
Cluster-Based Similarity Search in Time Series

Leonidas Karamitopoulos, Georgios Evangelidis
Dept. of Applied Informatics, University of Macedonia

Thessaloniki, Greece

e-mail: lkaramit@uom.gr, e-mail: gevan@uom.gr

Abstract–In this paper, we present a new method that

accelerates similarity search implemented via one-nearest

neighbor on time series data. The main idea is to identify the

most similar time series to a given query without necessarily

searching over the whole database. Our method is based on

partitioning the search space by applying the K-means

algorithm on the data. Then, similarity search is performed

hierarchically starting from the cluster that lies most closely to

the query. This procedure aims at reaching the most similar

series without searching all clusters. In this work, we propose

to reduce the intrinsically high dimensionality of time series

prior to clustering by applying a well known dimensionality

reduction technique, namely, the Piecewise Aggregate

Approximation, for its simplicity and efficiency. Experiments

are conducted on twelve real-world and synthetic datasets

covering a wide range of applications.

Keywords-similarity search; clustering; time series; data

mining

I. INTRODUCTION

Similarity search is an important task in many
applications, such as content-based retrieval, exploratory
data analysis, predictive modeling and data mining. The
basic problem can be stated as follows: given a set of
objects, find the most similar ones to a given query object.
For example, one may be interested in retrieving the most
similar images to a given one from a database or in
identifying those stocks whose prices evolved similarly to a
specific one over the last year. Retrieval of these objects is
based on “similarity” rather than on “exactness”.

The main research in this area is focused on the
development of methods that can efficiently support
similarity search, since common applications involve very
large amounts of data.

One major class of methods for efficient similarity
search comprises of multidimensional indexing schemes
that can be used for fast access of these points [9]. Although
the indexing approach can be extremely fast, its efficiency
degrades rapidly with the increase of the dimensionality.
There are several research results that demonstrate the
negative effects of increasing dimensionality on index
structures [10]. For instance, Beyer et al. [4] show that
nearest neighbor search can become unstable with as few as
10-20 dimensions. White & Jain [21] report that as the
dimensionality increases from 5 to 10, the performance of a
nearest neighbor search degrades by a factor of 12 for

various multidimensional index structures. This
phenomenon, known as dimensionality curse, implies that a
simple sequential scan usually performs better at higher
dimensionalities than index structures.

One solution for achieving efficient similarity search in
the presence of high dimensionality is to condense the data
by applying a dimensionality reduction technique (i.e.
Principal Component Analysis). The idea is to map the
original data into a lower dimension domain without losing
substantial amount of information. The approach of
dimensionality reduction can be very helpful because it
reduces the storage requirements, it potentially allows an
efficient implementation of multidimensional indexing
structures and it improves the quality of similarity search
results.

In this paper, we examine the case of similarity search
implemented via one-nearest neighbor (1-NN) on time
series data. This type of data differs from other domains in
that they have an intrinsically high dimensionality, which
necessitates the application of a dimensionality reduction
technique. The method of 1-NN requires searching a
database for the most similar object (time series) to a given
one. The main drawback of this method is that we have to
compare a query object to every object in a database in
order to find the most similar one. This approach becomes
prohibitive, when the reference database is extremely large.
The efficiency of this method is affected by the number of
objects in the database, as well as, by the dimensionality of
these objects, since a distance measure is calculated for
measuring the closeness of the corresponding objects.

The objective of our work is to provide a method for the
purpose of improving the efficiency of 1-NN similarity
search in time series datasets without sacrificing the quality
of the results. We introduce an approach that integrates the
dimensionality reduction of data and subsequently the
reduction of the search space. We call this approach
CLUREP (Clustering on Representation).

In particular, the original data is represented in a
compressed form by applying any dimensionality reduction
technique. There is a wealth of relevant techniques
proposed in the literature, such as Discrete Fourier
Transform [2], Discrete Wavelet Transform [7], Singular
Value Decomposition [14] or Piecewise Aggregate
Approximation [13]. Then, the transformed dataset is
partitioned by applying a clustering algorithm. The
similarity search proceeds at each cluster sequentially

according to specific criteria. Our approach aims at reaching
the nearest neighbor without searching the whole database.

Although, a multidimensional index structure can be
built on each one of the clusters in order to efficiently apply
similarity search, we investigate the effectiveness of our
approach with respect to sequential searching. The reason is
that the required dimensionality reduction in order to ensure
the desired quality performance may require a
multidimensional indexing that is not essentially faster than
sequential scanning.

In Section II, we provide related work, whereas our
approach is analytically presented in Section III. The
experimentation framework is described in Section IV and
the corresponding results are presented in Section V.
Finally, conclusions are provided in Section VI.

II. RELATED WORK

Various methods have been proposed for speeding up
nearest neighbor searches that are based on indexing [11].
However, the dimensionality curse affects seriously the
performance of high-dimensional similarity search. One
solution for achieving scalable performance is to reduce the
dimensionality of data. Aggarwal [1] provides a model of
the effects of this reduction on high dimensional problems
for the purpose of improving the quality of similarity search.

Most of the research is focused on reducing the
dimensionality of data in order to apply an effective
multidimensional indexing structure and/or reducing the
number of objects to be compared against the query. Patella
and Ciaccia [17] provide a classification schema for
approaches to approximate similarity search.

Chakrabarti and Mehrotra [6] propose to discover
correlated clusters in the dataset and reduce the
corresponding dimensionalities by applying Principal
Component Analysis to each one of them. They also provide
a technique to individually index these clusters that
guarantees no false positive or false negative answers to be
returned to the user. This approach applies local
dimensionality reduction assuming that there are subsets of
locally correlated data.

Bennett et al. [3] propose to apply an EM (Expectation
Maximization) algorithm to cluster data using a mixture-of-
Gaussians pdf (probability density function) model. Each
cluster corresponds to a specific Gaussian pdf, which is
parameterized with a mean vector and a covariance matrix.
This approach (DBIN) utilizes the derived density model of
the data in order to introduce an indexing scheme that
produces a mapping between a query point and an ordering
on the clustered index values.

Ferhatosmanoglou et al. [8] introduce a new technique
based on clustering that reduces the size of the dataset and
the dimensionality of each data object. The authors propose
to transform the original d-dimensional data by using the
Karhunen-Loève Transformation (KLT). After
dimensionality reduction, a modified K-means clustering
algorithm is applied on the low dimensional domain. The
procedure of approximate nearest neighbor searching starts
with the transformation of the query object, the retention of
the first r dimensions, and the identification of the cluster

this query falls into. Then, similarity search is performed in

this cluster and the k nearest neighbors are retrieved.

Another cluster-based approach is presented in [5]. The
authors propose an indexing method called Clustering with
Singular Value Decomposition (CSVD) that efficiently
supports approximate nearest neighbor queries. The
construction of a CSVD index involves three steps:
partitioning the dataset using a clustering technique (i.e., K-
means), applying SVD separately on each cluster to reduce
the dimensionality of data, and constructing an index for the
transformed space. Thomasian et al. [19] propose an exact
algorithm to process k-NN queries on dimensionality
reduced clusters produced by CSVD, whereas a general
framework for building a persistent main memory index on
each cluster is provided in [20].

 Li et al. [15] provide a clustering and indexing
paradigm (called CLINDEX) for high dimensional spaces.
CLINDEX partitions the dataset into clusters. Each cluster
is represented by a separate file and all files are sequentially
stored on disk. The authors introduce a new technique for
constructing clusters that is based on grids. Once the
clusters are obtained, an indexing structure is built on them.
A different clustering and indexing paradigm for exact
nearest neighbor search in image databases is provided in
[18].

III. THE PROPOSED APPROACH

The proposed method consists of three phases that are
analytically described hereafter.

The first phase involves the application of a
dimensionality reduction technique on the original data for
two reasons. First, we expect to improve the quality of the
similarity search results. Second, the subsequent clustering
analysis becomes more effective, since the problem of high
dimensional data is alleviated. Virtually, any technique can
be selected at this step; however, this choice is application
dependent, since different techniques may result into
representations of higher quality in different applications. In
this work we propose to apply the Piecewise Aggregate
Approximation (PAA) because it is simple, fast to calculate,
and it has been shown empirically that it is as efficient as
other more sophisticated approaches. In particular, PAA
segments a time series into a number of sections and records
the corresponding means. The series of these means is the
representation of the time series.

The second phase involves the application of a
clustering algorithm on the transformed data, namely, K-
means [16], which is one of the most researched and
popular clustering methods. The output of this phase

consists of the centroids (
i

c) of the generated clusters along

with their radii (
i

r). The radius of a cluster is defined as the

distance of the farthest object of a cluster to the
corresponding centroid. In addition to these, we record the
cluster membership of each object and its distance from the
corresponding centroid. The objects are reordered in the
dataset with respect to their cluster membership and the
distance from their cluster’s centroid.

Note that the two previous phases constitute the pre-
processing that is executed off-line.

The third phase involves the procedure of similarity
search in the derived clusters. Given a query object (q), the

required steps to be followed are provided below:
1. Calculate the distances of the PAA transformed query

object to the centroids of the clusters (()i
d q,c).

2. Set the cluster with the closest centroid as the current

cluster. Let denote this cluster
(i)

C , where 1i = .

3. Calculate the distance of the query object to each one
of the other clusters. This distance is defined to be the
difference between the distance of the query to the centroid
and the corresponding radius. If the query object lies within
the cluster, then this distance is set equal to zero (1).

 () (){ }0 2 3= − =
(i)

i i
d q,C max , d q,c r , i , ,...,k (1)

4. The clusters are sorted in an increasing order with
respect to their distances from the query object. Ties may be
broken according to the distances of the centroids of the

clusters to the query object. Let denote these clusters
(i)

C ,

where 2 3=i , ,...,k with k corresponding to the cluster that

is farthest from the query.
5. Search the current cluster sequentially in order to

locate the current nearest neighbor (nn) to the query object.

Record the corresponding distance ()d q,nn .

6. If the distance of the query object to the current
nearest neighbor is less than or equal to the distance of the
query object to the next cluster (2), then the actual nearest
neighbor has been found and the algorithm stops.

 ()
()()1+

≤
i

d q,nn d q,C (2)

Otherwise, let 1= +i i and move to the next step.

7. Calculate the difference between the distance of the

query object to the centroid of
(i)

C and the distance of the

query object to the current nearest neighbor. If this

difference is positive, then search the objects of
(i)

C that

their distance to
i

c is greater than this difference.

Otherwise, search the whole cluster. After this, the current

nearest neighbor (nn) has been changed. If =i k , the

algorithm stops. In this step, we determine a lower bound on
the distances of objects from the centroid in order to reduce
the search space in the current cluster (3).

 () (){ }0 , = −
i

lower _ bound max d q,c d q,nn (3)

8. Go to step 6.
An example of this procedure is presented in Fig. 1-3.

We consider 17 time series of 2 dimensions (two time
instances). In this example, the clusters are non-overlapping
and the query object lies outside of the clusters; however,
the proposed method works for any placement of clusters
and queries.

The above algorithm assumes that the Euclidean
distance is utilized. Nevertheless, this method holds for any
distance that constitutes a metric, especially with respect to

the property of the triangle inequality. The proof of the
correctness of this method is omitted due to lack of space.

-2 0 2 4 6 8 10 12 14

-2

0

2

4

6

8

10

12

14

Figure 1. Determination of the primary cluster and location of the current

nearest neighbor

-2 0 2 4 6 8 10 12 14

-2

0

2

4

6

8

10

12

14

Figure 2. Determination of the next closest cluster, check of whether a

better nearest neighbor may exist (in this case, it exists) and determination

of the corresponding search space

-2 0 2 4 6 8 10 12 14

-2

0

2

4

6

8

10

12

14

Figure 3. Location of a better nearest neighbor, determination of the next

closest cluster and check of whether a better nearest neighbor may exist (in

this case, it does not exist and the algorithm ends without searching the

next cluster)

current nn

primary

cluster

query

object

lower bound
search space

d(q , nn) current nn

d(q , nn)

current nn

discarded

cluster

IV. FRAMEWORK OF EXPERIMENTATION

In order to evaluate the performance of the proposed
approach, we perform one-nearest neighbor classification
(1-NN) and validate it with the leave-one-out procedure. We
record the classification accuracy and the percentage of the
volume of data that is searched. The corresponding average
values are calculated over the total number of series in the
dataset.

The experiments are conducted on 12 real world and
synthetic datasets, which are available upon request in [12].
The number of classes ranges from 2 to 50, whereas the
length of time series ranges from 60 to 427. They are
utilized extensively as benchmark datasets for testing
classification algorithms and for this reason, they are
separated in training and testing sets. In this work, we merge
these two sets in order to increase the size of each dataset.
All datasets consist of normalized time series, that is, time
series of mean equal to zero and standard deviation equal to
one. All series are labeled according to the class they belong
to. The names of these datasets along with their
identification number (ID) are the following: (1) 50words,
(2) CBF, (3) ECG200, (4) FaceAll, (5) Gun Point, (6)
OSULeaf, (7) SwedishLeaf, (8) SyntheticControl, (9) Trace,
(10) TwoPatterns, (11) Wafer, (12) Yoga.

Regarding PAA implementation, the number of sections
is set equal to multiples of 2, ranging from 4 to 16. We
compare our method (CLUREP) with the complete
sequential search and the method that does not restrict the
search space of the visited clusters. We call this method
CLUREP_all. The algorithm of K-means is applied with a
number of clusters that ranges from 2 to 20 in increments of
2. Intuitively, the more the number of clusters, the less the
fraction of dataset that need to be searched. Finally, all the
necessary codes and experiments are developed in
MATLAB.

V. RESULTS

In the first part of the results, we provide the
classification error rates and the percentage of the volume of
data that is searched for a constant number of clusters

(10=k). The objective is to examine their relation under

varying dimensionalities.
Table I presents the classification error rates for varying

dimensionalities when the number of the generated clusters
is set equal to 10. The main observation is that the lowest
error rate is achieved at high dimensionalities. In 8 out of
12 datasets, the required dimensionality is the highest (16).
The lowest dimensionality is 8 and it is observed in only
one dataset. The minimum error rate ranges from 0.00% to
35.75%.

Table II presents the percentages of the volume of data
that is searched when the number of the generated clusters is
set equal to 10. In 8 out of 12 datasets, there is an increasing
trend in the volume of data searched as the dimensionality
increases. On the other hand, there are 4 datasets (ID: 5, 9,
11, 12) where the corresponding volume of data remains
fairly stable across the dimensionalities. The minimum
volume of data ranges from 12.5% to 19.2%.

TABLE I. 1-NN CLASSIFICATION ERROR RATES (%)

(10=k)

 Dimensionality

ID 4 6 8 10 12 14 16

1 65.3 43.9 34.9 31.1 29.6 29.3 27.9

2 10.5 0.4 0.0 0.1 0.0 0.0 0.0

3 25.0 16.5 12.5 12.5 10.5 9.0 10.0

4 59.8 31.7 24.0 13.4 10.0 9.6 7.4

5 17.5 10.5 13.5 7.5 8.0 6.0 5.5

6 72.0 53.9 44.1 40.3 36.7 36.7 35.8

7 63.4 41.4 27.5 23.7 18.8 18.8 17.3

8 14.7 9.0 5.0 1.2 1.2 1.2 0.7

9 20.0 20.0 22.0 22.5 15.0 20.5 18.5

10 45.4 16.8 8.0 3.5 2.8 2.3 0.8

11 0.4 0.4 0.2 0.2 0.2 0.1 0.2

12 24.4 11.3 9.1 8.3 6.7 7.0 6.6

TABLE II. PERCENTAGES OF THE VOLUME OF DATA THAT

IS SEARCHED (10=k)

 Dimensionality

ID 4 6 8 10 12 14 16

1 16.4 21.0 25.6 30.1 33.8 36.7 40.0

2 14.2 15.6 16.3 17.3 18.8 18.3 20.4

3 17.7 20.9 21.9 22.9 24.3 25.8 25.2

4 17.3 26.2 31.8 28.8 28.9 29.5 31.0

5 16.7 16.0 17.5 16.7 17.6 17.1 17.4

6 19.2 28.8 33.6 43.9 48.5 53.2 58.3

7 19.1 23.7 29.6 32.0 35.3 35.7 39.0

8 16.8 19.6 21.3 21.5 25.0 24.6 28.4

9 14.1 13.4 13.5 12.5 13.7 13.8 13.0

10 19.2 19.1 25.1 32.5 37.4 40.9 46.2

11 14.5 15.2 14.9 15.2 15.5 15.3 15.5

12 15.3 15.1 16.4 16.6 16.9 16.8 17.1

The key observation that arises by combining both tables

(Table I and Table II) is that as the dimensionality increases,
the classification error rate decreases with the cost of an
increasing percentage of the volume of data that need to be
searched. We also observe that when the dimensionality is
set equal to 16, the corresponding volume of data ranges
from 13% to 58.3%. In addition to that, the three datasets
with the “worst” error rates also present poor results in the
volume of data that needs to be searched (ID: 1, 6, 7).
Similar observations can be made, if we generate fewer or
more clusters than 10. For brevity, results for other values of

k are not presented.

In the second part of the results, we provide the
percentage of the volume of data that is searched for varying
number of clusters. The dimensionality is set equal to that
number for which the lowest error rate is achieved (Table I).
In general, this number varies across different datasets.

In this set of experiments, we provide results for two
methods, namely the CLUREP and the CLUREP_all. Note
that the latter differs from the first in that it searches the
whole cluster once visited. By definition, CLUREP is
expected to provide better results than CLUREP_all.

However, one of our objectives is to experimentally
quantify the expected improvement.

In Table III and Table IV, the performance of CLUREP
and CLUREP_all is presented with respect to the percentage
of volume of data that is searched. The first observation is

that when the number of the generated clusters (k)

increases, the corresponding volume decreases. In general,

the rate of decrease is higher when the value of k increases

from 2 to 10 than when k increases from 10 to 20. The

second observation is that both methods perform better than
sequential scan. However, CLUREP performs consistently
better than CLUREP_all across datasets for any number of
clusters.

More specifically, when the number of clusters is equal
to 20, CLUREP requires searching a fraction of the original
datasets that ranges from 7.2% to 45.3% whereas the
corresponding fraction of CLUREP_all ranges from 8.0% to
69.9%. On the average across datasets, CLUREP requires
searching the 19.6% of the original data volume, whereas
the corresponding percentage for CLUREP_all is 39.5%.

TABLE III. PERCENTAGES OF THE VOLUME OF DATA THAT
IS SEARCHED (CLUREP)

 Number of Clusters

ID 2 4 6 8 10 12 14 16 18 20

1 87 67 54 46 40 36 33 30 29 27

2 58 35 25 19 16 14 12 10 10 9

3 69 43 33 29 26 24 21 20 19 17

4 67 48 39 34 31 28 26 25 24 22

5 61 36 27 21 17 16 14 12 11 11

6 86 75 68 63 59 55 52 50 48 45

7 78 59 50 44 39 36 33 31 29 28

8 59 42 36 32 29 26 24 23 22 20

9 51 31 21 17 14 12 10 9 8 7

10 86 68 58 51 46 42 39 36 33 31

11 56 34 24 19 15 13 11 10 9 8

12 61 34 25 20 17 15 13 12 11 10

TABLE IV. PERCENTAGES OF THE VOLUME OF DATA THAT
IS SEARCHED (CLUREP_all)

 Number of Clusters

ID 2 4 6 8 10 12 14 16 18 20

1 99 94 87 79 73 68 63 60 56 54

2 80 55 44 34 27 23 19 17 15 13

3 97 75 61 50 45 39 35 31 29 27

4 99 94 89 84 81 78 74 71 68 65

5 83 60 43 30 26 22 18 17 15 14

6 97 94 91 87 84 81 78 75 72 70

7 100 98 95 90 85 82 78 75 72 69

8 67 60 54 48 44 40 38 35 33 32

9 50 35 24 19 16 13 11 10 9 8

10 100 97 93 90 86 82 77 74 70 66

11 58 56 49 43 39 36 33 30 28 26

12 85 60 54 48 44 40 37 34 32 29

VI. CONCLUSIONS

Nearest neighbor retrieval is a common operation in a
wide variety of real applications such as in query by image
and video content, in genomic analysis or in object
recognition. The increasing amount of stored data
necessitates the development of techniques and algorithms
that are capable of performing efficiently and accurately
nearest neighbor searches.

In this paper, we propose a cluster-based method
(CLUREP) for similarity search for the purpose of 1NN
classification. Part of this method can be utilized in
conjunction with a multidimensional indexing structure.
However, we examine the effectiveness of this approach in
sequential searching because the dimensionality reduction
technique that is applied on data may not be adequate for
providing a multidimensional indexing the means for
outperforming sequential scanning.

The main conclusion is that, when compared to
sequential searching, CLUREP is at least 5 times faster in
the majority of the datasets considered in the experiments.
In addition to that, CLUREP substantially improves the
performance of a similar approach (CLUREP_all) by a
factor of 2. A secondary conclusion is that when the number
of generated clusters increases, the performance of
CLUREP improves. However, experiments show that the
rate of improvement “slows down” after the generation of
approximately 8 to 12 clusters.

A more general conclusion is that, as the dimensionality
of the transformed data increases, the classification error
rate decreases with the cost of an increasing percentage of
the volume of data that need to be searched. In the data
mining context, one can trade-off between accuracy and
efficiency with respect to the requirements of the
application under consideration.

REFERENCES

[1] C. C. Aggarwal, “On the Effects of Dimensionality Reduction

on High Dimensional Similarity Search,” Proc. ACM Symp.

Principles of Database Systems (PODS 01), ACM Press, May

2001, pp. 256-266, doi.acm.org/10.1145/375551.383213.

[2] R. Agrawal, C. Faloutsos and A. Swami, “Efficient Similarity

Search in Sequence Databases,” Proc. 4th Int. Conf.

Foundations of Data Organization and Algorithms (FODO

93), Springer, Oct. 1993, pp. 69-84.

[3] K. P. Bennett, U. Fayyad and D. Geiger, “Density-based

Indexing for Approximate Nearest-neighbor Queries,” Proc.

5th Int΄l Conf. Knowledge Discovery and Data Mining

(SIGKDD 99), ACM, Aug. 1999, pp. 233-243,

doi.acm.org/10.1145/312129.312236.

[4] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft, “When

is Nearest Neighbor Meaningful?,” 7th Int΄l Conf. Database

Theory (ICDT 99), Springer Verlag, Jan. 1999, pp. 217-235.

[5] V. Castelli, A. Thomasian and C. S. Li, “CSVD: Clustering

and Singular Value Decomposition for Approximate

Similarity Search in High-dimensional Spaces,” IEEE

Transactions Knowledge Data Engineering, vol. 15(3), 2003,

pp. 671–685, doi:10.1109/TKDE.2003.1198398.

[6] K. Chakrabarti and S. Mehrotra, “Local Dimensionality

Reduction: A New Approach to Indexing High Dimensional

Spaces,” Proc. 26th Int΄l Conf. Very Large Databases (VLDB

00), Morgan Kaufmann, Sep. 2000, pp. 89-100.

[7] K. Chan and A. W. Fu, “Efficient Time Series Matching by

Wavelets,” Proc. 15th Int΄l. Conf. Data Engineering (ICDE

99), IEEE Computer Society, Mar. 1999, pp. 126-133.

[8] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal and A. El

Abbadi, “Approximate Nearest Neighbor Searching in

Multimedia Databases,” Proc. 17th IEEE Int'l Conf. Data

Engineering (ICDE 01), IEEE Computer Society, Apr. 2001,

pp. 503-511.

[9] V. Gaede and O. Gunther, “Mutidimensional Access

Methods,” ACM Computing Surveys, vol. 30(2), Jun. 1998,

pp. 170–231.

[10] A. Hinneburg, C. C. Aggarwal and D. A. Keim, “What is the

Nearest Neighbor in High Dimensional Spaces?,” Proc. 26th

Int΄l Conf. Very Large Databases (VLDB 00), Morgan

Kaufmann, Sep. 2000, pp. 506–515.

[11] G. R. Hjaltason and H. Samet, “Index-driven Similarity

Search in Metric Spaces,” ACM Transactions on Database

Systems, vol. 28(4), Dec. 2003, pp. 517–580,

doi.acm.org/10.1145/958942.958948.

[12] http://www.cs.ucr.edu/~eamonn/time_series_data/

[13] E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra,

“Dimensionality Reduction for Fast Similarity Search in

Large Time Series Databases,” Knowledge and Information

Systems, vol. 3(3), Aug. 2001, pp. 263-286,

doi:10.1007/PL00011669.

[14] F. Korn, H. Jagadish and C. Faloutsos, “Efficiently

Supporting Ad Hoc Queries in Large Datasets of Time

Sequences,” Proc. Int΄l Conf. Management of Data (SIGMOD

97), ACM Press, May 1997, pp. 289-300,

doi.acm.org/10.1145/253260.253332.

[15] C. Li, H. Garcia-Molina and G. Wiederhold, “Clustering for

Approximate Similarity Search in High-dimensional Spaces,”

IEEE Trans. Knowl. Data Eng., vol. 14(4), Jul./Aug. 2002,

pp. 792–808, doi:10.1109/TKDE.2002.1019214.

[16] J. MacQueen, “Some Methods for Classification and Analysis

of Multivariate Observations,” Proc. Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Univ.

of Calif. Press, vol. 1, 1967, pp. 281-297.

[17] M. Patella and P. Ciaccia, “Approximate Similarity Search: A

Multi-faceted Problem,” Journal of Discrete Algorithms, vol.

7(1), Mar. 2009, pp. 36-48 doi:10.1016/j.jda.2008.09.014.

[18] S. Ramaswamy and K. Rose, “Adaptive Cluster-distance

Bounding for Nearest Neighbour Search in Image Databases,”

Proc. ICIP, 6, 2007, pp. 381-384,

[19] A. Thomasian, Y. Li and L. Zhang, “Exact k-NN Queries on

Clustered SVD Datasets,” Information Processing Letters,

vol. 94(6), Jun. 2005, pp. 247-252,

doi:10.1016/j.ipl.2005.03.003.

[20] A. Thomasian, and L. Zhang, “Persistent Clustered Main

Memory Index for Accelerating k-NN Queries on High

Dimensional Datasets,” Multimedia Tools Applications, vol.

38(2), June 2008, pp. 253-270, doi:10.1007/s11042-007-

0179-7.

[21] D. A. White and R. Jain, “Similarity indexing with the SS-

Tree,” Proc. 12th Int΄l Conf. Data Engineering (ICDE 96),

Mar. 1996, IEEE, pp. 516-523,

doi:10.1109/ICDE.1996.492202.

