
Data node splitting policies for improved range query efficiency
in k-dimensional point data indexes

Evangelos Outsios, Georgios Evangelidis
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

Email: {outsios, gevan}@uom.gr

Abstract—High dimensional vectors (points) are very com-
mon in image and video classification, time series data mining,
and many modern data mining applications. One of the
most popular classification methods on such data is k-Nearest
Neighbor (kNN) searching. Unfortunately, all proposed and
state-of-the-art multi-attribute indexes fall short in terms of
usability as dimensionality increases. This is attributed to the
“dimensionality curse” problem, according to which, range
searching above 10 dimensions is as efficient as a sequential
scan of the entire database. Thus, kNN searching, as a special
case of range searching, has to benefit a lot if we find ways
to increase the performance of indexes in high dimensions.
In this paper, we deal with space partitioning indexes and
we propose six data node splitting techniques. We examine
their performance in terms of data node storage utilization
and quality of space partitioning. These two conflicting goals
are both essential for good range query performance. Our
experiments with uniform and skewed data demonstrate that
certain splitting techniques can perform satisfactorily.

Keywords-multi-attribute point data indexes; average storage
utilization; space partitioning quality; range query perfor-
mance

I. INTRODUCTION

The increased interest in access methods for multidimen-
sional points or vectors (point access methods - PAMs) is
attributed to the fact that data mining applications that deal
with image, video or time-series data need to manipulate
and analyze vast quantities of multi-dimensional vectors.
The problem of “dimensionality curse” states that above 10
dimensions and depending on the dataset at hand, exhaustive
search of the dataset is faster than using a PAM for the
purpose of range or kNN queries [1], [2].

To make things worse, vectors in data mining applications
can have hundreds of dimensions. Various dimensionality
reduction techniques can be used to reduce their dimen-
sionality down to 6 to 20 dimensions without losing much
information. A viable choice for indexing such large point
datasets are PAMs that index the multidimensional space
without creating overlapping subspaces and perform well
in low to medium dimensions. On the other hand, SAMs
(spatial access methods) like the R-tree [3], index multidi-
mensional points and objects with spatial extent and allow
for overlapping subspaces.

In this paper, we assume that our data records are multi-
dimensional points and that the index of choice is a PAM,
e.g., the hB-tree [4], [5] or the KDB-tree [6], etc., that stores
points in the leaf nodes and splits them in non-overlapping
regions. We choose to split data nodes using hyperplanes,
i.e., a single attribute, since this approach requires the
smallest index term to describe the split. Only the splitting
attribute and its value are required to be posted at the index
level above (the parent of the overfull node) to describe the
split. We experiment with various splitting techniques and
report on their performance in terms of the average data
node storage utilization and quality of space partitioning.

In Section 2, we discuss the problem of data node splitting
and how it can affect the performance of an index structure.
In Section 3, we present six data node splitting techniques,
and, in Section 4, we describe the experiments we conducted
on the performance of the splitting techniques. We conclude
the paper in Section 5.

II. DATA NODE SPLITTING

Data nodes contain the records (multi-dimensional points)
of the database. Each data node corresponds to a different
page on disk. In a way analogous to the B+tree [7], when a
data node becomes overfull, because of new point insertions,
it has to be split. After the split we have two data nodes,
the initial one occupying the same disk page and a new one
occupying a new disk page. This process is repeated each
time a data node becomes overfull.

Since the data node level naturally occupies the majority
of nodes in a multi-dimensional index tree, it is crucial
that an index structure achieves the best possible average
storage utilization and space partitioning regardless of data
distribution and order of data insertion.

In previous work [8], we discussed the criteria by which
we decide to split a data node. In general, there are two
splitting approaches to consider, namely, space-oriented or
point-oriented splittings. We split a data node either as
evenly as possible in terms of the data points it contains
to maximize storage utilization, or as evenly as possible in
terms of the space it occupies to achieve the best possible
space partitioning.



The drawback of the first approach is that, since there
is no guarantee on good space partitioning, the shape of
the resulting data nodes may be irregular and range query
searching may become inefficient. The drawback of the
second approach is that there is no guarantee on data node
storage utilization. Hence, any data node splitting technique
should take into consideration these matters and try to
achieve a trade-off between data node storage utilization and
efficient range query searching.

In the following sections, we propose six splitting tech-
niques and show the results from the experiments we carried
out.

III. NEW DATA NODE SPLITTING TECHNIQUES

We present six different data node splitting techniques.
They are based on two orthogonal policies: (a) the way
the splitting attribute is chosen (best, random, round robin),
and, (b) the way the splitting value for the chosen attribute
is chosen (even point split, even space split). All possible
combinations of the two policies give us the six different
splitting techniques.

A. Best attribute for even point split

This technique first favors even point and then even
space data node splittings. The algorithm that describes the
sequence of the splitting criteria is as follows:

1: {TECHNIQUE t1}
2: for each attribute do
3: find the value that achieves the best possible point

split (i.e., equal or as close as possible to a 1:1 split)
4: end for
5: Let A be the set of (attribute, value) pairs that achieve

the best point split
6: if A contains just one pair P then
7: return P
8: end if
9: Let B ⊆ A the set of pairs that split the longest side

10: if B contains just one pair P then
11: return P
12: end if
13: Let C ⊆ B the set of pairs that achieve the most even

space split
14: if C contains just one pair P then
15: return P
16: end if
17: return a random pair from C

The idea is that when we have more than one candidate
attributes, we proceed and choose the attribute that splits
the space as evenly as possible, by considering the attribute
that avoids creating hyper-rectangles with long edges (lines
9 and 13).

B. Best attribute for even space split

This technique first favors even space and then even
point data node splittings. The algorithm that describes the
sequence of the splitting criteria is given below:

1: {TECHNIQUE t2}
2: for each attribute do
3: find the value that splits the space in two and achieves

a 1:2 or better point split and put the (attribute, value)
pair in set A1

4: if there is no such value then
5: adjust the value accordingly to achieve the best

possible point split and put the (attribute, value)
pair in set A2

6: end if
7: end for
8: if A1 is empty A=A2 else A=A1
9: Let B ⊆ A the set of pairs that split the longest side

10: if B contains just one pair P then
11: return P
12: end if
13: Let C ⊆ B the set of pairs that achieve the best point

split
14: if C contains just one pair P then
15: return P
16: end if
17: Let D ⊆ C the set of pairs that split closer to the middle

of the edge
18: if D contains just one pair P then
19: return P
20: end if
21: return a random pair from D

Here, the idea is to exploit the fact that when data nodes
are split in a 1:2 ratio in the worst case, they achieve an
average storage utilization of about 67%, which is very close
to the average storage utilization achieved for 1:1 splittings
(about 70%) [4].

Although this technique favors even space splittings, its
first concern is data node storage utilization (lines 2 through
8). So, if there is no attribute that in addition to the even
space split it also achieves a “good” point split (1:2 or
better), we first choose the best possible point split and then
look for the best space split (the case that A1 is empty and
A is assigned to A2 instead).

C. Round robin attribute for even point split

This technique is quite simple. We keep in each data
node’s control block a next splitting attribute field that
denotes the next attribute that should be used for splitting
that node. When the data node is split, both this node and
the newly created node get this field updated to denote the
“next” attribute in a round-robin fashion.



1: {TECHNIQUE t3}
2: Choose as splitting attribute the attribute stored in the

next splitting attribute field in the control block of the
data node

3: Find the best point split value for this attribute
4: Set the next splitting attribute field to be the “next”

attribute in a round-robin fashion
5: return the (attribute, value) pair
For uniformly distributed points, this splitting technique

achieves good storage utilization since nodes are always
split with the best possible ratio. Also, gives good space
partitioning since data nodes are always split along the
longest side. The performance could be very poor for skewed
data. Another drawback of the technique is that every data
node must store the bookkeeping information of the attribute
that should be used for the following split.

D. Round robin attribute for even space split

This technique is simple and very similar to the previous
one. Now, we favor even space splits, but as in Technique
t2, our first concern is storage utilization.

1: {TECHNIQUE t4}
2: Choose as splitting attribute the attribute stored in the

next splitting attribute field in the control block of the
data node

3: Find the best space split value for this attribute
4: if this value does not achieve a 1:2 or better point split

then
5: adjust the value until a 1:2 point split is achieved
6: if the above step fails then
7: adjust the value until the best possible point split

is achieved
8: end if
9: end if

10: Set the next splitting attribute field to be the “next”
attribute in a round-robin fashion

11: return the (attribute, value) pair
For uniformly distributed points, this splitting technique

achieves acceptable space partitioning since data nodes are
always split along the longest side and acceptable storage
utilization. The performance could be very poor for skewed
data. Again, a drawback of the technique is that every data
node must store the bookkeeping information of the attribute
that should be used for the following split.

E. Random attribute for even point split

This technique is very similar to Technique t3, but it
chooses the splitting attribute in a random way. For uni-
formly distributed points, it achieves good storage utilization
since nodes are always split as close to a 1:1 ratio as
possible. On the other hand, there is no guarantee on the
quality of space partitioning. The performance could be very
poor for skewed data.

1: {TECHNIQUE t5}
2: Choose a random splitting attribute
3: Find the best point split value for this attribute
4: return the (attribute, value) pair

F. Random attribute for even space split

This technique is very similar to Technique t4, but
it chooses the splitting attribute in a random way. For
uniformly distributed points, it achieves acceptable space
partitioning and storage utilization. The performance could
be very poor for skewed data.

1: {TECHNIQUE t6}
2: Choose a random splitting attribute
3: Find the best space split value for this attribute
4: if this value does not achieve a 1:2 or better point split

then
5: adjust the value until a 1:2 point split is achieved
6: if the above step fails then
7: adjust the value until the best possible point split

is achieved
8: end if
9: end if

10: return the (attribute, value) pair

IV. EXPERIMENTAL EVALUATION

The techniques are either point-oriented (i.e., they empha-
size on the even distribution of points between split nodes)
or space-oriented (i.e., they emphasize on the even space
partitioning between split nodes). Thus, we need to measure
average data node storage utilization and also figure out a
way to measure how good is the space partitioning achieved
by each technique. Obviously, an exhaustive evaluation of
the performance of range queries across all dimensions can
be a measure of the quality of the space partitioning.

We tested the six splitting techniques using uniform and
highly skewed computer generated k-dimensional points
with values in (0, 1). We varied the value of k to 2, 3,
4, 6, 10, 15 and 20 dimensions. We chose datasets of 100K
points, index nodes of 15 kd-tree nodes and data nodes of
30 points (records). These parameters created relatively high
trees (five levels).

To compare the techniques in terms of how good they
partition points, we calculated the average data node storage
utilization for each technique in each dimensionality.

To compare the techniques in terms of how good they
partition space, we conducted an elaborate series of range
query experiments and we report the average ratio of visited
over total data pages to answer these queries.

For each dimensionality, we chose to use all possible
combinations of 100 non-overlapping range queries with 1%
selectivity each. Our approach for performing the 100 range
queries needs to divide the total space into 100 equally sized
sub-regions. For k=2, we get 100 square sub-regions when
using a step of 0.1 for each attribute. However, when k=3,



we cannot divide the space into 100 equally sized cubes. So,
we ran three experiments (runs), using each time the whole
extent for one of the attributes and using a step of 0.1 for
the other two, and averaging the results in the end. For k=3
there are

(
3
2

)
= 3 such scenarios. In each run the space was

partitioned into 100 hyper-rectangles with size 1 x 0.1 x 0.1
(i.e., 1% of the volume).

Similarly, in k dimensions, we ran
(
k
2

)
= (k−1)×k

2
experiments and we averaged the results. In each run, the
size of the range query was 1% of the space, since they were
hyper-rectangles where two sides had size 0.1 and the rest
1.

In addition to reporting the average ratio of visited over
total data pages to answer these range queries over all runs,
we also report the variance of the visited pages for all runs.
The variance is a clear indicator of how uniformly the space
is partitioned among all dimensions. A small value means
that space partitioning is balanced among all dimensions,
whereas a large value means that space partitioning is
imbalanced.

In general, we expect:

• The techniques that favor even point splitting should
achieve good storage utilization for both uniform and
skewed data (t1, t3, t5)

• The techniques that favor even space splitting should
achieve better space partitioning and hence perform
better in the range query experiments (t2, t4, t6)

• Technique t1 should outperform techniques t3 and t5
• Technique t2 should outperform techniques t4 and t6

In Figures 1, 2, 3 we report the storage utilization, vari-
ance, and visited pages for uniform data, and in Figures 4,
5, 6 we report the same results for skewed data.

Our experiments showed that for uniform data:

• Utilization All techniques have good storage utiliza-
tion. Since data is uniformly distributed, the observed
variation is coincidental. The expected average utiliza-
tion is about 70%.

• Variance Techniques t1 and t2 guarantee balanced
space partitioning regardless of k, since t2 is designed
to favor data nodes whose space is as close to a
hypercube as possible, and t1 also tries to achieve good
space partitioning. As expected, the two round robin
techniques (t3 and t4) get worse as k increases, whereas
the random techniques have the worst performance in
high dimensions.

• Average pages accessed Techniques t1, t2, t3 and
t4 perform similarly as k increases and outperform
the random attribute ones by about 10% over all
dimensions. The “dimensionality curse” problem is
evident, but it appears that for range queries with 1%
selectivity the performance is acceptable. Most kNN
queries correspond to range queries with much lower
selectivity.

Figure 1. Data node storage utilization (uniform data)

Figure 2. Variance of visited data pages per run (uniform data)

Figure 3. Average % of visited over total data pages (uniform data)

Similarly, for skewed data:
• Utilization Techniques t1, t3 and t5 (point-oriented)

have good storage utilization as k increases. Techniques
t2, t4 and t6 (space-oriented) perform worse since they
favor even space partitioning.

• Variance Technique t2 outperforms all others since it
favors balanced space partitioning. Technique t1 (point-



Figure 4. Data node storage utilization (skewed data)

Figure 5. Variance of visited data pages per run (skewed data)

Figure 6. Average % of visited over total data pages (skewed data)

oriented) performs well too, since it takes into account
good space partitioning, too.

• Average pages accessed As expected, Technique t2
has the best performance. Technique t4 performs very
well, too. Again, the “dimensionality curse” problem
is evident, although the performance is much better on
skewed data. This is the strong point of point access

methods over space access methods.

V. CONCLUSIONS

We presented six data node splitting techniques for point
access methods that split space in non-overlapping regions.
The techniques differ in the way they split overfull data
nodes. They choose the splitting attribute and its value in
order to achieve simultaneously even point and space splits.
Since this is impossible to achieve unless data is uniformly
distributed in space, we are interested in the performance of
the various techniques when data is highly skewed.

Our experiments demonstrate that it is possible to achieve
a trade-off between point and space partitioning and obtain
even splittings over points and space at the same time. Two
of the techniques we propose (t1 and t2) achieve both good
space partitioning and good data node storage utilization.

REFERENCES

[1] C. C. Aggarwal, “Re-designing distance functions and
distance-based applications for high dimensional data,”
SIGMOD Rec., vol. 30, pp. 13–18, March 2001. [Online].
Available: http://doi.acm.org/10.1145/373626.373638

[2] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft, “When is ‘nearest neighbor’ meaningful?”
in Proceedings of the 7th International Conference
on Database Theory, ser. ICDT ’99. London, UK:
Springer-Verlag, 1999, pp. 217–235. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645503.656271

[3] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, ser.
SIGMOD ’84. New York, NY, USA: ACM, 1984, pp. 47–57.
[Online]. Available: http://doi.acm.org/10.1145/602259.602266

[4] D. B. Lomet and B. Salzberg, “The hB-tree: a multiattribute
indexing method with good guaranteed performance,” ACM
Trans. Database Syst., vol. 15, pp. 625–658, December 1990.
[Online]. Available: http://doi.acm.org/10.1145/99935.99949

[5] G. Evangelidis, D. Lomet, and B. Salzberg, “The
hBΠ-tree: a multi-attribute index supporting concurrency,
recovery and node consolidation,” The VLDB Journal,
vol. 6, pp. 1–25, February 1997. [Online]. Available:
http://dx.doi.org/10.1007/s007780050030

[6] J. T. Robinson, “The K-D-B-tree: a search structure for
large multidimensional dynamic indexes,” in Proceedings
of the 1981 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’81. New York,
NY, USA: ACM, 1981, pp. 10–18. [Online]. Available:
http://doi.acm.org/10.1145/582318.582321

[7] D. Comer, “Ubiquitous B-Tree,” ACM Comput. Surv.,
vol. 11, pp. 121–137, June 1979. [Online]. Available:
http://doi.acm.org/10.1145/356770.356776

[8] E. Outsios and G. Evangelidis, “Achieving optimal average
data node storage utilization in k-dimensional point data
indexes,” in Proceedings of the 5th International Scientific
Conference, eRA: The Contribution of Information Technology
to Science, Economy, Society and Education, 2010.


