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Abstract 

 

Time series data generation has exploded in almost 

every domain such as in business, industry, or 

medicine. The demand for analyzing efficiently the 

huge amount of this information necessitates the 

application of a representation on the purpose of 

reducing the intrinsically high dimensionality of time 

series. In this paper we introduce D-PAA, a new 

representation that can be considered as a variation of 

Piecewise Aggregate Approximation (PAA). D-PAA 

segments a time series into a series of equal length 

sections and the corresponding mean and standard 

deviation are recorded for each one of them. The 

difference with PAA is that D-PAA takes into 

consideration not only the central tendency but also 

the dispersion present in each section. We evaluate our 

representation by applying 1-NN classification on 20 

widely utilized datasets in the literature. Experimental 

results indicate that the proposed representation 

performs better than other commonly applied 

representations in the majority of the datasets.  

 

 

1. Introduction 
 

Several procedures generate huge amounts of data 

in the form of time series in almost every domain, such 

as in business, industry, medicine or science. In 

addition to that, image or video data can be also 

considered as time series. The increasing need of 

analyzing efficiently the huge amount of this 

information led to the development of Data Mining 

techniques adjusted in a way that takes into 

consideration the temporal nature of data.  

The temporal aspect of data arises some special 

issues to be considered and/or imposes some 

restrictions in the corresponding applications. First, it 

is necessary to define a similarity measure between 

two time series and this issue is very important, since it 

involves a degree of subjectivity that might affect the 

final result. Second, it is necessary to apply a 

representation scheme on the time series data. Since 

the amount of data may range from a few megabytes to 

terabytes, an appropriate representation is necessary in 

order to reduce the intrinsically high dimensionality of 

time series. 

There is a large number of representations proposed 

in the literature that aim at reducing the dimensionality 

of a time series dataset, while retaining as much 

information as possible. As it is expected, there is no 

representation that can be considered as the most 

appropriate for all cases. The application under 

consideration, the data mining method and the specific 

characteristics of data play an important role in the 

selection of a representation scheme. In this paper, we 

introduce a new representation, named Dispersion-

based PAA (D-PAA), which can be considered as a 

variation of Piecewise Aggregate Approximation 

(PAA) [1]. A time series is segmented into a series of 

equal length sections and the corresponding mean and 

standard deviation are recorded for each one of them. 

The difference with PAA is that D-PAA takes into 

consideration not only the central tendency but also the 

dispersion present in each section. This additional 

information could improve the performance of 

dimensionality reduction in the context of time series 

similarity search. Extensive experiments on 20 widely 

utilized datasets are conducted in order to evaluate D-

PAA and compare it to PAA, as well as with other 

commonly applied representations in Time Series Data 

Mining applications.  

In Section 2 we provide a brief review on Time 

Series Data Mining and related work with respect to 

representations. In Section 3 we introduce the novel 

representation along with a distance measure. The 

experimental methodology is described in Section 4, 

whereas the corresponding results are presented and 

discussed in Section 5. Finally, conclusions and future 

work is provided in Section 6. 



 

2. Background 
 

2.1 Time Series Data Mining 
 

Time Series Data Mining (TSDM) is comprised by 

Data Mining methods adjusted in a way that they take 

into consideration the temporal nature of data. 

According to the research in this field, the main tasks 

of TSDM methods are: query by content, clustering, 

classification, novelty detection, motif discovery and 

rule discovery [2]. At the core of all these tasks lies the 

notion of similarity. Two time series can be considered 

similar when they exhibit similar shape or pattern. The 

presence of noise demands allowing imprecise matches 

among sequences. Consequently, it is necessary to 

define an appropriate similarity measure, since the 

notion of similarity involves a degree of subjectivity. A 

thorough discussion on similarity measures is provided 

in [3]. Another important issue that arises from the 

temporal nature of data is the intrinsic high 

dimensionality, which affects substantially the 

efficiency of data mining techniques. High 

dimensionality affects the calculation speed of 

similarity measure among series and, moreover, 

prohibits the construction of an efficient indexing 

structure. The idea is to reduce the dimensionality of 

the original data by representing it in a lower 

dimension, analyze it in this dimension and, finally, 

tune the results in order to obtain the same solution 

with the one that would have been derived, if the 

original data had been used in the analysis. A 

representation scheme is applied in order to reduce the 

dimensionality. However, this representation should 

guarantee that there will not be any false dismissals. 

This property, known as Lower Bounding Lemma, can 

be described as follows. Suppose that t1 and t2 are two 

time series that need to be investigated for similarity 

and R denotes a representation scheme. Given a 

distance function D between two time series, R should 

satisfy the following property in order to guarantee no 

false dismissals: 

1 2 1 2 , R(t    , tD( R( t ) )) D( t )≤  

This property states that the distance measure in the 

k-dimension feature space should lower bound the 

corresponding distance measure in the original space. 

Besides the Lower Bounding Lemma, it is important 

for the representation to lower bound the true distance 

as tightly as possible. That is, the distance measure in 

the k-dimension feature space should be as close as 

possible to the corresponding distance measure in the 

original space in order to reduce the number of false 

hits and consequently the post-processing time. 

Apparently, similarity measures and representation 

schemes are interrelated to each other and play an 

important role in efficiently applying any time series 

data mining task. 

 

2.2 Related Work 
 

There is a wealth of representation schemes 

proposed in the literature, the detailed description of 

which is beyond the scope of this paper. A hierarchy of 

various time series representations is presented in a 

tree diagram in [4]. We will briefly refer to the most 

popular representations within the Data Mining 

context.  

One of the first representations proposed was the 

Discrete Fourier Transform (DFT) [5]. DFT transforms 

a time series from the time domain into the frequency 

domain by expressing the time series as a linear 

combination of trigonometric functions. Another 

suggested representation is Discrete Wavelet 

Transform (DWT), which transforms a time series into 

the time/frequency domain by decomposing it into a 

series of wavelet basis functions [6]. Singular Value 

Decomposition (SVD) [7] performs a global 

transformation by rotating the axes of the entire dataset 

and represents the time series as a linear combination 

of the most important “principal components”.  

Another approach that is called Piecewise Linear 

Approximation (PLA), approximates a time series by a 

sequence of linear segments [8]. 

The most closely related representation to the one 

proposed in this paper is Piecewise Aggregate 

Approximation (PAA). PAA is a dimensionality 

reduction technique that was proposed independently 

by Keogh et al. [1] and, Yi and Faloutsos [9].  This 

technique segments a time series of length n into k 

consecutive sections of equal-width and calculates the 

corresponding mean for each one. The series of these 

means is the new representation of the original data. 

PAA is simple, fast to calculate and it has been shown 

empirically that it is as efficient as other approaches. 

Moreover, it can handle time series of different 

lengths. Another similar approach [10] uses two 

additional values, besides the mean value, for 

representing a segment of a time series, namely, the 

corresponding minimum and maximum values. These 

values are mapped to an alphabet to produce a 

symbolic representation. This approach is an extension 

to SAX representation [4] and aims at improving the 

representation of financial time series data.  

A different approach in representation that utilizes 

the dispersion of a time series is introduced by 

Nanopoulos et al. [11]. The authors proposed the 

extraction of global statistical features from a time 

series, which, in conjunction with a multi-layer 



perceptron neural network, can be utilized for time 

series classification.  In their work, a time series 

1 2 n
X x ,x , ,x= �  of length n is represented by a feature 

vector of length 8. The first 4 features are the mean 

value, the standard deviation, the skewness and the 

kurtosis. The next 4 features are extracted by 

calculating the same statistical measures on the 

transformed time series 1 2 n D
X x ,x , ,x

−
′ ′ ′ ′= � , where: 

    1
t t D t

x ( x x ), t n D
+

′ = − ≤ ≤ −  (1) 

and D is a user-defined parameter. Hereafter, this 

feature-based representation will be denoted as FB. 

 

3. The D-PAA Representation 
 

According to D-PAA, a time series of length n is 

segmented into k consecutive sections of equal-width 

and the corresponding mean and standard deviation are 

recorded for each one of them. The difference with 

PAA is that D-PAA takes into consideration not only 

the central tendency but also the dispersion present in 

each section. 

More formally, a time series 1 2 n
X x ,x , ,x= �  can 

be represented by a series 

1 1 2 2x, x, k x,kX ( x ,s ),( x ,s ), ,( x ,s )=� �  

where:  
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These statistical measures may also be referred as 

features. The quantity n/k in (2) and (3) expresses the 

number of points that each section consists of and it is 

assumed that it is an integer. Otherwise, an appropriate 

number of zeros can be added at the end of the original 

series prior to representation. As it is stated in [9], this 

modification does not affect query results. The 

dimensionality of the transformed time series is equal 

to 2·k, since for each of the k segments two values are 

recorded.   

In order to determine the distance between two time 

series in the feature space, a distance measure is 

needed. In this work, a weighted Euclidean distance is 

proposed, as follows. Suppose that there are two time 

series 1 2 n
X x ,x , ,x= �  and 1 2 n

Y y , y , , y= �  along 

with their representations  

1 1 2 2x, x, k x,k
X ( x ,s ),( x ,s ), ,( x ,s )=� �  

1 1 2 2y , y , k y ,k
Y ( y ,s ),( y ,s ), ,( y ,s )=� � . 

The distance between X� and Y� is defined in the 

following equation. 

 

2 2

1 1

1    

 0 w 1

k k

STD i i x,i y ,i
i i

D ( X ,Y ) w ( x y ) ( w ) ( s s ) ,
= =

= ⋅ − + − ⋅ −

≤ ≤

∑ ∑� �

  (4) 

where w is a user-specified parameter that assigns 

different weights to the differences of means and 

standard deviations. This parameter enables the user to 

assign relative importance to mean values and standard 

deviations, according to the specific application and/or 

data type under consideration. In the extreme case of w 

= 1, the D-PAA representation is equivalent to PAA, 

since only the mean values are taken into account. As 

w decreases, more weight is assigned to standard 

deviations. In the other extreme of w = 0, the D-PAA 

representation ignores the mean values. Note that the 

case of w = 0.5 does not imply that each feature has 

equal absolute influence on the distance function value 

[12]. One way of giving all features equal influence in 

characterizing overall dissimilarity between time series 

is to normalize the values of each feature prior to 

calculating the weighted distance and set w equal to 

0.5. However, this normalization incurs an extra 

computation cost, since it must be realized each time a 

new query arrives.   

It can be proved that the proposed distance lower-

bounds the Euclidean distance between X and Y, that 

is,  

STDD ( X ,Y ) D( X ,Y )≤� �  

In this paper, the proof is omitted due to limited 

space. 

By contrasting PAA with D-PAA, which is the most 

similar representation, an important observation that 

arises is that the first utilizes twice as many segments 

than the latter. D-PAA aims at describing each segment 

more thoroughly than PAA does, at the expense of 

describing fewer segments. Moreover, this fact implies 

that D-PAA representation can be of length that is a 

multiple of 2, since two measures are calculated for 

each segment, whereas there is no such restriction for 

PAA. 

On the other hand, the FB representation, which 

also takes into consideration the dispersion in data, has 

a constant length 8, since there are four statistical 

measures calculated for the values of the original time 

series and the transformed one.  

 



4. Framework of Experimentation  
 

4.1 Datasets 
 

The experiments were conducted on 20 real world 

and synthetic datasets, which are available upon 

request from [13]. Most of them have been used 

extensively in the TSDM literature, for the purpose of 

testing the performance of novel representation 

schemes and similarity measures with respect to 

specific Data Mining tasks and/or indexing. Since they 

have been utilized extensively as benchmark datasets 

for testing classification algorithms, they are separated 

in training and testing sets. All series are labeled 

according to the class they belong to. The number of 

classes ranges from 2 to 37, whereas the length of time 

series ranges from 60 to 637. All time series are 

normalized, that is, the mean is equal to zero and the 

standard deviation is equal to one. 

 

4.2 Method & Rival Representations 
 

In order to evaluate the performance of the 

proposed representation, we perform one-nearest 

neighbor classification and evaluate it by means of the 

classification error rate.  

First, we compare the performance of D-PAA and 

Piecewise Aggregate Approximation (PAA), since 

these two representations are closely related to each 

other. We also provide results of the feature-based 

approach (FB), which utilizes the standard deviation, 

as D-PAA does. In addition to these, we present results 

for two widely utilized representations, namely the 

Discrete Fourier Transform (DFT) and Singular Value 

Decomposition (SVD) along with Euclidean Distance 

(ED) and Dynamic Time Warping (DTW), which are 

applied on raw data. 

The above representations require determining 

specific parameters. First, the FB representation 

involves the parameter D (1) that defines the 

transformed series for which the statistical measures 

are computed (besides the original series). We 

conducted extensive experiments on the datasets 

described in the previous section for varying values of 

D.  In Figure 1, a summarization of results is presented 

as the average error rate of 1-NN classification of all 

datasets across the varying values of D. It is clear that 

the best average performance is achieved when D 

equals to 1, whereas for larger values there is a 

relatively stable performance.  
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 Figure 1. Average error rate for varying values of D 
 

Regarding D-PAA, there are two parameters that 

need to be determined. The first one is the weight w in 

the proposed distance function (4). The values tested in 

the experiments range from 0 to 1 in increments of 0.1.   

The second parameter is the number of sections (k) 

into which the original time series is segmented. We 

experimented with values of k from 2 to 8. Since the 

resulting dimensionalities range from 4 to 16 in 

increments of 2, we appropriately set the required 

parameters of the other rival representations (PAA, 

DFT and SVD) so that we achieve the same 

dimensionalities. 

Finally, DTW is realized as originally proposed by 

Berndt & Clifford [14]. 

   

5. Results 
 

Table 1 presents the minimum error rates and the 

corresponding dimensionalities (dim) of 1-NN 

classification, when PAA and D-PAA representations 

were applied on data. 

The main observation is that the D-PAA 

representation produces better results than PAA in the 

majority of datasets. In 15 out of 20 datasets, the 

improvement in error rate ranges from approximately 

0.1 to 20 units. In 3 out of 20 datasets PAA performs 

exactly the same with D-PAA, whereas in 2 datasets, 

PAA has an error rate that is lower by 0.4 and 2.7 

units. 

Regarding the dimensionalities, in which D-PAA 

and PAA achieve the minimum error rates, there is not 

any dominant pattern across datasets (Table 1). 

However, it is worth noting that there are 6 out of 20 

datasets, where D-PAA produced better results than 

PAA with fewer dimensions.  

Regarding the weight (w) assigned to means and 

standard deviations (5), the first observation is that 

different values of w may result into equal 

classification error rates (Table 1). The second 

observation is that, in 10 out of 20 datasets, the 

minimum error rate is achieved, when more weight is 

assigned in standard deviations (w < 0.5). Only in 4 

datasets the corresponding rate is better, when more 



weight is assigned to means (w > 0.5), whereas in the 

remaining 6 datasets, the minimum error rate is 

observed for values of w that lie in both areas. 

 

Table 1. 1-NN classification minimum error rates (%) 

Dataset PAA dim D-PAA dim w 

Adiac 51.7 14 40.2 14 0.1 

50words 33.6 12 31.4 16 0.5 

CBF 3.1 10 0.1 6 0.1, 0.2 

ECG200 11.0 12 8.0 8 0.2, 0.3 

FaceAll 32.2 16 25.0 14 0.7 

FaceFour 18.2 16 13.6 12 0.1, 0.2, 0.3, 0.9 

Fish 28.0 14 25.7 12 0.3 

GunPoint 8.0 6 6.0 14 0.1, 0.2 

Lighting2 18.0 8 11.5 6 0.3 

Lighting7 27.4 16 27.4 14 0.2 – 0.5 

OSULeaf 46.7 16 47.1 14 0.1 

SwedishLeaf 20.5 14 12.5 14 0.2 

Control 1.0 12 3.7 16 0.2, 0.3, 0.5, 0.6 

Trace 24.0 4 4.0 12 0.1, 0.3 

TwoPatterns 6.5 16 5.4 16 0.7 

Wafer 0.5 8 0.4 14 0.7 

Yoga 17.3 12 16.7 16 0.2 

Beef 26.7 6 26.7 12 0.7 – 1.0 

Coffee 3.6 14 0.0 16 0.1 – 0.7 

OliveOil 13.3 6 13.3 10 0.0 - 0.2 & 1.0 

* Gray areas indicate the representation, which provides the 

lowest error rate. 

  

Table 2 presents the minimum error rates recorded 

in 1-NN classification, when several representations 

were applied. The main observation is that D-PAA and 

DTW produce the minimum error rate in the majority 

of the datasets.  

When D-PAA is compared to other representations, 

it improves the error rate in 11 datasets, performes 

exactly the same in 3 datasets and worse in 6 datasets. 

When it is compared with the next “best” 

representation, the improvement ranges from 0.1 to 7 

units, whereas, the deterioration ranges from 0.1 to 

28.1 units. On the other hand, all other representations 

perform better only in much fewer cases. The SVD 

representation performs better than all the other 

representations in three datasets, whereas FB provides 

better results only in two datasets. 

Compared to Euclidean distance (ED), D-PAA 

performs considerably better in 19 out of 20 datasets. 

On the other hand, the performances of D-PAA and 

DTW seem to be comparable to each other. D-PAA 

improves error rate in 9 datasets, performs exactly the 

same in 2 datasets and worse in 9 datasets. The 

improvement ranges from 0.2 to 15 units, whereas, the 

deterioration ranges from 0.3 to 9 units. 

 
Table 2. 1-NN classification minimum error rates (%) 

Dataset ED DTW SVD DFT FB PAA D-PAA 

Adiac 38.9 39.6 39.1 43.7 46.6 51.7 40.2 

50words 36.9 31.0 34.3 33.9 69.2 33.6 31.4 

CBF 14.8 0.3 4.9 3.3 16.6 3.1 0.1 

ECG200 12.0 23.0 12.0 11.0 23.0 11.0 8.0 

FaceAll 28.6 19.2 31.9 27.3 40.4 32.2 25.0 

FaceFour 21.6 17.0 20.5 17.1 37.5 18.2 13.6 

Fish 21.7 16.7 21.1 22.9 39.4 28.0 25.7 

GunPoint 8.7 9.3 8.0 8.7 22.0 8.0 6.0 

Lighting2 24.6 13.1 18.0 19.7 34.4 18.0 11.5 

Lighting7 42.5 27.4 32.9 28.8 57.5 27.4 27.4 

OSULeaf 47.9 40.9 46.3 48.4 19.0 46.7 47.1 

SwedishLeaf 21.1 21.0 17.4 17.8 18.7 20.5 12.5 

Control 12.0 0.7 1.0 1.0 13.3 1.0 3.7 

Trace 24.0 0.0 25.0 27.0 11.0 24.0 4.0 

TwoPatterns 9.3 0.0 5.7 5.5 29.1 6.5 5.4 

Wafer 0.5 2.0 0.5 0.4 0.3 0.5 0.4 

Yoga 17.0 16.4 17.2 17.4 21.5 17.3 16.7 

Beef 33.3 36.7 33.3 33.3 26.7 26.7 26.7 

Coffee 0.0 0.0 0.0 0.0 3.6 3.6 0.0 

OliveOil 13.3 16.7 10.0 16.7 33.3 13.3 13.3 

* Gray areas indicate the representation, which provides the 

lowest error rate. 

 

6. Conclusion 
 

In this paper, we introduce a novel time series 

representation, named D-PAA, along with a distance 

measure that lower bounds the Euclidean distance. 

The first conclusion is that D-PAA, when compared 

to the most similar representation PAA, performs 

considerably better in the majority of the datasets 

without necessarily sacrificing the required 

dimensionality. Moreover, experiments indicate that 

local dispersion present in a time series possesses a 

further discriminating power in conjunction with the 

corresponding central tendency. 

A second conclusion is that D-PAA performed 

better than other representations in the majority of the 

datasets, with respect to classification accuracy. 

Finally, the performance of D-PAA is comparable 

to DTW, which constitutes a state of the art approach 

in measuring similarity among time series. In fact, 

there are datasets where D-PAA outperforms DTW. 

An expected conclusion that can be drawn from the 

experiments of the previous section is that there is no 

representation scheme that outperforms all the others in 



every dataset. This conclusion refers mainly to their 

capability of capturing the most essential features of a 

time series, that is, to minimize the loss of important 

information inherent in a time series, while reducing 

dimensionality. Future work will include providing 

tighter lower bounds on the Euclidean distance and 

further investigating the weight of means and standard 

deviations on the purpose of providing a distance 

measure that is free of parameters.  
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