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Abstract–In this paper, we present a new method that 

accelerates similarity search implemented via one-nearest 

neighbor on time series data. The main idea is to identify the 

most similar time series to a given query without necessarily 

searching over the whole database. Our method is based on 

partitioning the search space by applying the K-means 

algorithm on the data. Then, similarity search is performed 

hierarchically starting from the cluster that lies most closely to 

the query. This procedure aims at reaching the most similar 

series without searching all clusters. In this work, we propose 

to reduce the intrinsically high dimensionality of time series 

prior to clustering by applying a well known dimensionality 

reduction technique, namely, the  Piecewise Aggregate 

Approximation, for its simplicity and efficiency. Experiments 

are conducted on twelve real-world and synthetic datasets 

covering a wide range of applications. 

Keywords-similarity search; clustering; time series; data 

mining 

I. INTRODUCTION 

Similarity search is an important task in many 
applications, such as content-based retrieval, exploratory 
data analysis, predictive modeling and data mining. The 
basic problem can be stated as follows: given a set of 
objects, find the most similar ones to a given query object. 
For example, one may be interested in retrieving the most 
similar images to a given one from a database or in 
identifying those stocks whose prices evolved similarly to a 
specific one over the last year. Retrieval of these objects is 
based on “similarity” rather than on “exactness”. 

The main research in this area is focused on the 
development of methods that can efficiently support 
similarity search, since common applications involve very 
large amounts of data.   

One major class of methods for efficient similarity 
search comprises of multidimensional indexing schemes 
that can be used for fast access of these points [9]. Although 
the indexing approach can be extremely fast, its efficiency 
degrades rapidly with the increase of the dimensionality. 
There are several research results that demonstrate the 
negative effects of increasing dimensionality on index 
structures [10]. For instance, Beyer et al. [4] show that 
nearest neighbor search can become unstable with as few as 
10-20 dimensions. White & Jain [21] report that as the 
dimensionality increases from 5 to 10, the performance of a 
nearest neighbor search degrades by a factor of 12 for 

various multidimensional index structures.  This 
phenomenon, known as dimensionality curse, implies that a 
simple sequential scan usually performs better at higher 
dimensionalities than index structures.  

One solution for achieving efficient similarity search in 
the presence of high dimensionality is to condense the data 
by applying a dimensionality reduction technique (i.e. 
Principal Component Analysis). The idea is to map the 
original data into a lower dimension domain without losing 
substantial amount of information. The approach of 
dimensionality reduction can be very helpful because it 
reduces the storage requirements, it potentially allows an 
efficient implementation of multidimensional indexing 
structures and it improves the quality of similarity search 
results.  

In this paper, we examine the case of similarity search 
implemented via one-nearest neighbor (1-NN) on time 
series data. This type of data differs from other domains in 
that they have an intrinsically high dimensionality, which 
necessitates the application of a dimensionality reduction 
technique. The method of 1-NN requires searching a 
database for the most similar object (time series) to a given 
one. The main drawback of this method is that we have to 
compare a query object to every object in a database in 
order to find the most similar one. This approach becomes 
prohibitive, when the reference database is extremely large. 
The efficiency of this method is affected by the number of 
objects in the database, as well as, by the dimensionality of 
these objects, since a distance measure is calculated for 
measuring the closeness of the corresponding objects.  

The objective of our work is to provide a method for the 
purpose of improving the efficiency of 1-NN similarity 
search in time series datasets without sacrificing the quality 
of the results. We introduce an approach that integrates the 
dimensionality reduction of data and subsequently the 
reduction of the search space.  We call this approach 
CLUREP (Clustering on Representation).  

In particular, the original data is represented in a 
compressed form by applying any dimensionality reduction 
technique.  There is a wealth of relevant techniques 
proposed in the literature, such as Discrete Fourier 
Transform [2], Discrete Wavelet Transform [7], Singular 
Value Decomposition [14] or Piecewise Aggregate 
Approximation [13]. Then, the transformed dataset is 
partitioned by applying a clustering algorithm.  The 
similarity search proceeds at each cluster sequentially 



according to specific criteria. Our approach aims at reaching 
the nearest neighbor without searching the whole database.  

Although, a multidimensional index structure can be 
built on each one of the clusters in order to efficiently apply 
similarity search, we investigate the effectiveness of our 
approach with respect to sequential searching. The reason is 
that the required dimensionality reduction in order to ensure 
the desired quality performance may require a 
multidimensional indexing that is not essentially faster than 
sequential scanning.  

In Section II, we provide related work, whereas our 
approach is analytically presented in Section III. The 
experimentation framework is described in Section IV and 
the corresponding results are presented in Section V. 
Finally, conclusions are provided in Section VI. 

II.  RELATED WORK 

Various methods have been proposed for speeding up 
nearest neighbor searches that are based on indexing [11]. 
However, the dimensionality curse affects seriously the 
performance of high-dimensional similarity search. One 
solution for achieving scalable performance is to reduce the 
dimensionality of data. Aggarwal [1] provides a model of 
the effects of this reduction on high dimensional problems 
for the purpose of improving the quality of similarity search.   

Most of the research is focused on reducing the 
dimensionality of data in order to apply an effective 
multidimensional indexing structure and/or reducing the 
number of objects to be compared against the query. Patella 
and Ciaccia [17] provide a classification schema for 
approaches to approximate similarity search.  

Chakrabarti and Mehrotra [6] propose to discover 
correlated clusters in the dataset and reduce the 
corresponding dimensionalities by applying Principal 
Component Analysis to each one of them. They also provide 
a technique to individually index these clusters that 
guarantees no false positive or false negative answers to be 
returned to the user. This approach applies local 
dimensionality reduction assuming that there are subsets of 
locally correlated data.  

Bennett et al. [3] propose to apply an EM (Expectation 
Maximization) algorithm to cluster data using a mixture-of-
Gaussians pdf (probability density function) model. Each 
cluster corresponds to a specific Gaussian pdf, which is 
parameterized with a mean vector and a covariance matrix.  
This approach (DBIN) utilizes the derived density model of 
the data in order to introduce an indexing scheme that 
produces a mapping between a query point and an ordering 
on the clustered index values.  

Ferhatosmanoglou et al. [8] introduce a new technique 
based on clustering that reduces the size of the dataset and 
the dimensionality of each data object. The authors propose 
to transform the original d-dimensional data by using the 
Karhunen-Loève Transformation (KLT). After 
dimensionality reduction, a modified K-means clustering 
algorithm is applied on the low dimensional domain. The 
procedure of approximate nearest neighbor searching starts 
with the transformation of the query object, the retention of 
the first r dimensions, and the identification of the cluster 

this query falls into. Then, similarity search is performed in 

this cluster and the k  nearest neighbors are retrieved.  

Another cluster-based approach is presented in [5]. The 
authors propose an indexing method called Clustering with 
Singular Value Decomposition (CSVD) that efficiently 
supports approximate nearest neighbor queries. The 
construction of a CSVD index involves three steps: 
partitioning the dataset using a clustering technique (i.e., K-
means), applying SVD separately on each cluster to reduce 
the dimensionality of data, and constructing an index for the 
transformed space. Thomasian et al. [19] propose an exact 
algorithm to process k-NN queries on dimensionality 
reduced clusters produced by CSVD, whereas a general 
framework for building a persistent main memory index on 
each cluster is provided in [20].  

  Li et al. [15] provide a clustering and indexing 
paradigm (called CLINDEX) for high dimensional spaces. 
CLINDEX partitions the dataset into clusters. Each cluster 
is represented by a separate file and all files are sequentially 
stored on disk. The authors introduce a new technique for 
constructing clusters that is based on grids. Once the 
clusters are obtained, an indexing structure is built on them. 
A different clustering and indexing paradigm for exact 
nearest neighbor search in image databases is provided in 
[18].  

III.  THE PROPOSED APPROACH 

The proposed method consists of three phases that are 
analytically described hereafter. 

The first phase involves the application of a 
dimensionality reduction technique on the original data for 
two reasons. First, we expect to improve the quality of the 
similarity search results. Second, the subsequent clustering 
analysis becomes more effective, since the problem of high 
dimensional data is alleviated. Virtually, any technique can 
be selected at this step; however, this choice is application 
dependent, since different techniques may result into 
representations of higher quality in different applications. In 
this work we propose to apply the Piecewise Aggregate 
Approximation (PAA) because it is simple, fast to calculate, 
and it has been shown empirically that it is as efficient as 
other more sophisticated approaches. In particular, PAA 
segments a time series into a number of sections and records 
the corresponding means. The series of these means is the 
representation of the time series. 

The second phase involves the application of a 
clustering algorithm on the transformed data, namely, K-
means [16], which is one of the most researched and 
popular clustering methods. The output of this phase 

consists of the centroids (
i

c ) of the generated clusters along 

with their radii (
i

r ). The radius of a cluster is defined as the 

distance of the farthest object of a cluster to the 
corresponding centroid. In addition to these, we record the 
cluster membership of each object and its distance from the 
corresponding centroid. The objects are reordered in the 
dataset with respect to their cluster membership and the 
distance from their cluster’s centroid. 



Note that the two previous phases constitute the pre-
processing that is executed off-line.  

The third phase involves the procedure of similarity 
search in the derived clusters. Given a query object ( q ), the 

required steps to be followed are provided below: 
1. Calculate the distances of the PAA transformed query 

object to the centroids of the clusters ( ( )i
d q,c ).  

2. Set the cluster with the closest centroid as the current 

cluster. Let denote this cluster 
( i )

C , where 1i = .  

3. Calculate the distance of the query object to each one 
of the other clusters. This distance is defined to be the 
difference between the distance of the query to the centroid 
and the corresponding radius. If the query object lies within 
the cluster, then this distance is set equal to zero (1).  

 ( ) ( ){ }0    2 3= − =
( i )

i i
d q,C max , d q,c r , i , ,...,k  (1) 

4. The clusters are sorted in an increasing order with 
respect to their distances from the query object. Ties may be 
broken according to the distances of the centroids of the 

clusters to the query object. Let denote these clusters 
( i )

C , 

where 2 3=i , ,...,k  with k  corresponding to the cluster that 

is farthest from the query.  
5. Search the current cluster sequentially in order to 

locate the current nearest neighbor ( nn ) to the query object. 

Record the corresponding distance ( )d q,nn .    

6. If the distance of the query object to the current 
nearest neighbor is less than or equal to the distance of the 
query object to the next cluster (2), then the actual nearest 
neighbor has been found and the algorithm stops. 

 ( )
( )( )1+

≤
i

d q,nn d q,C  (2) 

Otherwise, let 1= +i i  and move to the next step. 

7. Calculate the difference between the distance of the 

query object to the centroid of 
( i )

C  and the distance of the 

query object to the current nearest neighbor. If this 

difference is positive, then search the objects of 
( i )

C that 

their distance to 
i

c  is greater than this difference. 

Otherwise, search the whole cluster. After this, the current 

nearest neighbor (nn) has been changed. If =i k , the 

algorithm stops. In this step, we determine a lower bound on 
the distances of objects from the centroid in order to reduce 
the search space in the current cluster (3). 

 ( ) ( ){ }0 , = −
i

lower _ bound max d q,c d q,nn  (3) 

8. Go to step 6. 
An example of this procedure is presented in Fig. 1-3. 

We consider 17 time series of 2 dimensions (two time 
instances). In this example, the clusters are non-overlapping 
and the query object lies outside of the clusters; however, 
the proposed method works for any placement of clusters 
and queries. 

The above algorithm assumes that the Euclidean 
distance is utilized. Nevertheless, this method holds for any 
distance that constitutes a metric, especially with respect to 

the property of the triangle inequality. The proof of the 
correctness of this method is omitted due to lack of space. 
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Figure 1. Determination of the primary cluster and location of the current 

nearest neighbor 
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Figure 2. Determination of the next closest cluster, check of whether a 

better nearest neighbor may exist (in this case, it exists) and determination 

of the corresponding search space 
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Figure 3. Location of a better nearest neighbor, determination of the next 

closest cluster and check of whether a better nearest neighbor may exist (in 

this case, it does not exist and the algorithm ends without searching the 

next cluster) 
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IV. FRAMEWORK OF EXPERIMENTATION 

In order to evaluate the performance of the proposed 
approach, we perform one-nearest neighbor classification 
(1-NN) and validate it with the leave-one-out procedure. We 
record the classification accuracy and the percentage of the 
volume of data that is searched. The corresponding average 
values are calculated over the total number of series in the 
dataset.  

The experiments are conducted on 12 real world and 
synthetic datasets, which are available upon request in [12]. 
The number of classes ranges from 2 to 50, whereas the 
length of time series ranges from 60 to 427. They are 
utilized extensively as benchmark datasets for testing 
classification algorithms and for this reason, they are 
separated in training and testing sets. In this work, we merge 
these two sets in order to increase the size of each dataset. 
All datasets consist of normalized time series, that is, time 
series of mean equal to zero and standard deviation equal to 
one. All series are labeled according to the class they belong 
to. The names of these datasets along with their 
identification number (ID) are the following: (1) 50words, 
(2) CBF, (3) ECG200, (4) FaceAll, (5) Gun Point, (6) 
OSULeaf, (7) SwedishLeaf, (8) SyntheticControl, (9) Trace, 
(10) TwoPatterns, (11) Wafer, (12) Yoga.       

Regarding PAA implementation, the number of sections 
is set equal to multiples of 2, ranging from 4 to 16. We 
compare our method (CLUREP) with the complete 
sequential search and the method that does not restrict the 
search space of the visited clusters. We call this method 
CLUREP_all. The algorithm of K-means is applied with a 
number of clusters that ranges from 2 to 20 in increments of 
2. Intuitively, the more the number of clusters, the less the 
fraction of dataset that need to be searched. Finally, all the 
necessary codes and experiments are developed in 
MATLAB. 

V.  RESULTS 

In the first part of the results, we provide the 
classification error rates and the percentage of the volume of 
data that is searched for a constant number of clusters 

( 10=k ). The objective is to examine their relation under 

varying dimensionalities.  
Table I presents the classification error rates for varying 

dimensionalities when the number of the generated clusters 
is set equal to 10. The main observation is that the lowest 
error rate is achieved at high dimensionalities.  In 8 out of 
12 datasets, the required dimensionality is the highest (16). 
The lowest dimensionality is 8 and it is observed in only 
one dataset. The minimum error rate ranges from 0.00% to 
35.75%.  

Table II presents the percentages of the volume of data 
that is searched when the number of the generated clusters is 
set equal to 10. In 8 out of 12 datasets, there is an increasing 
trend in the volume of data searched as the dimensionality 
increases. On the other hand, there are 4 datasets (ID: 5, 9, 
11, 12) where the corresponding volume of data remains 
fairly stable across the dimensionalities.  The minimum 
volume of data ranges from 12.5% to 19.2%. 

TABLE I. 1-NN CLASSIFICATION ERROR RATES (%) 

( 10=k ) 

 Dimensionality 

ID 4 6 8 10 12 14 16 

1 65.3 43.9 34.9 31.1 29.6 29.3 27.9 

2 10.5 0.4 0.0 0.1 0.0 0.0 0.0 

3 25.0 16.5 12.5 12.5 10.5 9.0 10.0 

4 59.8 31.7 24.0 13.4 10.0 9.6 7.4 

5 17.5 10.5 13.5 7.5 8.0 6.0 5.5 

6 72.0 53.9 44.1 40.3 36.7 36.7 35.8 

7 63.4 41.4 27.5 23.7 18.8 18.8 17.3 

8 14.7 9.0 5.0 1.2 1.2 1.2 0.7 

9 20.0 20.0 22.0 22.5 15.0 20.5 18.5 

10 45.4 16.8 8.0 3.5 2.8 2.3 0.8 

11 0.4 0.4 0.2 0.2 0.2 0.1 0.2 

12 24.4 11.3 9.1 8.3 6.7 7.0 6.6 

 

TABLE II. PERCENTAGES OF THE VOLUME OF DATA THAT 

IS SEARCHED  ( 10=k ) 

 Dimensionality 

ID 4 6 8 10 12 14 16 

1 16.4 21.0 25.6 30.1 33.8 36.7 40.0 

2 14.2 15.6 16.3 17.3 18.8 18.3 20.4 

3 17.7 20.9 21.9 22.9 24.3 25.8 25.2 

4 17.3 26.2 31.8 28.8 28.9 29.5 31.0 

5 16.7 16.0 17.5 16.7 17.6 17.1 17.4 

6 19.2 28.8 33.6 43.9 48.5 53.2 58.3 

7 19.1 23.7 29.6 32.0 35.3 35.7 39.0 

8 16.8 19.6 21.3 21.5 25.0 24.6 28.4 

9 14.1 13.4 13.5 12.5 13.7 13.8 13.0 

10 19.2 19.1 25.1 32.5 37.4 40.9 46.2 

11 14.5 15.2 14.9 15.2 15.5 15.3 15.5 

12 15.3 15.1 16.4 16.6 16.9 16.8 17.1 

 
The key observation that arises by combining both tables 

(Table I and Table II) is that as the dimensionality increases, 
the classification error rate decreases with the cost of an 
increasing percentage of the volume of data that need to be 
searched. We also observe that when the dimensionality is 
set equal to 16, the corresponding volume of data ranges 
from 13% to 58.3%. In addition to that, the three datasets 
with the “worst” error rates also present poor results in the 
volume of data that needs to be searched (ID: 1, 6, 7). 
Similar observations can be made, if we generate fewer or 
more clusters than 10. For brevity, results for other values of 

k  are not presented.  

In the second part of the results, we provide the 
percentage of the volume of data that is searched for varying 
number of clusters. The dimensionality is set equal to that 
number for which the lowest error rate is achieved (Table I). 
In general, this number varies across different datasets. 

In this set of experiments, we provide results for two 
methods, namely the CLUREP and the CLUREP_all. Note 
that the latter differs from the first in that it searches the 
whole cluster once visited. By definition, CLUREP is 
expected to provide better results than CLUREP_all. 



However, one of our objectives is to experimentally 
quantify the expected improvement.  

In Table III and Table IV, the performance of CLUREP 
and CLUREP_all is presented with respect to the percentage 
of volume of data that is searched. The first observation is 

that when the number of the generated clusters ( k ) 

increases, the corresponding volume decreases. In general, 

the rate of decrease is higher when the value of k  increases 

from 2 to 10 than when k  increases from 10 to 20. The 

second observation is that both methods perform better than 
sequential scan. However, CLUREP performs consistently 
better than CLUREP_all across datasets for any number of 
clusters. 

More specifically, when the number of clusters is equal 
to 20, CLUREP requires searching a fraction of the original 
datasets that ranges from 7.2% to 45.3% whereas the 
corresponding fraction of CLUREP_all ranges from 8.0% to 
69.9%. On the average across datasets, CLUREP requires 
searching the 19.6% of the original data volume, whereas 
the corresponding percentage for CLUREP_all is 39.5%.  

  

TABLE III. PERCENTAGES OF THE VOLUME OF DATA THAT 
IS SEARCHED (CLUREP) 

 Number of Clusters 

ID 2 4 6 8 10 12 14 16 18 20 

1 87 67 54 46 40 36 33 30 29 27 

2 58 35 25 19 16 14 12 10 10 9 

3 69 43 33 29 26 24 21 20 19 17 

4 67 48 39 34 31 28 26 25 24 22 

5 61 36 27 21 17 16 14 12 11 11 

6 86 75 68 63 59 55 52 50 48 45 

7 78 59 50 44 39 36 33 31 29 28 

8 59 42 36 32 29 26 24 23 22 20 

9 51 31 21 17 14 12 10 9 8 7 

10 86 68 58 51 46 42 39 36 33 31 

11 56 34 24 19 15 13 11 10 9 8 

12 61 34 25 20 17 15 13 12 11 10 

 

TABLE IV. PERCENTAGES OF THE VOLUME OF DATA THAT 
IS SEARCHED (CLUREP_all) 

 Number of Clusters 

ID 2 4 6 8 10 12 14 16 18 20 

1 99 94 87 79 73 68 63 60 56 54 

2 80 55 44 34 27 23 19 17 15 13 

3 97 75 61 50 45 39 35 31 29 27 

4 99 94 89 84 81 78 74 71 68 65 

5 83 60 43 30 26 22 18 17 15 14 

6 97 94 91 87 84 81 78 75 72 70 

7 100 98 95 90 85 82 78 75 72 69 

8 67 60 54 48 44 40 38 35 33 32 

9 50 35 24 19 16 13 11 10 9 8 

10 100 97 93 90 86 82 77 74 70 66 

11 58 56 49 43 39 36 33 30 28 26 

12 85 60 54 48 44 40 37 34 32 29 

VI. CONCLUSIONS 

Nearest neighbor retrieval is a common operation in a 
wide variety of real applications such as in query by image 
and video content, in genomic analysis or in object 
recognition. The increasing amount of stored data 
necessitates the development of techniques and algorithms 
that are capable of performing efficiently and accurately 
nearest neighbor searches. 

In this paper, we propose a cluster-based method 
(CLUREP) for similarity search for the purpose of 1NN 
classification. Part of this method can be utilized in 
conjunction with a multidimensional indexing structure. 
However, we examine the effectiveness of this approach in 
sequential searching because the dimensionality reduction 
technique that is applied on data may not be adequate for 
providing a multidimensional indexing the means for 
outperforming sequential scanning.  

The main conclusion is that, when compared to 
sequential searching, CLUREP is at least 5 times faster in 
the majority of the datasets considered in the experiments. 
In addition to that, CLUREP substantially improves the 
performance of a similar approach (CLUREP_all) by a 
factor of 2. A secondary conclusion is that when the number 
of generated clusters increases, the performance of 
CLUREP improves. However, experiments show that the 
rate of improvement “slows down” after the generation of 
approximately 8 to 12 clusters. 

A more general conclusion is that, as the dimensionality 
of the transformed data increases, the classification error 
rate decreases with the cost of an increasing percentage of 
the volume of data that need to be searched. In the data 
mining context, one can trade-off between accuracy and 
efficiency with respect to the requirements of the 
application under consideration. 
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