
INTRODUCING A CHANGE-RESISTANT FRAMEWORK FOR
THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING

APPLICATIONS

Georgios Voulalas, Georgios Evangelidis
Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki, Greece

voulalas@uom.gr, gevan@uom.gr

Keywords: Model-driven Development, Meta-Models, Evolving Business Applications, Application Generators,
Application Deployment Platforms, Reflectional Programming

Abstract: Software development is an R&D intensive activity, dominated by human creativity and diseconomies of
scale. Current efforts focus on design patterns, reusable components and forward-engineering mechanisms
as the right next stage in cutting the Gordian knot of software. Model-driven development improves
productivity by introducing formal models that can be understood by computers. Through these models the
problems of portability, interoperability, maintenance, and documentation are also successfully addressed.
However, the problem of evolving requirements, which is more prevalent within the context of business
applications, additionally calls for efficient mechanisms that ensure consistency between models and code,
and enable seamless and rapid accommodation of changes, without interrupting severely the operation of the
deployed application. This paper introduces a framework that supports rapid development and deployment
of evolving web-based applications, based on an integrated database schema. The proposed framework can
be seen as an extension of the Model Driven Architecture targeting a specific family of applications.

1 INTRODUCTION

Information systems are one of the most effective
ways for the enterprises to deal with challenges of
today's dynamic, competitive environment. The
enterprise may be a commercial business, a
government agency or an academic institution. A
vast majority of these information systems are long-
lived, multi-step applications that support mission-
critical business processes spanning multiple
enterprise applications, corporate departments, and
business partners.

Why have these process-driven applications
become so prevalent? There are certainly many
reasons but the most apparent ones are (Smith &
Fingar, 2002):
� Today's economic challenges have forced

enterprises to look for new efficiencies by
automating processes untouched by their existing
enterprise systems. Packaged enterprise
applications such as ERP systems manage only
typical processes such as material resource
planning and financial reporting.

� The rigidity of packaged applications (ERP,
CRM, etc.) nullifies what many firms regard as
their competitive advantage, i.e., their unique
business processes.

� Processes are embedded in ERP and other
monolithic systems. Embedding processes in
software is a bad idea, since they cannot be
easily changed, combined with others, or
integrated for collaboration.

� Business processes extending behind the firewall
and over the Internet have created new
opportunities for companies to achieve channel
efficiencies by creating new business processes
and extending existing ones to customers, trading
partners and suppliers.

� The emergence of the Application Service
Provision model in the late '90s has created new
prospects in setting enterprise collaboration
infrastructures (e.g., e-marketplaces). New
business models have arisen, like the e-Business
Service Provision model, which introduces an
intermediate player that delivers business
development services through dynamically

adaptive software solutions for inter-
organizational process automation &
improvement.
The response to these challenges is similar:

companies are looking for technology solutions to
improve enterprise processes, leverage existing
infrastructure and create new ways to compete. The
fact that they can obtain powerful computational
resources and reliable, high-performance network
infrastructures at low cost enables them to focus
solely on the development of efficient and
sophisticated software solutions.

Still, software development is an area in which
we are struggling with a number of major problems.
The most important problems are (Kleppe &
Warmer & Bast, 2003):

The Productivity, Documentation, and
Maintenance Problem. The software development
process includes a number of phases: (a)
Conceptualization and requirements elicitation and
gathering, (b) Analysis and functional description,
(c) Architectural specification and design, (d)
Implementation, (e) Testing, and, (f) Deployment.
Whether we use an incremental and iterative
process, or the traditional waterfall process,
documents and diagrams are produced during the
first three phases. The connection between those
artefacts and the code fades away as implementation
progresses. Changes widen the gap, since they are
usually done at the code level only, due to time
restrictions. The idea of Extreme Programming (XP)
has rapidly become popular, since it is built upon the
fact that the code is the driving force of software
development and thus the phases that should
accumulate the major effort are coding and testing.
However, having just code and tests makes
maintenance of a software system very difficult.
Practically speaking, analysis and design artefacts
are required, but to be really productive they should
not be just static, paper representations. They have
to stay in high cohesion with the code throughout the
software lifecycle, they should elevate technologists
above the lower level complexities that are imposed
by the available (with continuously increased
complexity) technologies, and they need to be
eligible as input in forward-engineering operations.

The Portability Problem. The software industry
has a special characteristic that makes it stand apart
from most other industries. Each year, and
sometimes even faster, new technologies are being
invented and becoming popular (e.g., Java, CORBA,
UML, XML, J2EE, .NET, and Web Services). The
new technologies offer concrete benefits for
companies and many of them cannot afford to lag

behind. As a consequence, the investments in
previous technologies lose value, and existing
systems have to be ported to the new technology in
order for interoperability (with systems built with
the new technology) restrictions to be completely
wiped out.

The Interoperability Problem. Software
systems rarely live isolated. Most systems need to
communicate with other, often legacy, systems.

The Evolution Problem. The management of
evolution in information systems is a dominant
requirement. This is even stronger in business
applications, due to the dynamic nature of business
domains. In (Roddick & Al-Jadir & Bertossi et al.,
2000) the following factors that drive information
system evolution are listed:
“A change in the universe of discourse”: The

application world is continually evolving. A
viable application system should accommodate
these changes.

“A change to the interpretation of facts about the
universe of discourse and the manner in which
the task is realized in a system”: People are not
able to precisely express the desired functionality
of a large-scale application system. Only
experience from using the system will enable
them to properly formulate the needs and
requirements.

“Changes in the form of updates to effect upgrades
to the functionality or scope of a system”: People
do not know in advance all the desired
functionality of a large-scale application system.
Only experience from using the system will
enable them to realize and express all needs and
requirements.

“Changes in the form of updates to effect efficiency
improvements”. For example, the restructuring of
database elements in order for faster information
retrieval to be achieved.
In order for evolution to be handled efficiently

the following objectives should be met:
� changes should be seamlessly incorporated

without the need of restructuring the existing
application,

� analysis and design artefacts should be updated
in order for changes to be reflected,

� the operation of the deployed application should
not be interrupted, or at least interruption should
minimized, and

� access to old business objects within their right
context should be supported, i.e., at any time an
old business object should be able to be easily
retrieved and examined through the specific
version of the application that produced and

manipulated it, in order for user to be able to
trace back to former business data.
This paper introduces a new framework for the

development and deployment of web-based business
applications. In Section 2 we introduce a
composition framework that singles out four
essential constituents for every business application.
In Section 3, we present the Model Driven
Architecture (MDA) and the modern practices
brought out by Microsoft. In Section 4, we discuss
the areas of the MDA that will take advantage of the
proposed framework. In section 5, the framework is
introduced. The last section provides a conclusive
summary of the paper and identifies our future
research plan.

2 DEFINING THE PUZZLE

The four coordinates that drive software production
and evolution within an enterprise, a business
network or even a marketplace are the following:
� Flow of Events (workflow): Every business

application incorporates a workflow model that
indicates the flow of activities & information,
how involved roles interact and the conditions
mastering the flow. When applications are
developed with generic development platforms
(e.g. J2EE, .NET etc), there are several software
engineering techniques to capture & design such
flows (e.g. activity diagrams), but during
implementation the workflow model gets
embedded in the code.

� Object Processing: Every process incorporates
business objects that are created, routed,
processed and archived within its activities.
These objects transfer, among the involved
actors, the information that is necessary for the
execution of the process. With generic
development platforms, there is enough
flexibility to implement components managing
any structured information.

� Enterprise Modelling: Besides workflows and
data processing logic, every business application
incorporates mechanisms for Enterprise
Modelling, organizational relationships
establishment and role assignment services. It
should be noted that Enterprise Modelling often
indicates the optimum manner that applications
should be utilized within an organization. In
typical applications developed with generic
development platforms, Enterprise Modelling is
limited to user administration, authentication &
authorization services, but the development

environment itself provides the opportunity to
develop models as complex as one wishes.

� Integration: Integration with third-party
information systems, either workflow or ERP
systems, custom applications or embedded
systems (e.g. applications embedded in
manufacturing equipment), is also essential for
process automation. Here, a combination of
XML standards, WEB Services and object-
oriented techniques for mastering the complexity
of integration requirements is very essential.
Unfortunately, the majority of application
development environments consider system
integration as simple data import & export, and
usually such implementations allow for limited
interoperability.
Those four coordinates will help us to define the

core model of our proposed framework in Section 5.

3 MDA & MICROSOFT
SOFTWARE FACTORIES

MDA (Kleppe & Warmer & Bast, 2003; Miller &
Mukerji, 2001; Miller & Mukerji, 2003) is a
framework for software development defined by the
OMG. The MDA development lifecycle is not very
different from the traditional lifecycle; they both
involve the same phases. One of the major
differences has to do with the nature of the artefacts
that are produced during the development process.
The artefacts are models that can be understood and
processed by computers. The following three models
are at the heart of the MDA.

Platform Independent Model (PIM). This
model is the first to be defined and is a model with a
high level of abstraction that is independent of any
implementation technology. Within a PIM, the
system is modelled from the aspect of how it best
supports the business requirements.

Platform Specific Model (PSM). In the next
step, the PIM is transformed into one or more PSMs.
A PSM specifies the system (or part of the system)
in terms of the implementation details defined by
one specific implementation technology.

Code. The final step in the development is the
transformation of each PSM to code. Because a PSM
fits its technology rather closely, this transformation
is relatively straightforward.

For many specifications, PIM and PSMs are
defined in UML, making OMG's standard modelling
language a foundation of the MDA.

In contrast to traditional development, MDA
transformations are always executed by tools. Many
tools are able to transform a PSM into code; there is
nothing new to that. What’s innovative in MDA is
that the transformation from PIM to PSM is
automated as well (Figure 1).

Figure 1 Models, transformations & bridges in the MDA
development process

Let us now clarify how MDA responds to the

challenges presented in the previous section.
Productivity, Documentation and

Maintenance. In MDA the focus for a developer
shifts to the development of a PIM. The PSMs that
are needed are produced automatically, and code is
in turn generated automatically from the PSMs.
Developers can shift focus from code to PIM, thus
paying more attention to eliciting requirements and
resolving the business problems. This results in
systems that fit much better with the needs of the
end users, and are developed in less time. The PIM
fulfils the function of high-level documentation that
is needed for any software system. The PIM is not
frozen after writing, since changes made to the
system will eventually be made by changing the
PIM and regenerating the PSMs and the code. In the
MDA approach the documentation at a high level of
abstraction will naturally be available; this makes
maintenance easier.

Portability. Portability is achieved by focusing
on the development of PIMs that are by definition
platform independent.

Interoperability. When PSMs are targeted at
different platforms, they cannot directly talk to each
other. Concepts from one platform should be
transformed into concepts used in another platform.
MDA addresses this problem by generating not only
the PSMs, but the necessary bridges between them
as well.

Evolution Management. The PIM is a live
artefact that depicts precisely the system throughout
its lifecycle, since all changes made to the system
are eventually made by changing the PIM and
regenerating the PSMs and the code.

On the other side, Microsoft has recently
introduced Domain Specific Languages (DSLs) with
its own modelling environment, Visual Studio 2005
Team System (VSTS). DSLs (Greenfield, 2004) are
programming languages dedicated to specific
problems and consisting of their own built-in
abstractions and notations. DSLs underpin
Microsoft's concept of software factories, that are
planned modules of tools, content and processes
used to build applications in specific domains like
healthcare, human resources or enterprise resource
planning. Microsoft has chosen the term “software
factory” in order to emphasize upon reusable assets
and tooling for supporting them. The software
industry welcomed the new approach, however
many are still cautious, mainly due to the
displacement of the UML and the fact that since
software is an R&D and not a production activity, it
is difficult to apply manufacturing principles.
Undoubtedly, narrowing the domain enables to more
precisely define the features of the target family and
facilitates the definition of languages, patterns,
frameworks and tools that automate the development
of its members. One early backer for the DSL and
Software Factories approach is Borland.

4 RETHINKING MDA

MDA is a complete framework that enables
organizations to respond efficiently to the
augmentative requirements of modern software
projects.

The current status of the framework is mainly
shaped by the availability of support tools and
therefore presents the following deficiencies (Kleppe
& Warmer & Bast, 2003):
� Though OMG has defined the mapping standards

between the three models (the PIM, the PSM and
the code), it has yet to define how to implement
the models. This task has been left to the
software development tool vendors currently
supporting the MDA initiative. Although many
of these vendors have implemented parts of the
MDA, few have done so in its entirety. In order
for users to fully benefit from MDA, vendors
need to implement all of MDA, i.e., implement
all three coordinates, and ensure that their tools
are standards-based and business model-driven.

� Tools should automatically transform higher-
level platform-independent models into lower-
level platform-specific models and generate code
automatically. Current tools are not sophisticated
enough to fully provide the transformations from

PIM to PSM and from PSM to code. The
developers need to manually improve the
transformed PSM and / or code models.

� The extent to which portability can be achieved
depends on the automated transformation tools
that are available. For popular platforms, a large
number of tools will undoubtedly be available.
For less popular platforms, the user may have to
use add-on tools that support transformation
definitions, or write proprietary transformation
definitions.

� Cross-platform interoperability can be realized
by tools that generate both the PSMs and the
bridges between them. Existing tools are not so
advanced to cope with this requisite.
Undoubtedly, it is a matter of time before

software vendors overcome the above-mentioned
limitations. However, there exist a number of areas
that can be improved. More specifically, MDA fails
to:
� Ensure consistency between the produced

code and the preceding models. Even if
vendors succeed in building transformation tools
that fully generate the required code based on the
specifications modelled in the PSMs, one cannot
guarantee that developers will not interfere
manually with the generated code. Consequently,
the consistency between the three cornerstone
models is unstable.

� Cope efficiently with the problem of evolving
requirements. In MDA, every new change
requires code to be regenerated and recompiled,
and the final application to be redeployed.
What’s more, the arbitrary realization of changes
may create gaps between the three models. Last
but not least, MDA can provide access to data
that have been manipulated by previous versions
of the application, only by maintaining different
installations of the applications, approach that is
a neither practical, nor elegant.
Those limitations are inherent to the MDA’s

comprehensiveness, since it is very difficult to
elaborate on a more sophisticated solution while in
parallel coping with all types of applications.

5 THE PROPOSED
FRAMEWORK

Motivated by the above-mentioned findings related
to the MDA paradigm, its core principles, and the
latest practices adopted by Microsoft and Borland,
we introduce an innovative extension for the
realization of a development and deployment
framework targeted to web-based business
applications. The proposed framework (depicted in
Figure 2) will be structured on the basis of a
universal database schema (meta-model).

Figure 2 Structure of the Proposed Development and Deployment Framework

Development will be supported by components
(modelling tools) that will elicit functional
specifications from users and transform them in
formal definitions, and by data structures (part of the
meta-model) that will be utilized for the storage of
the definitions.

Deployment will be supported by generic
components (meta-components) that will be
dynamically configured at run-time according to the
functional specifications provided during
development, and by application-independent data
structures (part of the meta-model) that will hold all
application-specific data.

The following two statements outline the
philosophy of the proposed solution:
� No code (SQL, Java, C++, JSP, ASP, etc.) will

be generated for the produced applications; just
run-time instances of generic components will be
created.

� There will always exist one deployed
application, independently of the actual number
of running applications. Application-specific
behaviour will be rendered by this universal
application according to the functional
definitions that are maintained in the database. In
other words, functional and presentation
specifications are shifted from the middle and
front tier respectively to the database tier (taking
as basis a 3-tier approach that is the most
outstanding architectural paradigm). Response to
business changes is instant, simply through the
manipulation of data tuples.

More specifically, the proposed framework includes
the models that are described below.

5.1 Domain Model

The Domain Model is a business-oriented model
that maps to the MDA Platform Independent Model
and covers the coordinates presented in Section 2. It
defines the structure of the data that the application
is working on (objects, attributes, and associations),
along with their behavioural aspect (methods) and
business rules. It is mainly structured on the basis of
the Object-Oriented paradigm, augmented with the
extensions introduced by the Object Constraint
Language (OMG, 2003; Coronato & Cinquegrani &
Giuseppe, 2002) for the description of constraints
that govern the modelled objects, plus elements from
an acceptable business rules classification scheme
(Business Rules Forum 2004 Practitioners' Panel,
2005; Butleris & Kapocius, 2002; Herbst, 2002),
with the Ross method (Business Rules Forum 2004

Practitioners' Panel, 2005) being the prevalent.
Therefore, its main entities are:
� Business objects. Business objects are created,

routed, processed and archived within the
different business activities. They carry the
information that is necessary for the execution of
a process. Example: Travel Application,
Accommodation Proposal, Air Ticket, and
Traveller.

� Status: Each business object passes through
different statuses during its lifecycle. Example:
Un-submitted, Submitted, and Rejected (for the
travel application).

� Attributes: Define the static aspect (information)
of a business object. Example: Cost (numeric),
Notes (alphanumeric), and Check-out date (for
the Accommodation Proposal).

� Methods: Define the dynamic aspect (behaviour)
of a business object. Example: Submit, Approve,
and Reject (for the Travel Application).

� Association: Represents structural relationship
between business objects that exist for some
duration (in contrast with transient links that, for
example, exist only for the duration of an
operation). Example: A Travel Application is
associated with one or more Accommodation
Proposals.

� Argument: A parameter required for the
execution of method. Example: Submission notes
and priority are arguments of the ‘submit’
method.

� Term: A noun or noun phrase with an agreed
upon definition. A term is essentially an object or
attribute that is included in a business rule.
Example: Air Ticket, fare.

� Fact: A complete statement connecting terms
(via verbs or prepositions) into sensible,
business-relevant observations. A fact is
essentially a business-significant association.
Example: A Travel Application is associated with
at least one Traveller.

� Computation Rule: Provides an algorithm for
arriving at the value of a term. A computation
rule is essentially a business-significant method.
Example: The total cost of a Travel Application
is computed as the air tickets fare plus the
accommodation cost.

� Pre-condition: A condition that must hold before
executing an operation. It typically evaluates one
or more attributes. Example: The ‘submit’
method can only be executed upon those travel
applications that are un-submitted.

� Post-condition: Defines either the return value of
a method or modifications on the value of

component attributes that must be performed.
Example: The status of a Travel Application
changes to ‘submitted’ after the execution of the
‘submit’ method.

� Guard: Force the execution of operations
anytime triggers (i.e. all attributes involved in the
guard condition) get a specific state. Example:
Each time an Accommodation Proposal gets
approved by the travellers (i.e., its status
changes to ‘approved’) the status of the
associated Travel Application is updated.

� Invariant Constraint: A condition that must
always hold as long as the system operates. It
typically constraints the value of an attribute.
Example: The value of the attribute
‘numberOfPassengers’ should always be greater
than zero.
Besides business rules and data processing logic,

every business application incorporates mechanisms
for enterprise modelling, business relationships
establishment, role assignment, and personnel
administration. Thus, the Domain Model embraces
an additional component, named Enterprise Model,
which covers inter-organizational and intra-
organizational aspects. The main entities of this sub-
model are:
� Business Role: In each process, one or more

business roles are identified. Example:
Corporation, Travel Agency.

� Enterprise: The organization that participates in
the process by undertaking a specific business
role. In the case of business applications limited
to the enterprise scope, only one organization
exists. In the case of business networks or e-
marketplaces multiple organizations exist.
Example: Corporation X, Travel Agency Y.

� Business Units: Departments, branches or
affiliated companies of an enterprise. Example:
The accounting department of corporation X

� Partnership: Cooperation relationships
established between enterprises (applies only to
business networks and e-marketplaces).
Example: The Partnership that has been
established between corporation X and travel
agency Y within the CTP (supposing that an e-
marketplace that enables the cooperation of
travel agencies with corporate customers exists).

� Partner: An enterprise that participates in a
partnership by playing an undertaking business
role. Example: The travel agency Y in the
previous partnership.

� Employee: A person employed by an enterprise.
Employees usually belong to business units.
Example: Mr. X.

� Role: Represents the responsible actor for the
fulfilment of a set of activities (methods
implemented by business objects). An activity
can be optionally associated with more than one
role. Example: Traveller, Travel Arranger,
Travel Agent, and Travel Administrator.

� User: An employee that has access to the
business application. A user is associated with
one or more roles. Example: Mr. X that access
the business application as traveller.
Although the entities included in the Enterprise

model can be implemented as instances of the meta-
entities of the core Domain Model, we have selected
to handle them separately for reasons of
performance. Thus, instead of dynamically
configuring the meta-entities to render the desired
functionality, we utilize standard entities. This
differentiation stems from the fact that the
mechanisms implemented by the Enterprise Model
can be specified in advance, as they are common
among all business applications.

Specifications included in the Domain Model
will be stored in a database. The database schema
should embrace the proposed structure and include
all identified entities (Business Object, Method,
Rule, etc.).

As for modelling language, UML including OCL
will be extensively utilized within the Domain
Model. However there is need for a specialization of
UML for modelling inter- and intra-organizational
aspects, which means that a new UML profile
focused on the Enterprise Model should be defined.

5.2 Application Model

The Application Model maps to the MDA Platform
Specific Model and focuses on the targeted platform.
The Application Model contains the following three
sub-models:
� Presentation Model: It pictures the overall

structure of the presentation elements. Display
pages are defined for every business object based
on the identified attributes. Input pages that elicit
the information required for the execution of the
methods are defined based on the specified
methods and arguments. Pages are interrelated
according to the identified object associations. In
order for the model to include every presentation
detail, the domain model should include
exhaustive information, such as the conditions
under which attributes are hidden / displayed, the
controls that should be used for the selection of
values (radio-button or selection list), formatting
properties for currencies and dates, etc.

� Business Logic Model: Suppose that we select
the Java 2 Standard Edition (J2SE) as target
platform. All objects and terms will be mapped
to the ‘java.lang.Object’ class. Alphanumeric
attributes will be mapped to ‘java.lang.String’
class. A method (or piece of a method) that
returns part of an alphanumeric will be mapped
to the ‘substring’ method that is implemented by
the ‘java.lang.String’ class. Similarly, a
computation rule will be mapped to a set of
primitive methods supported by the target
platform that will be invoked in specific order in
order for the rule to be propagated. In general, all
elements included in the Domain Model will be
mapped to fundamental elements of the target
programming language. Note that the mapping of
the elements of the Enterprise Model to the
elements of the target language will be much
more direct, since the Enterprise Model is not a
meta-model (i.e. included entities are
predefined).

� Data Model: Based on the identified objects,
their attributes and the way they associated, a
data model is structured. Only persistent objects
(i.e. objects that need to “survive”) are mapped
to database structures. The discrimination
between persistent and transient objects is
captured in the domain model. Note that since
the part of the data model that covers the data
needs of the Enterprise Model has predefined
structure, only the mapping to the selected
database system specs (data types, etc.) has to be
conducted for it.

5.3 Operation Model

The Operation model consists of the following
building blocks.
� Presentation Model Instance: Run-time

instances of generic presentation elements (e.g.,
Java Server Pages or Active Server Pages that
obey to specific Cascading Style Sheets).

� Business Logic Model Instance: Run-time
instances of the generic functional components
(meta-objects) that render the behaviour of an
application-specific object. The exact process is
the following: application specifications are
retrieved from the database at run-time and the
generic components are configured dynamically
in order to expose the specified functionality by
utilizing reflectional adaptation techniques
(reflection is the process by which a program can
modify its own behaviour and is supported by
many object-oriented programming languages).

For each different technology utilized at
Application Level (J2SE, .NET, J2EE), different
components should exist. Practically speaking,
every programming language that supports
reflectional behaviour can be utilized.

� Data Model Instance: The part of the unified
database schema that will hold the realizations of
the business object instances (e.g., realizations of
the travel applications, orders, products, etc.).
The database schema will be independent of the
applications, i.e., its structure will be fixed. In
(Yannakoudakis & Tsionos & Kapetis, 1999) a
framework for dynamically evolving database
environments is introduced. Similar to our
approach it is based upon a database structure
that is independent of applications. Changes to
the data structure of the application result to
record modifications, instead of changing the
schema itself. In comparison to our approach the
specific research effort focuses only to the data
side of applications.
Note that the three sub-models included in the

Application Model are not transformed to code at
operation level, except for the part of the Business
Logic Model that originates from the Enterprise
Model. Instead, the definitions that they include are
coupled with the generic components (presentation
elements, functional components, and database) in
order for the required functionality to be rendered.

5.4 Discussion

Note that the three sub-models included in the
Application Model are not transformed to code at
operation level, except for the part of the Business
Logic Model that originates from the Enterprise
Model. Instead, the definitions that they include are
coupled with the generic components (presentation
elements, functional components, and database) in
order for the required functionality to be rendered.

The proposed framework responds to the
challenges identified in Section 4 as follows:
� Consistency between the produced code and

the preceding models. Since no code is
generated and the middle model is generated
automatically in its entirety, all changes are
realized through the Domain Model.

� Efficient handling of evolving requirements.
Having shifted the functional and presentation
specifications from the middle and front tier
respectively to the database tier we can easily
achieve evolution management by applying
standard data versioning techniques. In case the
static (attributes) or dynamic (methods)

definition of a business object is modified this
results in modifications to the underlying data
instances, i.e., we can deal with changes at
deployment time without recompiling and
redeploying the application. What’s more we
can, at anytime, refer to a previous version of an
application and examine old data in their real
context by retrieving the corresponding data
instances from the database, without the need of
maintaining multiple installations.
What’s more, in full compliance with the MDA

principles, the framework enhances productivity by
incorporating application generation features
through the elicitation of high-level, formal
definitions that are automatically transformed to
low-level technical specifications, and supports
portability through the Application Model that can
be theoretically supported by any programming
language that supports reflection and by any
database system.

6 CONCLUSIONS AND FURTHER
RESEARCH

In this paper we examine the development and
deployment of web-based business applications
through a different perspective: our main aim is to
elaborate on and limit the side-effects that are
induced by the continuously changing requirements,
while conforming to the principles introduced by the
MDA paradigm and retaining its undisputable
advantages, i.e., improved productivity, efficient
documentation, effective maintenance, production,
portability, and interoperability. For this reason, we
suggest transferring the functional specifications of
the application from the components (code) to the
database and utilizing them at run-time in order to
configure generic components. The development
and deployment platform will be based upon a
unified database schema. The generic components
will be built with the use of a programming language
that supports reflection. These meta-components
will be configured at run-time in order to render the
application-specific functionality. Dynamic
functional specifications will let end-users deal with
changes at deployment time without recompiling
and redeploying the application. What’s more, with
simple data versioning techniques that enable the
retrieval of previous specifications, the operation of
previous versions of an application will be feasible
through the same, unique installation. Last but not
least, since all changes pass through the Domain

Model, the consistency between the three
cornerstone models will not be compromised.

It should be clear that our goal is to present an
interesting perspective that could somehow extend
the MDA framework and not replace it. Besides, one
can easily identify a set of drawbacks in comparison
with the MDA framework:
� The proposed framework has narrower scope,

since it focuses on web-based business
applications.

� MDA handles efficiently integration with other
systems, while the current formulation of the
proposed framework supplants the specific
coordinate.

� Indisputably, a solution that is build upon a
meta-model and extensively utilizes reflection
requires increased computational resources
compared to a traditional one.
The first constraint is enforced by the fact that is

practically infeasible to create a generator that can
produce any application (Guerrieri, 1994; Wu &
Jen-Her & Hsia et al., 2003) and is in compliance
with the latest developments as pictured by the
initiatives undertaken by major software players.
This is the main reason for considering and
evaluating this framework as an extension of the
MDA that targets on a specific group of
applications. The third drawback is minor, since the
availability of powerful computational resources
encourages the elaboration of sophisticated
solutions. Working towards a ‘lighter’ solution, we
will consider adopting partial behavioural reflection
(Tanter & Noye & Caromel et al., 2003). We also
plan to address the issue of interoperability.

Future research will focus on:
� Extending the framework with a coordinate

that will cover the need for cross-platform
interoperability. This coordinate will be
structured on the basis of the Web Services
paradigm.

� Elaborating on a new UML Profile for the
modelling of business entities.

� Implementing the required infrastructure.
After finalizing the structure of the framework
and identifying all main entities, we have to
elaborate on the database schema. Performance
issues should be seriously taken into account in
the selection of the adopted data-modelling
paradigm (relational, object-relational, object).
The next step will be the specification and
implementation of the meta-components along
with the components that will support the
development process. The derived prototype will

verify the viability and efficiency of the
proposed solution.

REFERENCES

Business Rules Forum 2004 Practitioners' Panel. The DOs
and DON'Ts of Business Rules.
http://www.brcommunity.com/b230.php?zoom_highli
ght=panelists

Butleris, R., Kapocius, K., 2002. The Business Rules
Repository for Information Systems Design. ADBIS
Research Communications: 64-77

Coronato, A., Cinquegrani, M., Giuseppe, D.P., 2002.
Adding Business Rules and Constraints in Component
Based Applications. CoopIS/DOA/ODBASE: 948-964

Greenfield, J., 2004. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools. http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnbda/html/softfact3.asp

Guerrieri, E., 1994. Case Study: Digital's Application
Generator. IEEE Software, 11(5) 95-96

Herbst, H., 1996. Business Rules in Systems Analysis: a
Meta-Model and Repository System. Inf. Syst. 21(2)
147-166

Kleppe, A., Warmer, S., Bast, W., 2003. MDA Explained.
The Model Driven Architecture: Practice and Promise
(Chapter One). Addison-Wesley.

Miller, J., Mukerji, J., 2001. Model Driven Architecture –
A Technical Perspective. http://www.omg.org/cgi-
bin/doc?ormsc/2001-07-01

Miller, J., Mukerji, J., 2003. Technical Guide to Model
Driven Architecture: The MDA Guide v1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01

OMG, 2003. Object Constraint Language Specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

Roddick, J.F., Al-Jadir, L., Bertossi, L.E., Dumas, M.,
Estrella, F., Gregersen, H., Hornsby, K., Lufter, J.,
Mandreoli, F., Mannisto, T., Mayol, E., Wedemeijer,
L., 2000. Evolution and Change in Data Management -
Issues and Directions. SIGMOD Record 29(1) 21-25

Smith, H., Fingar, P. Business Process Management: The
Third Wave – Business Process Management Systems.
Meghan-Kiffer Press (2002)

Tanter, E., Noye, J., Caromel, D., Cointe, P., 2003. Partial
behavioral reflection: spatial and temporal selection of
reification. OOPSLA 27-46

Wu, Jen-Her, Hsia, Tse-Chih, Chang, I-Chia, Tsai, Sun-
Jen, 2003. Application Generator: A Framework and
Methodology for IS Construction. 36th Annual Hawaii
International Conference on System Sciences (IEEE -
HICSS) 263-272

Yannakoudakis, E. J., Tsionos, C. X., Kapetis, C. A.,
1999. A new framework for dynamically evolving
database environments. Journal of Documentation,
55(2) 144-158

