensionality.
The performance of all indexes deteriorates rapidly above
eight dimensions. More specifically, all indexes have to visit
almost all data pages in order to answer a 24NN query.

VI. CONCLUSIONS

In this paper, we demonstrate the inefficiency of the
existing popular multidimensional indexing methods when
dealing high dimensional spaces. In particular, our experi-
ments showed that the popular k-Nearest Neighbor search
suffers greatly above eight dimensions regardless of the

Figure 2. 5NN performance

Figure 3. 10NN performance

chosen indexing method. This is attributed to the fact that
in high dimensions there is little discrimination between the
nearest and the farthest points from a given query point.
A solution to this problem is the design of new distance
functions that fit the needs of modern applications ([21],
[20]) and the development of new indexes that exploit the
new distance functions.

REFERENCES

[1] V. Gaede and O. Günther, “Multidimensional ac-
cess methods,” ACM Comput. Surv., vol. 30,
pp. 170–231, June 1998. [Online]. Available:
http://doi.acm.org/10.1145/280277.280279

[2] R. R. Ciferri and A. C. Salgado, “Performance evaluation
of multidimensional access methods,” in Proceedings of
the 8th ACM international symposium on Advances in
geographic information systems, ser. GIS ’00. New York,
NY, USA: ACM, 2000, pp. 183–184. [Online]. Available:
http://doi.acm.org/10.1145/355274.355302

[3] R. E. Bellman, Adaptive control processes - A guided tour.
Princeton, New Jersey, U.S.A.: Princeton University Press,
1961.

[4] D. Francois, V. Wertz, and M. Verleysen, “The concentration
of fractional distances,” IEEE Trans. on Knowl. and Data
Eng., vol. 19, pp. 873–886, July 2007. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2007.1037

[5] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces,” in Proceedings of the 24rd
International Conference on Very Large Data Bases, ser.
VLDB ’98. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998, pp. 194–205. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645924.671192

[6] J. T. Robinson, “The K-D-B-tree: a search structure for
large multidimensional dynamic indexes,” in Proceedings
of the 1981 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’81. New York,
NY, USA: ACM, 1981, pp. 10–18. [Online]. Available:
http://doi.acm.org/10.1145/582318.582321

[7] D. B. Lomet and B. Salzberg, “The hB-tree: a multiattribute
indexing method with good guaranteed performance,” ACM
Trans. Database Syst., vol. 15, pp. 625–658, December 1990.
[Online]. Available: http://doi.acm.org/10.1145/99935.99949

[8] K. Chakrabarti and S. Mehrotra, “The Hybrid Tree: An index
structure for high dimensional feature spaces,” in ICDE, 1999,
pp. 440–447.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger, “The R*-tree: an efficient and robust access
method for points and rectangles,” in Proceedings of
the 1990 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’90. New York,
NY, USA: ACM, 1990, pp. 322–331. [Online]. Available:
http://doi.acm.org/10.1145/93597.98741

[10] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang,
“iDistance: An adaptive B+-tree based indexing method for
nearest neighbor search,” ACM Trans. Database Syst., vol. 30,
no. 2, pp. 364–397, 2005.

[11] U. Shaft and R. Ramakrishnan, “Theory of nearest
neighbors indexability,” ACM Trans. Database Syst.,
vol. 31, pp. 814–838, September 2006. [Online]. Available:
http://doi.acm.org/10.1145/1166074.1166077

[12] A. Hinneburg, C. C. Aggarwal, and D. A. Keim,
“What is the nearest neighbor in high dimensional
spaces?” in Proceedings of the 26th International
Conference on Very Large Data Bases, ser. VLDB
’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 506–515. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645926.671675

[13] N. Katayama and S. Satoh, “The SR-tree: an index
structure for high-dimensional nearest neighbor queries,”
in Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’97.
New York, NY, USA: ACM, 1997, pp. 369–380. [Online].
Available: http://doi.acm.org/10.1145/253260.253347

[14] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest
neighbor queries,” in Proceedings of the 1995 ACM
SIGMOD international conference on Management
of data, ser. SIGMOD ’95. New York, NY,
USA: ACM, 1995, pp. 71–79. [Online]. Available:
http://doi.acm.org/10.1145/223784.223794

[15] G. R. Hjaltason and H. Samet, “Distance browsing
in spatial databases,” ACM Trans. Database Syst.,
vol. 24, pp. 265–318, June 1999. [Online]. Available:
http://doi.acm.org/10.1145/320248.320255

[16] D. François, V. Wertz, and M. Verleysen, “Non-euclidean
metrics for similarity search in noisy datasets,” in ESANN,
2005, pp. 339–344.

[17] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the
surprising behavior of distance metrics in high dimensional
spaces,” in Proceedings of the 8th International Conference
on Database Theory, ser. ICDT ’01. London, UK:
Springer-Verlag, 2001, pp. 420–434. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645504.656414

[18] R. J. Durrant and A. Kabn, “When is ‘nearest neighbour’
meaningful: A converse theorem and implications,” Journal
of Complexity, vol. 25, no. 4, pp. 385 – 397, 2009.

[19] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft, “When is ‘nearest neighbor’ meaningful?”
in Proceedings of the 7th International Conference
on Database Theory, ser. ICDT ’99. London, UK:
Springer-Verlag, 1999, pp. 217–235. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645503.656271

[20] C.-M. Hsu and M.-S. Chen, “On the design and applicability
of distance functions in high-dimensional data space,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21,
pp. 523–536, 2009.

[21] C. C. Aggarwal, “Re-designing distance functions and
distance-based applications for high dimensional data,”
SIGMOD Rec., vol. 30, pp. 13–18, March 2001. [Online].
Available: http://doi.acm.org/10.1145/373626.373638

