
WIPE – Pilot Testing and Comparative Evaluation

Vassilios Efopoulos
Department of Applied

Informatics, 
University of Macedonia,

efop@uom.gr

Georgios Evangelidis 
Department of Applied

Informatics, 
University of Macedonia, 

gevan@uom.gr

Vassilios Dagdilelis 
Department of Educational

and Social Policy,
University of Macedonia,

dagdil@uom.gr

Abstract

This paper discusses the pilot testing and evaluation
of a database-driven web-based programming environ-
ment  called  WIPE  (Web  Integrated  Programming
Environment). WIPE is a teaching tool for secondary
education students that are introduced to the principles
of programming. The programming environment was
used in secondary schools in Greece and the results of
its  evaluation  demonstrate  that  it  successfully  deals
with the difficulties novices meet.

1. Introduction

Programming constitutes a difficult learning process
([5],  [2]).  The term "difficult" is used to imply, that,
novice programmers usually cannot comprehend even
small  programs  or  provide  code  for  solving  simple
problems  [3]. In general, this is attributed to the fact
that programming requires novices to [4]: 
1) Devise  procedures  that  solve  generic  classes  of

problems  (this  is  the  essence  of  algorithmic
solutions), 

2) Adapt  these  procedures  in  an  abstract  solution
model (i.e., implement an algorithm), and 

3) Code them in a concrete way (use a programming
language).  
Moreover, a novice programmer has to understand

how  to  use  the  graphical  user  interface  of  the
programming environment in use.  

A great number of programming environments and
languages have been developed in order to introduce
novices to the principles of programming, like Thetis
[7], DrJava [1], BlueJ [8], JJ [9].

However,  most  of  these  environments  and
languages have been negatively criticized for being too
technocratic and for not adhering to the recent findings
in  pedagogy  and  didactics  [12],  despite  their
pedagogical nature. Thus, for example, in most cases

the  error  messages  produced  by  such  programming
environments  are  cryptic  for  the  novice  (non-
professional) programmer. 

WIPE was designed taking into  consideration  the
latest findings on the difficulties novice programmers
meet  and  the  proper  ways  to  address  them.  WIPE
constitutes  an  attempt  to  incorporate  the  experience
and  knowledge  that  has  been  accumulated  by  the
related  research  in  the  subject  of  teaching  of
programming.  WIPE  aims  at  introducing  secondary
education students to the principles of  programming.
The programming environment is attractive and easily
accessible  via  a  web  browser  and  the  programming
language used is simple, minimal and quite similar to
Pascal. The programming environment incorporates a
lot of features (GUI, multiple representations, step-by-
step  execution  of  source  and  assembly  code,  error
messages  in  natural  language)  that  aim  at  helping
novice programmers. WIPE is supported by a DBMS
and exploits the possibilities offered by a web-based
application.

In  Section  2,  we  present  the  design  principles
behind WIPE. The interested reader can find a more
detailed  discussion  in  [6].  Section  3  states  the
hypotheses we wanted to test and Section 4 describes
the data acquisition method we followed. In Section 5,
we present the results of the comparative evaluation of
WIPE and a  commercial  programming  environment.
We conclude in Section 6 with a general presentation
of the findings of the evaluation of WIPE.

2. Design Principles

The design of WIPE is characterized by simplicity
and  consistency.  WIPE  is  addressing  the  needs  of
novice programmers. A novice can easily learn to use
the  programming  environment.  This  objective  is
achieved thanks to an ergonomic and functional GUI,
without the need of installation (since it is accessible



via  the  web).  The  programming  language  that  is
incorporated  in  WIPE  can  be  seen  as  a  subset  of
Pascal;  it  is  very  simple  and  it  can  be  used  as  an
introductory programming language.

The  consistency  in  WIPE is  achieved  by  a  strict
definition  of  the  syntactically  correct  programming
constructs and their semantics. Thus, for example, the
syntax of I/O commands is identical for all data types
and each construct has unique syntax.

WIPE  does  not  incorporate  tools  for  automatic
generation  of  code  or  for  implementing  a  graphical
user interface. Such tools are usually oriented towards
advanced  programmers  and  application  developers.
The  approach  of  WIPE  helps  inexperienced  users
become  quickly  familiar  with  the  programming
environment and write  source code, without limiting
their imagination and expressiveness.

The  programming  language  of  WIPE  has  the
following features:
1) Web-based operation. The compiler operates via a

web browser. Moreover, students can follow all the
intermediate  stages  of  the  construction  of  a
program via a web browser, i.e.,  the compilation,
the  resulting  assembly  code,  the  intermediate
values of the virtual machine registers and program
variables.

2) Support of a symbolic language (Assembly). During
the  process  of  compilation  the  source  code  is
translated to an equivalent symbolic language code
(assembly  language).  The  symbolic  language
produced  by  the  WIPE  Compiler  is  a  pseudo-
assembly that is executed in a virtual machine with
two registers. 

3) Systematic  recording  of  students’  actions
(Recordability). The  actions  of  students
(compilations,  program  executions  with  the
associated input and output values) are stored in a
database and are accessible for  evaluation by the
teachers.

4) Comprehensible  error  messages.  The  error
messages generated by the WIPE Compiler are in
natural  language  and  are  suitable  for  assisting
novices debug their code.

3. Hypotheses

We decided to pilot-test WIPE and evaluate it in a
school setting in order to get feedback from students
and teachers and also get answers on some important
questions (hypotheses):
1) Attractiveness.  Does  the  programming  environ-

ment  as  a  whole  aid  the  learning  process?  Do
students easily adopt it? Are they interested in it?
Have they used it effectively? How do teachers and
students evaluate its various features? Do teachers

believe  that  it  is  a  useful  tool  for  teaching
programming? We consider that the provocation of
user  interest  is  a  very  important  factor  for  a
successful evaluation procedure and in general for
the adoption of new software.  Our hypothesis is
that  our  programming  environment  is  equipped
with  all  the  appropriate  features  that  make  it
attractive to students and teachers.

2) Error  handling.  Is  there  a  relation  between  the
usage  of  the  programming  environment  and  the
errors  novice  students  make  when  they  are
introduced to programming? Do students make less
or  more  errors  when  using  WIPE  compared  to
other  programming  environments?  Does  the
programming environment produce clear and easy
to  understand  error  messages?  We  claim  that
knowledge acquisition is faster and easier when the
programming  environment  aids  students  in
minimizing their errors.

3) Usability.  Are there certain characteristics of the
programming  environment  that  students  find
helpful and others that stand in their way? Is the
environment easy to use? Should some components
of the software be redesigned? Is there a need for
additional  features  that  are  missing?  It  has  been
shown  [10] that its indented users better evaluate
the  usability  of  a  programming  environment
through testing in every day conditions. During the
design  of  WIPE  we  followed  the  usability
guidelines of Nielsen [11]. Our goal was to help its
users  learn  to  use  and  operate  it  as  easily  as
possible.  Despite that, only thorough testing in a
school laboratory and the evaluation of the remarks
of  students  and  teachers  can  prove  whether  our
design is successful or not.

4. Data Acquisition

The results of the evaluation procedure were based
upon the following data:
1) Direct  observation  of  the  way  students  worked

during the courses and recording of the difficulties
they met in understanding the taught concepts and
in using the programming environment. 

2) Analysis of the successive versions of the student
programs that were recorded in the database via the
recordability  feature  of  the  programming
environment. That is, anytime a student compiled
or  ran  a  program  the  system  recorded  all  the
relevant information. 

3) Recording,  comparison  and  analysis  of  the
programs  that  were  written  by  students  that
participated in the comparative evaluation of WIPE
and  a  commercial  environment  used  in  Greek
schools  (Borland  Turbo  Pascal  is  the  standard



programming  environment  used  in  secondary
education in Greece).

4) Answers to the questionnaire of the pilot run by
the participating students.  That  questionnaire was
given after the completion of the test course.

5) Interviews with the teachers that were responsible
for the evaluation procedure.
The recording procedure resulted in the collection

of thousands lines of source code since every record in
the  database  was  the  source  code  of  a  compiled
program.  Of  course,  it  was  the  case  that  many
successive  programs  recorded  in  the  database  were
very  or  quite  similar.  This  is  because  students  were
compiling  very  often,  even  when  they  were  making
minor changes to the source code. The analysis of the
programs  and  the  identification  of  the  successive
versions  were  made  possible  via  the  usage  of  the
teacher’s tool.

It was quite easy to analyze the syntax errors that
were detected thanks to the mechanism for recording
the students’  actions.  The logic errors were detected
manually  by  examining  the  source  code  of  each
program.

The observation of the students while working with
WIPE  and  the  analysis  of  the  data  collected  in  the
database revealed that certain students used WIPE to
experiment  and  they  wrote  code  for  programs  not
included  in  the  suite  of  the  tutorial  exercises.  Also,
many students used WIPE via their home computers as
indicated  by  the  timestamps  recorded  for  their
compilations and program executions.

5. Comparative evaluation

The  comparative  evaluation  between  WIPE  and
Borland Pascal took place in November and December
of 2004. The participants were 28 students of the 11th

grade  of  the  6th Technical/Vocational  School  of
Thessaloniki that were divided into two groups of 14
individuals  each.  All  students  had  been  recently
(September 2004) introduced to programming with the
use  of  the  programming  environment  of  Borland
Pascal  for  Windows.  The students of  the first  group
attended a 4-hour seminar to become familiar to WIPE
and its  programming language.  The first  group used
WIPE (group A) whereas the second group used the
already familiar environment of Borland Pascal (group
B).

The  same  suite  of  programming  exercises  was
administered  to  each  group.  The  exercises  were
designed  to  be  as  simple  as  possible  and  included
trivial  programs.  They  required  fairly  short
programming solutions but also encouraged the use of
programming  constructs  like  conditional  statements,
loops, arrays and functions.

The  process  of  recording  successive  solutions  in
Borland  Pascal  was  achieved  by  following  the
convention of saving the current state of the program
before each compilation. Each version was assigned a
new serial number (program1.1, program1.2, etc.).

In  WIPE the  intermediate  results,  i.e.,  the  source
code for each successive compilation and the output of
each execution, are stored in a MySQL database, thus,
it was easy for us to collect the necessary information.

In the analysis of the source code there were two
major categories of errors: syntax and logic errors. The
results from the analysis of students’ errors are shown
in the tables below:

Table 1. Syntax errors per student

Syntax errors (per
student)

WIPE
(group A)

Borland Pascal
(group B)

Mean 9,79 17,21

Standard deviation 4,35 5,35

Number of students 14 14

Table 2. Logic errors per student

Logic errors
(per student)

WIPE
(group A)

Borland Pascal
(group B)

Mean 3,29 5,21

Standard deviation 1,38 2,08

Number of students 14 14

We observe that  the average number  of  errors in
WIPE is substantially lower than in Borland Pascal for
both syntax and logic errors.

The  distribution  of  error  frequencies  shown  in
Figure 1 and in Figure 2, are relatively smooth, if we
take into consideration the small number of the sample
(14  students).  We observe  that  for  both  syntax  and
logic errors the distributions for WIPE are obviously
different  from  the  corresponding  ones  for  Borland
Pascal and they reveal that students make more errors
with  Borland  Pascal  than  with  WIPE.  The  students
who  used  WIPE demonstrate  a  considerably  smaller
frequency of errors compared to the students who used
Borland  Pascal.  The  mean  of  syntax  errors  for  the
group  of  WIPE  students  was  9,79  with  a  standard
deviation of 4,35 while for the group of Borland Pascal
students the mean was 17,21 with a standard deviation
of 5,35.



Figure 1. Frequency of syntax errors

In  the case of  logic errors we had similar  results
with the WIPE group having 3,29 errors on average
with  a  standard  deviation  of  1,38  and  the  Borland
Pascal  group  having  5,21  errors  on  average  with  a
standard deviation of 2,08.

Figure 2. Frequency of logic errors

We decided to use statistical methods (hypotheses
tests) in order to compare the means so that we further
support  our  initial  hypothesis,  which  was that:  "The
choice of a suitable programming environment has a
direct impact in the type and the frequency of errors
that novice programmers make".

An  independent  t-test  shows that  the  two  groups
exhibit statistically significant differences in the means
for both syntax errors (t = 4,029, df = 26, p = 0,000433
<  0,01)  and  logic  errors  (t  =  2,887,  df  =  26,  p  =
0.007728 < 0,01). 

Regarding  the  choice  of  the  t-test  for  the
comparison  of  the  means  between  the  two
(independent) samples, we performed the appropriate
tests and the outcome was that t-test was suitable. The
process was the following:
(a) Normality tests of the two samples. We selected the

well-known  Kolmogorov-Smirnov  test  and  the
Shapiro-Wilk  normality  test  which  is  used  when
the  size  of  the  samples  is  smaller  than  50.  The

results  of  these  tests  are  presented  in  Table  3
(where df are the degrees of freedom). According
to  the  levels  of  importance  (sig.)  that  were
calculated,  we can  claim that  the  samples follow
the normal distribution (p > 0,05).

(b) Comparison  of  the  variances of  the  two samples
with  the  F-test. This  test  leads to  the  conclusion
that  the  variances  are  equal  (non-significantly
different) for both syntax errors (F-test = 0,556 and
p = 0,463 > 0,05) and logic errors (F-test = 4,113
and p = 0,053 > 0,05).

Table 3. Normality tests of the two samples

The above results confirm that the choice of the t-
test is suitable for the comparison of the means of the
two samples.

6. Conclusions

The pilot testing of WIPE and the analysis of the
evaluation  results  reveals  that  our  initial  goals  were
satisfied. We briefly present them below.
1) Attractiveness.  The proposed programming envi-

ronment  and  the  accompanying  suite  of  tutorial
exercises  in  general  attracted  the  interest  of
students  and  helped  them  comprehend  the  basic
principles of programming. This conclusion results
from  the  student  answers  in  the  evaluation
questionnaire  and the  analysis  of  the information
recorded  in  the  WIPE database.  The majority  of
students (80%) consider that the tutorial exercises
that  accompany  WIPE  helped  them  to  better
comprehend  the  principles  of  programming.  The
teachers  that  taught  programming  using  WIPE,
initially they were quite cautious but day after day
they started making positive comments, expressing
their satisfaction for taking part in the pilot testing
of WIPE. The teacher tool was a welcome surprise
for the teachers, especially when they realized the
wealth of information it can provide them with.

Tests of Normality

,089 14 ,200* ,984 14 ,978
,167 14 ,200* ,968 14 ,802
,149 14 ,200* ,918 14 ,275
,197 14 ,145 ,909 14 ,208

GROUP
A
B
A
B

LOGICAL

SYNTAX

Statistic df Sig. Statistic df Sig.
Kolmogorov-Smirnova Shapiro-Wilk

This is a lower bound of the true significance.*. 

Lilliefors Significance Correctiona. 
 



2) Error  handling.  The  compiler  messages  were
simple and comprehensible to the average student.
Most  students  consider  that  the  messages  are
comprehensible  and  facilitate  the  pinpointing  of
errors  (average  4  in  a  1-5  scale),  while  86% of
students classify the error messages as one of the
features of the programming environment that most
satisfied  them.  The  group  of  students  that  used
WIPE made less logic errors than the one that used
Borland  Pascal.  Of  course,  no  programming
environment  can  eliminate  the  errors  novice
students make. However, WIPE assisted students in
easily  correcting  their  syntax errors by providing
comprehensible  error  messages,  colorized
keywords,  step-by-step  execution  and  variable
watch.  The  recorded  information  on  the  WIPE
database reveals that students took great advantage
of  the step-by-step execution feature (45% of  all
program executions were step-by-step executions).
This feature satisfied 83% of students while 94% of
them evaluated positively the feature of watching
the intermediate  values  of  program variables and
system registers.  Students also  tend to  make less
syntax errors when using WIPE instead of Borland
Pascal.

3) Usability.  The students were eager to explore the
programming environment and met no problems in
using  it.  WIPE  was  proved  user-friendly  and
functional. Most of the students wished they could
use WIPE when studying at home (81%) and their
textbooks are accompanied by similar (easy to use)
software (78%). 
Our final  conclusion was that WIPE constitutes a

useful and powerful tool in the hands of teachers when
teaching the principles of programming to novices.

A  demo  version  of  WIPE  is  accessible  at
http://eos.uom.gr/~efop. 

7. References

[1] Allen, E., Cartwright, R., Stoler B. (2002) “DrJava: A
Lightweight  Pedagogic  Environment  for  Java”,
SIGCSE 2002.

[2] Bonar,  J.,  Soloway,  E.  (1985).  “Preprogramming
Knowledge:  A  Major  Source  of  Misconceptions  in
Novice  Programmers”.  In  Human-Computer
Interaction, 1(2):133-161. 

[3] Bruckman,  A.  &  Edwards,  E.  (1999).  “Should  We
Leverage Natural-Language Knowledge? An Analysis
of  User  Errors  in  a  Natural-Language-Style
Programming  Language”.  In  Proceedings  Computer
Human  Interaction  1999  (CHI'99),  Pittsburgh,  USA,
May.

[4] Dagdilelis V. (1986). “Conceptions des eleves a propos
des  notions  fontamentales  de  la  programmation
informatique  en  classe  de  Troisieme”,  Memoire

D.E.A.,  Universite  Joseph  FOURIER,  Grenoble,
France.

[5] Du Boulay, B. (1989). “Some Difficulties of Learning
to  Program”.  Studying  the  Novice  Programmer.  E.
Soloway and  J.  C.  Spohrer.  Hillsdale,  NJ,  Lawrence
Erlbaum Associates: 283-299.

[6] Efopoulos,  V.,  Dagdilelis,  V.,  Evangelidis,  G.,  and
Satratzemi,  M.  (2005).  “WIPE:  A  programming
environment  for  novices.  Design  Principles  and
Evaluation”,  In  Proceedings  ACM  ITiCSE  2005  (to
appear).

[7] Freund, S., and Roberts, E. (1996). “THETIS: An ANSI
C Programming  Environment  for  Introductory  Use”,
SIGCSE Bulletin, February, Vol. 28(1), 300-304.

[8] Kölling, M. (1999). “Teaching Object Orientation with
the  Blue  Environment”.  Journal  of  Object  Oriented
Programming, 12(2), May, pp14-23.

[9] Motil, J., Epstein, D. (2000). “JJ: a Language Designed
for  Beginners  (Less  Is  More)”,  http://www.ecs.csun.
edu/~jmotil/TeachingWithJJ.pdf.

[10] Nielsen, J. (1993). “Usability Engineering”. Academic
Press.

[11] Nielsen,  J.,  and  Molich,  R.  (1990).  “Heuristic
evaluation  of  user  interfaces”,  Proc.  ACM  CHI'90
Conf. (Seattle, WA, 1-5 April), 249-256.

[12] Pane,  J.  &  Myers,  B.  (2000)  The  Influence  of  the
Psychology of Programming on a Language Design:
Project Status Report.  12th Annual Workshop of the
Psychology  of  Programming  Interest  Group,
Corigliano Calabro, Italy.

http://eos.uom.gr/~efop

	1. Introduction
	2. Design Principles
	4) Comprehensible error messages. The error messages generated by the WIPE Compiler are in natural language and are suitable for assisting novices debug their code.
	3. Hypotheses
	4. Data Acquisition
	5. Comparative evaluation
	6. Conclusions
	7. References

