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ABSTRACT
Some of the most commonly used classifiers are based on
the retrieval and examination of the k Nearest Neighbors
of unclassified instances. However, since the size of datasets
can be large, these classifiers are inapplicable when the time-
costly sequential search over all instances is used to find the
neighbors. The Minimum Distance Classifier is a very fast
classification approach but it usually achieves much lower
classification accuracy than the k-NN classifier. In this pa-
per, a fast, hybrid and model-free classification algorithm
is introduced that combines the Minimum Distance and the
k-NN classifiers. The proposed algorithm aims at maximiz-
ing the reduction of computational cost, by keeping classi-
fication accuracy at a high level. The experimental results
illustrate that the proposed approach can be applicable in
dynamic, time-constrained environments.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application –
Data Mining

General Terms
Algorithms, Management, Experimentation

Keywords
classification, nearest neighbors, scalability, data reduction

1. INTRODUCTION
Classification is a data mining technique that attempts to

map data to a set of classes [10]. A classification model or
classifier is responsible for this mapping and can be evalu-
ated by four criteria: (i) accuracy, (ii) scalability, (iii) ro-
bustness, and, (iv) interpretability. A major factor that the
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research on classification deals with is scalability, i.e., the
ability of the classifier to work on large datasets. In this
paper, the focus is on developing scalable classification al-
gorithms without sacrificing accuracy.

There are two major categories of classifiers: eager and
lazy [13]. Eager classifiers build a model based on the avail-
able data, and then, they classify all new instances using this
model. In contrast, lazy classifiers do not build any model.
They classify new instances by scanning the database at the
time a new instance arrives. A typical example of a lazy
classifier is the k-Nearest Neighbor (k-NN) classifier [6]. k-
NN classification works by searching the available database
(training set) for the k nearest items to the unclassified item.
Then, the retrieved k nearest neighbors determine the class
where the new instance belongs to. This class is the most
common one among the classes of the retrieved k nearest
neighbors. If ties occur, (two or more classes are most com-
mon) the new instance will be classified to the class deter-
mined either randomly or by the one nearest neighbor. The
latter is the approach adopted in this work.

Despite all its advantages, the k-NN classifier involves one
major drawback: it needs to compute all distances between
a new instance and the training data. This property af-
fects the scalability because as the size of the training set
becomes larger, the cost increases linearly. Indexing meth-
ods can be used in order to reduce the cost of searching
from linear to logarithmic time [3]. Unfortunately, index
efficiency degrades with the increase of data dimensional-
ity [18]. This phenomenon is known as the “dimensionality
curse” and it is partially dealt with by applying a dimen-
sionality reduction technique, such as Principal Component
Analysis (PCA) [14]. However, there are cases where this
approach cannot be applied successfully, or it leads to sig-
nificant information loss, and, consequently, classification
becomes less effective.

Other methods to reduce the k-NN classifier cost are the
Data Reduction Techniques (DRT) [19, 17, 15]. There are
two main algorithm categories of such techniques: (i) con-
densing algorithms that build a representative set that in-
cludes the close-border instances and has the advantage of
low computational cost and small storage requirements, and
(ii) editing algorithms that aim at improving the classifica-
tion accuracy rather than reducing the computational cost.
The main idea behind the condensing algorithms is that the
“internal” instances can be removed without significant loss
of accuracy, since they do not effect the decision boundaries.
On the other hand, editing algorithms try to improve the



accuracy by removing the noise and close-border instances
leaving smother decision boundaries behind. Thus, the most
typical (“internal”) instances of a particular class are used
to classify items near them.

Although DRTs are usually very effective, they introduce
a complicated preprocessing step, since they build a model
(condensing set) to speed-up the searching procedure. When
classification tasks are applied to databases where frequent
content changes occur, the repeated execution of this step,
that ensures the effectiveness of the model, is prohibitive.
In such dynamic environments, there is a need of a lazy,
model-free classifier.

The Minimum Distance Classifier (MDC) [7] can be used
as a very fast classification approach. MDC can be charac-
terized as a very simple DRT since it computes a representa-
tive instance (centroid) for each one class. This is the vector
obtained by averaging the attribute values of the items of
each class. When a new instance t is to be classified, the
distances between t and all centroids are calculated and t is
classified to the class of the nearest centroid. MDC avoids
the high computational cost of scanning the whole training
data. On the other hand, MDC accuracy depends on how
the items of the training set are distributed in the multidi-
mensional space. The centroid based model introduced by
MDC has been successfully applied for document categoriza-
tion [9].

This paper introduces a new fast hybrid classification al-
gorithm that does not need any speeding-up data structure
(i.e. indexing) or any transformation of the training data
(i.e. data reduction). The reduction of the computational
cost is achieved by the combination of the k-NN and the
Minimum Distance Classifiers. The proposed algorithm be-
gins by computing a representative instance for each class.
Then, it tries to classify new instances by examining the rep-
resentative instances and by applying certain criteria. If the
set criteria are not satisfied, it proceeds by applying k-NN
search over the entire database.

The motivation is to address the problem of classifying
large, high-dimensional datasets, where a sequential, ex-
haustive search of the whole dataset is required to locate the
k nearest neighbors (conventional k-NN classifier). This is
the case when indexing is not applicable and dimensionality
reduction negatively affects the performance. Furthermore,
complicated preprocessing procedures are avoided. The sim-
ple centroid based model of MDC involves only one pass over
the training data to compute the mean vector of each class.
The contribution of the work is summarized as follows:

• A novel, model-free classification algorithm is intro-
duced which is independent of data dimensionality and
avoids expensive preprocessing procedures on the train-
ing data, and, thus, it can be applied for repeated clas-
sification tasks in dynamic databases where frequent
content changes occur, and,

• The main classification algorithm and two variations
that extend its basic idea are considered in relation
with the set goal for achieving high accuracy while
reducing the computational cost as much as possible.

The rest of this paper is organized as follows. Section 2
presents related work, and Section 3 considers in detail the
new proposed classification algorithm and its variations. In
Section 4, experimental results based on real life datasets
are presented, and the paper concludes in Section 5.

2. RELATED WORK
An important variation of the k-NN classifier is the distance-

weighted k-NN [2]. It emphasizes on nearer neighbors since
it weighs the contribution of the k-nearest neighbors accord-
ing to their distance from the new sample. Consequently, it
aims for improving the classification accuracy. In contrast,
the present work focuses on the scalability factor.

Several data structures manage to efficiently index multi-
dimensional data, and so, to speed-up the searching proce-
dure. They are very effective when datasets with moderate
dimensionality (e.g. 2-10) are used. In higher dimensions,
the phenomenon of “dimensionality curse” renders those in-
dexes irrelevant since their performance degrades rapidly
and can become worse than that of the sequential scan of
the whole database. The most significant multidimensional
indexes are based on a tree data structure. Some of them
are the R-Tree [8] and its variations, the KDB-Tree [16] and
its variations, and the Vantage Point-Tree (VP-Tree) [20].
Moreover, the branch and bound algorithm proposed in [17]
and enhanced in [5], and the incremental algorithm intro-
duced in [12] are approaches that efficiently compute nearest
neighbors using indexes of the R - Tree family. As already
mentioned, all indexed-based approaches are dependent on
data dimensionality. Many proposals for speeding up nearest
neighbor searches rely on dimensionality reduction in order
to effectively apply an index. A model on the effects dimen-
sionality reduction has on the similarity search performance
is presented in [1].

The first condensing data reduction algorithm was intro-
duced by Hart [11]. Hart’s algorithm, which is known as
Condensing Nearest Neighbor (CNN) rule, attempts to re-
duce the computational cost of the k-NN classifier by se-
lecting as representatives only the close border instances
from the initial dataset. The number of selected instances
is determined automatically and depends on the number of
classes involved (the more the classes the more the close-
border instances selected) and the level of noise in the data.
These two parameters determine the computational cost of
the CNN reduction procedure and the effectiveness of the
condensing set produced. CNN rule tries to keep only the
close-border items in the following way: It uses two bins, S
and T . Initially, an item of the training data is placed in S

and the remaining items are placed in T . Then, the algo-
rithm tries to classify the content of T using the content of
S. Whenever an item of T is misclassified, it is moved to S.
The algorithms terminates when there is no move form T to
S during a complete pass of T . The items that have been
moved to S constitute the condensing set which will be used
to classify new samples. Although, many CNN variations
have been proposed, Hart’s algorithm is the reference data
reduction technique.

Many other researches focused and elaborated on condens-
ing DRTs; Chen’s algorithm [4] and the Learning Vector
Quantization (LVQ) algorithms are the most well known
cases. In contrast to Hart’s algorithm, these methods gener-
ate new items that represent the initial dataset. The number
of instances produced is determined by the user. Detailed re-
views on DRTs can be found in [19], [17] and [15]. Contrary
to the MDC, DRT procedures involve high computational
cost and, thus, they are ineffective in dynamic environments
that require frequent reconstruction of the condensing set.

3. THE PROPOSED METHOD



This section presents a fast, hybrid and model-free classi-
fication algorithm. In addition to the main algorithm, two
variations that achieve extra computational cost savings are
proposed. In the order presented, each one variation com-
prises an extension to its predecessor. As expected, the im-
provement comes at the cost of a decrease in accuracy.

The algorithm and its variations are based on the same
idea: They initially search for nearest neighbors in a new,
smaller dataset constructed by one pass over the training
data. This dataset includes only a representative instance
for each one class. Upon failure to meet the set accep-
tance criteria, classification proceeds by the conventional
k-NN classifier. Each representative instance is computed
by calculating the average value of each attribute in each
one class. Thus, the computed vector can be considered to
comprise the centroid of the cluster corresponding to the
class. Therefore, if the initial dataset includes 1000 items
in 15 dimensions and 10 classes, the new dataset will have
only 10 items in 15 dimensions. Evidently, the more the
dataset of centroids is used, the less the execution time in-
volved. Subsections 3.1, 3.2, and 3.3 below, outline the main
classification algorithm and its two variations.

3.1 Fast Hybrid Classification Algorithm
The Fast Hybrid Classification Algorithm (FHCA) is based

on the difference of the distances between the new unclas-
sified item and the representative centroids (see Figure 1).
More specifically, for each new (incoming, unclassified) item
x, the algorithm takes into consideration the two nearest
centroids A, B (A is the nearest and B is the second near-
est) and their distances from x: d(x, A), d(x, B). If the
difference between d(x, A) and d(x, B) exceeds a prede-
fined threshold (line 5), x is classified to belong to the class
represented by centroid A (line 6), otherwise the k nearest
neighbors are retrieved from the initial training set in order
to determine the class of x (lines 7-10).

FHCA is more accurate than the two variations presented
in subsections 3.2 and 3.3. In some cases, it reaches the
accuracy of conventional k-NN classifier, at a significantly
less computational cost. However, the performance depends
on the value of the predefined threshold.

When the threshold parameter is set to zero, the centroid-
based approach classifies all the new samples (since the “if”
condition calculates to “true”). On the other hand, if the
threshold is set to a relatively high value, it is possible that
all new items are classified by the conventional k-NN classi-
fier (the “else” clause in line 7 of Figure 1). These properties
indicate that the threshold value adjustment should be made
carefully, as it comprises a computational cost vs. accuracy
trade-off decision for the application considered.

3.2 FHCA - Variation I
The first FHCA variation (FHCA-V1), illustrated in Fig-

ure 2, is an extension of the main FHCA algorithm, since it
uses the distance difference criterion the same way FHCA
does. In addition, FHCA-V1 attempts to classify even more
new incoming items without falling back to the conventional
k-NN classifier. In particular, if the distance difference cri-
terion fails to classify the incoming item x (lines 6 and 7
in Figure 2), FHCA-V1 calculates the region of influence of
each one class centroid involved. We define the class region
of influence to be the average distance of the training set

Figure 1: Fast Hybrid Classification Algorithm

class items from the corresponding class centroid. In case x

lies within the region of influence of only one class (class A

in Figure 3), x is classified to belong to the class in ques-
tion (lines 8 and 9 in Figure 2). Otherwise, if x lies within
the region of influence of more than one class, the algorithm
proceeds as in the conventional k-NN classifier (lines 10-13
in Figure 2). In practice, the only one difference between
FHCA and FHCA-V1 is the “else if” part of pseudo-code in
lines 8 and 9 of Figure 2.

Contrary to the FHCA, FHCA-V1 requires two prepro-
cessing passes, one for calculating the class representative
instances (centroids, as in FHCA: line 1 in Figures 1 and 2),
and one for calculating the class regions of influence in the
training set data (line 2 in Figure 2). Even this extra pass
over the training data is insignificant compared to the com-
plicated preprocessing procedures involved by the data re-
duction techniques.

3.3 FHCA - Variation II
The second FHCA variation (FHCA-V2) extends FHCA-

V1 to include one more classification criterion. The latter
handles the case where the unclassified item x lies within
more than one class regions of influence (Figure 5, lines 10
and 11 in Figure 4). In this case, x is classified to the class of
the nearest centroid whose region of influence embraces it.
The example in Figure 5 illustrates such a case: suppose that
the distance difference criterion is not able to classify x, i.e.
x lies closer to A than to B, but the difference between the
two distances does not reach the predefined threshold. Also,
suppose that x lies within the regions of influence of both A

and B. In this case, FHCA-V2 classifies x to belong to the
class of the nearest centroid (the class of centroid A in Fig-
ure 5), skipping the computational cost of the conventional
k-NN classifier. It is only in cases where unclassified in-
stances fail to meet both of the FHCA-V1 and FHCA-V2 set
criteria that the algorithm proceeds to apply conventional
k-NN classifier. In this respect, FHCA-V2 involves less com-
putational overhead when compared to FHCA, FHCA-V1,
and, of course, the conventional k-NN classifier.

3.4 Discussion
A key factor for the proposed classifier and its variations

is the adjustment of the threshold (input) parameter. In
the case of FHCA, the value of this parameter influences the



Figure 2: FHCA - Variation I

Figure 3: FHCA-V1 classification case

number of new incoming instances classified by the centroid-
based model: the more the centroid-based approach is used,
the less is the computational cost involved. In the cases
of FHCA-V1 and FHCA-V2, the focus is on the incoming
(unclassified) instances that cannot be classified by the dis-
tance difference criterion. Two additional centroid-based
classification criteria are introduced, in an attempt to avoid
the computational cost of the conventional k-NN classifier.
The latter becomes the only one option available when both
of the FHCA-V1 and FHCA-V2 set criteria fail to classify
the unclassified instance. Obviously, FHCA-V2 utilizes the
centroids dataset as much as possible (i.e. in all three set
criteria) and represents the fastest variation. In contrast,
FHCA is the slowest of the three approaches, since it ap-
plies centroid-based classification solely on the basis of the
distance difference criterion.

A threshold auto-adjustment method is relatively easy to
implement in the form of a routine that accepts a value for
the desirable accuracy level, and it iteratively considers a
number of different threshold values. Having reached the
desirable accuracy level, the routine returns the correspond-
ing threshold value.

It is noted that the worst-case scenario for the proposed
classification approaches is when the centroid-based part
does not classify any item of the testing set. In this case, the
execution time involves the k-NN figure, the small overhead
of the centroids creation (one pass of the training data) and
the small overhead introduced by the cost of distance com-
putations between testing data and the class centroids (e.g.
if there are ten classes, ten distances must be computed for

Figure 4: FHCA - Variation II

Figure 5: FHCA-V2 classification case

each item of the testing set).
The proposed algorithm can be modified so that upon

failure to use the centroid-model, the k-NN part takes into
account only the items of the two classes with the nearest
centroids to the query point. In this case, both the com-
putational cost and the classification accuracy are highly
depended on the number of classes. Experiments conducted
on the datasets presented in Section 4, have shown that
although this approach is very fast, the accuracy is signifi-
cantly reduced.

4. PERFORMANCE EVALUATION

4.1 Datasets
The proposed algorithms were tested using five real life

datasets distributed by the UCI Machine Learning Reposi-
tory1. Using the filters provided by the UCI web interface,
care was taken to retrieve the largest, appropriate for clas-
sification datasets. Table 1 summarizes the datasets used.
The last table column lists the k value found to achieve
the highest accuracy. Since, the k-NN classifier requires the
computation of all distances between each item of the testing
set and the training data, the computational cost of k-NN
classifier can be easily estimated by multiplying the contents
of second table column by the contents of third column. For
example, 15,000 * 5,000 = 75,000,000 distances are com-
puted for the letter recognition dataset.

In addition, classification tasks are usually applied to noisy
training data. The removal of noise, introduces an extra
preprocessing procedure. However, we are interested in de-
veloping classifiers that do not need any preprocessing task
(either to remove the noise or to build a speed-up model
such as condensing set or indexing structures).

To evaluate the performance of the proposed algorithm on
noisy data, three more datasets were developed by adding
random noise to three of the datasets of Table 1. Partic-
ularly, 40% of noise was added to the Letter recognition,
Pendigits and Landsat satellite datasets. Namely, for each
item of the training set of these datasets, the class attribute

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/


Table 1: Datasets description
Dataset Training data Testing data Attributes Classes Best k

Letter recognition 15000 5000 16 26 4
Magic gamma telescope 14000 5020 10 2 12

Pendigits 7494 3498 16 10 4
Landsat sattelite 4435 2000 36 6 4

Shuttle 43500 14000 9 7 2

Table 2: T parameter values
Dataset FHCA(T1) FHCA(T2) FHCA-V1(T1) FHCA-V1(T2) FHCA-V2

Letter recognition 1.6 0.8 1.7 0.7 1.4
Magic gamma telescope 17 10 16 6 14

Pendigits 44 18 35 17 35
Landsat sattelite 31 13 31 8 34

Shuttle 30 25 35 28 25
Letter recognition (noisy) 0.9 0.5 0.9 0.5 1.3

Pendigits (noisy) 26 13 33 12 14
Landsate satellite (noisy) 19 14 21 12 10

Table 3: Hart’s Condensing NN Rule
Dataset Condensing data Reduction (%). Computations Best k

Letter recognition 2517 83.22 145,386,010 1
Magic gamma telescope 5689 59.36 217,900,759 22

Pendigits 312 95.84 7,940,953 1
Landsat sattelite 909 79.50 13,545,272 6

Shuttle 300 99.31 57,958,973 1
Letter recognition (noisy) 11806 21.29 205,175,615 16

Pendigits (noisy) 5822 22.31 51,891,038 20
Landsat satellite (noisy) 3469 21.78 17,918,173 30

was modified with a probability of 0.4. By executing the
conventional k-NN Classifier on these noisy datasets, it was
found that the highest accuracy is achieved for k=13, k=18
and k=21 respectively (the more the added noise, the higher
the value of k needed to achieve the highest accuracy). The
other two datasets were not transformed into a noisy mode,
since the Magic telescope dataset has already a high level
of noise and the Shuttle dataset is a skewed dataset with
two very rare classes and approximately 80% of the data
belonging to one of the seven classes.

4.2 Experimental setup
The proposed algorithm and its variations use the dis-

tance difference Threshold (T ) as a parameter. This pa-
rameter should be adjusted, so that the desirable trade-off
between accuracy and computational cost can be achieved.
For this reason, several experiments with different T values
were conducted. For FHCA and FHCA-V1, two T values
are reported (T1 and T2). The first value builds an accu-
rate classifier (comparable to the conventional k-NN clas-
sifier, when possible), and the second value builds a faster
classifier which achieves up to 5% lower accuracy than the
one build with the first value. For FHCA-V2, which is the
fastest approach, only the T value that achieves the highest
accuracy is reported. Table 2 presents the T values for each
dataset.

FHCA and its variations involve the same centroid-based
part of pseudocode (lines 5, 6 in Figure 1 and lines 6, 7 in
Figures 2) which, effectively, comprises a Minimum Distance

Classifier component. In this respect, the MDC component
classifies the same number of items in each one testing set,
despite the classification approach used (FHCA, FHCA-V1
or FHCA-V2). For comparison purposes, the experimen-
tal measurements of a ’Minimum Distance Classifier, only’
approach are included in Table 4 of the following subsection.

Furthermore, for comparison purposes, the Hart’s Con-
densing Nearest Neighbor (CNN) rule [11] was implemented.
Table 3 presents the experimental results obtained from the
execution of the CNN reduction procedure on the eight datasets
(the five real life and the three noisy datasets). Column
four lists the number of distance computations needed for
the production of the condensing set. The last column lists
the k value found to achieve the highest accuracy when the
resulting condensing set is used to classify the items of the
corresponding testing sets. Table 4 includes the performance
of CNN: accuracy and computational cost obtained from
the execution of k-NN classifier on the CNN condensing set
(CNN k-NN). Of course, these values do not include the
computational cost (fourth column in Table3) introduced
by the condensing set construction (preprocessing step on
the available training data).

4.3 Comparisons
In this subsection, the proposed classifier and its varia-

tions are compared to each other and to the conventional
k-NN, Minimum Distance, and, CNN k-NN classification
algorithms, by setting the T parameters values presented in
Table 2. For each one dataset, two experimental measure-



ments were taken for each one classification approach: (i)
classification accuracy, and (ii) distance computations as a
percentage of the distance computations needed for the con-
ventional k-NN. To give a feeling of the actual computational
cost, for the conventional k-NN this second measurement
represents the actual number of distance computations.

Due to space restrictions, experimental results obtained
by varying the value of T are not presented2.

Letter recognition dataset: FHCA almost reached the
accuracy level of k-NN, when the threshold value was set
to T=1.6. In particular, FHCA was found to achieve an
accuracy of 95.24% and a 15.6% reduction in the compu-
tational cost. To obtain a faster classifier, one should de-
crease the threshold value (T ). For instance, when T was
set to 0.8, FHCA achieved an accuracy of 90.78%, with 35%
lower cost than that of k-NN. FHCA-V1 was affected by the
extended overlapping of centroid regions of influence in the
given dataset. As a result, the centroid-based part of FHCA-
V1 managed to classify only a few more items (8%–10%)
than that of FHCA. For T=1.6, FHCA-V1 was measured
to classify the testing data with an accuracy of 91.96% and
25% less computational cost. Finally, for T=1.6, FHCA-V2
needed only 27% of the distance computations. However,
the accuracy was only 71.6%.

Magic gamma telescope dataset: In this dataset, the
proposed algorithm and its variations were measured to per-
form better than in the previous dataset. In addition, their
measurements are comparable to these of CNN k-NN. Con-
cerning FHCA, T=17 comprises a good choice for the thresh-
old parameter, since FHCA achieves an accuracy value of
over 80% while it reduces the cost by almost 56%. Although
not shown in Table 4, for T=38, FHCA can achieve an ac-
curacy of 81.36% that is very close to the accuracy of k-NN
but with only a 10% improvement in computational cost.
A fast classifier can be developed by setting T=10. In this
case, FHCA makes predictions with an accuracy of 75.26%
with only 23.48% of the k-NN cost. FHCA-V1 achieved its
best accuracy performance (74.72%) for T=16, with 28.98%
of the computational cost. For T=6, FHCA-V1 has only
9.64% of the k-NN cost (90.36% reduction) and classifies
the testing data with an accuracy of 72%. FHCA-V2 was
found to never exceed the accuracy value of 73% (for T=14,
accuracy: 72.39%). However, FHCA-V2 executed very fast
(for T=14, the cost was reduced by almost 90%).

Pendigits dataset: Concerning FHCA, two reference-
worthy experimental measurements are obtained by setting
T=44 and T=18. These adjustments achieved an accu-
racy of 97.08% and 92.02% respectively and had 62.74% and
30.89% of the k-NN cost. It is noted that for T=55, FHCA
reached the k-NN accuracy, executing with almost 23% lower
cost. Furthermore, for T=32, the cost is 51.4% and the ac-
curacy 95%. FHCA-V1 achieved its best accuracy (88.54%)
with 32.2% of the cost for T=35. For T=17, FHCA-V1
achieved an accuracy of 87.22% and required almost 25% of
the k-NN cost. FHCA-V2 was measured to execute faster.
For T=35, it needs 19.92% of the distance computations of
k-NN and it achieves an accuracy of 86.54%.

Landsat satellite dataset: FHCA performed a little
better than k-NN. More specifically, for T=38, it achieved
the best possible accuracy value (90.85%), with a 32.8% de-
crease in computations. For all other threshold values, it fell

2Detailed experimental results and diagrams available at:
https://sites.google.com/site/fhcalgo/files/FHCA.zip

a little behind in accuracy, but executed even faster. For in-
stance, by setting T=31, FHCA achieved an accuracy of
90.05% (very close to the k-NN accuracy) and spent 57.03%
of the k-NN computational cost. Also, for T=13, only 25%
of the cost was required (accuracy: 85.1%). Finally, for
T=26, FHCA achieved an accuracy of 89% with almost half
the cost. The two variations performed almost the same in
accuracy, with FHCA-V1 executing faster than FHCA-V2.
For T=34, the two variations achieved their best accuracy
levels (83.05% and 82.4%) and had 67% and 80% lower cost
than k-NN, respectively.

Shuttle dataset: Shuttle is an imbalanced (skewed) dataset.
Approximately 80% of the data belongs to one class. There-
fore the default accuracy is 80%. When classification tasks
execute against such datasets, the main goal is to obtain a
very high accuracy (e.g. over 99%). As shown in Table 4,
this goal is successfully fulfilled by k-NN and CNN k-NN.
Additionally, to the very high accuracy that it achieved,
CNN k-NN executed extremely fast, since it scanned a very
small condensing set (only 300 items). This happened be-
cause the CNN-rule managed to reduce the training data at
the minimum level.

For the dataset in question, FHCA achieved an accuracy
of 99.82% with almost the half the cost (53.23%) of k-NN,
for T=30. By setting T=25, the was reduced by over 60%,
but the accuracy fell to 99.19%. It is worth mentioning that
FHCA achieved its best accuracy (99.84%) by setting T=37
and had a cost reduction by 15%. The two variations did
not achieve a reference-worthy accuracy. However, the pro-
posed algorithm and its variations managed to classify with
high accuracy the testing set items belonging to rare classes
using their centroid-based part. There are many application
domains where the correct prediction of rare classes is very
critical (e.g. earthquake prediction, rare diseases, etc). In
the shuttle dataset, there are 2 very rare classes both having
only 17 items in the training set and 6 items in the testing
set. For any T value, FHCA, FHCA-V1, and FHCA-V2
made 5 correct and 1 incorrect predictions.

Letter recognition dataset (noisy): For all noisy datasets,
CNN k-NN and FHCA-V2 were affected by the addition of
noise. The CNN-rule did not manage to drastically reduce
the training (noisy) sets, and so, the computational cost
gains were not significant. In contrast, the experimental re-
sults showed that FHCA and FHCA-V1 were not affected.
In particular, for T=0.5, the FHCA accuracy was 86.06%
and its cost was 35.31% lower than k-NN. For T=0.9, the
accuracy was 91.06% and the cost was 16.95% lower than
k-NN. FHCA achieved even better accuracy, but the cost
savings were not significant. On the other hand, FHCA-
V1 had an accuracy of 89.14% and 84.36%, for T=0.9 and
T=0.5 respectively. The corresponding cost savings were
21.54% and 38.29%.

Pendigits dataset (noisy): On this dataset, FHCA
reached the accuracy level of CNN k-NN at a 10% lower cost.
Considering the additional high cost introduced by the con-
struction of the condensing set of the CNN approach, the
cost gains are actually much higher for FHCA. Moreover,
FHCA reached the accuracy of k-NN with the same cost as
CNN k-NN. Finally, for T=13, FHCA achieved an accuracy
of 91.71% and had only 38.75% of the k-NN cost. Similarly,
FHCA-V1 achieved an accuracy of 93.31% and 88.65% by
setting T=33 and T=12 respectively. The corresponding
savings in computational cost were 33.26% and 70.77% re-

https://sites.google.com/site/fhcalgo/files/FHCA.zip


Table 4: Experimental results

Dataset
FHCA FHCA FHCA- FHCA- FHCA- CNN

MDC k-NN
(T1) (T2) V1(T1) V1(T2) V2 k-NN

Letter Acc.: 95.24 90.78 92.06 87.00 71.46 91.9 58.08 95.68
recognition Cost: 84.39 64.93 76.63 55.15 27.33 16.78 0.17 75,000,000

Magic gamma Acc.: 80.02 75.26 74.72 72.00 72.39 80.64 68.92 81.39
telescope Cost: 44.11 23.48 28.98 9.64 10.34 40.66 0.01 70,230,000

Pendigits
Acc.: 97.08 92.02 88.54 87.22 86.54 96.05 77.76 97.88
Cost: 62.74 30.89 32.2 20.40 19.92 4.16 0.13 26,214,012

Landsat Acc.: 90.05 85.1 83.00 80.70 82.40 89.75 77.50 90.75
satelite Cost: 57.03 25.38 30.83 10.13 20.28 20.50 0.14 8,870,000

Shuttle
Acc.: 99.82 98.19 95.15 95.12 81.57 99.85 79.57 99.88
Cost: 53.23 39.77 43.44 35.06 11.29 0.7 0.02 630,750,000

Letter Acc.: 91.06 86.06 89.14 84.36 62.72 90.32 53.98 91.82
recogn. (noisy) Cost: 83.05 64.69 78.47 61.71 21.47 78.71 0.17 75,000,000

Pendigits Acc.: 96.17 91.71 93.31 88.65 78.7 96.20 75.90 97.00
(noisy) Cost: 67.88 38.73 66.74 29.23 4.85 77.69 0.13 26,214,012

Landsat sat. Acc.: 87.80 85.05 86.55 82.30 75.05 87.6 71.40 88.30
(noisy) Cost: 63.33 47.58 63.13 36.08 8.28 78.22 0.14 8,870,000

spectively.
Landsat satellite dataset (noisy): The results are sim-

ilar to the ones obtained on the Pendigits (noisy). FHCA
had higher accuracy than CNN k-NN with 15% less cost. For
T=21, FHCA-V1 had an accuracy of 86.55% with 63.17% of
the cost. Finally, for T=12, FHCA-V1 achieved an accuracy
of 82.3% and only 36.08% of the k-NN cost.

4.4 Discussion
For the datasets (i) Letter recognition, (ii) Pendigits, (iii)

Landsat satellite, and, (iv) Shuttle, the proposed algorithms
seem to be slower than CNN k-NN, however they are model-
free, since they do not need any speed-up model produced
by costly preprocessing procedures. The calculation of the
class centroids is quite simple and inexpensive and can be
executed before each classification task to take into account
the latest database changes.

Furthermore, in the case of the Magic gamma telescope
dataset, FHCA reached the accuracy of CNN k-NN with the
same computational cost. This is attributed to the noise
that exists in this dataset.

As expected, Hart’s CNN rule was affected by the addi-
tion of noise. The preprocessing procedure of the CNN rule
could not significantly reduce the items of the noisy datasets.
Thus, for these datasets, in addition to the cost introduced
by the condensing set construction, the sequential search of
the condensing set involved a relatively high computational
cost. Contrary to CNN, FHCA and FHCA-V1 were not sig-
nificantly affected by the noise. The experimental results on
the three noisy datasets showed that the later approaches
manage to reach and exceed the CNN k-NN accuracy at a
lower computational cost. FHCA-V2 is also affected by the
addition of noise. This is because the third classification
criterion, which handles the cases where the new item lies
within more than one class regions of influence, cannot make
predictions with high accuracy.

Last but not least, it should be noted that contrary to
CNN, the adaptive schema offered by the proposed approach
allows for the development of classifiers that reach the ac-
curacy of the conventional k-NN classifier with significant
savings in the computational cost.

5. CONCLUSIONS
In this paper, a fast, hybrid and model-free classifier is

proposed. Speed-up is achieved by combining the Minimum
Distance and the k-NN classifiers. Initially, the fast centroid-
based model of MDC attempts to classify the new incoming
instance. Upon failure, the new instance is classified via the
k-NN approach. Although the proposed approach is quite
simple, it manages to speed-up the classification process and
can be useful in cases where data updates are frequent, thus,
preprocessing of the training data for data reduction is pro-
hibitive, or multidimensional index construction involving
dimensionality reduction does not achieve acceptable classi-
fication accuracy.

Performance evaluation results show that significant com-
putational cost reduction can be achieved, whereas, accuracy
remains at high levels. In particular, the main classification
algorithm (FHCA) met our expectations since it reached the
accuracy level of the k-NN classifier and was not affected
by noise. The two proposed variations of FHCA can be
used in applications where there is a need for a less accurate
but very fast classification approach. The decision on which
of the three variations should be used and which threshold
value is the most appropriate one depends on the applica-
tion domain. Namely, these decisions should be made by
taking into consideration the most critical parameter, i.e.,
the trade-off between accuracy and computational cost.

The effectiveness of the centroid-based model that the pro-
posed classifier uses in order to speed-up the classification
procedure is depended on the data distribution in the mul-
tidimensional space. In particular, it can be affected by the
shape and the size of the clusters that the items of each
class form. Next, we intend to address this issue by using
more than one representative instances for each class. We
intend to develop fast, hybrid and accurate classification al-
gorithms that will not be depended on data distribution and
dimensionality.
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