
WIPE: A Programming Environment for Novices

Vassilios Efopoulos
Department of Applied

Informatics
University of Macedonia

156 Egnatia Str.
 Thessaloniki, Greece

+30-2310-889155

efop@uom.gr

Vassilios Dagdilelis
Department of Educational

and Social Policy,
University of Macedonia

156 Egnatia Str.
 Thessaloniki, Greece

+30-2310-891336

dagdil@uom.gr

Georgios Evangelidis
Department of Applied

Informatics
University of Macedonia

156 Egnatia Str.
 Thessaloniki, Greece

+30-2310-891844

gevan@uom.gr

Maya Satratzemi
Department of Applied

Informatics
University of Macedonia

156 Egnatia Str.
 Thessaloniki, Greece

+30-2310-891897

maya@uom.gr

ABSTRACT

This paper presents an overview of the design principles and the
evaluation of a new programming environment, WIPE (Web
Integrated Programming Environment), designed specifically to
teach novices the fundamentals of programming. The environment
is designed for use in secondary education as a first programming
course, in order to help students become familiar with the main
programming concepts.

Categories and Subject Descriptors

K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI), K.3.2 [Computer and Information Science
Education]: Computer science education,

General Terms

Algorithms, Design, Languages

Keywords

Web-based compiler, e-learning, interactive learning environment,
programming and programming languages, secondary education

1. INTRODUCTION
Research in the area of Computer Science Education has been
quite active during the past 25 years. The main focus of the
research was on the difficulties novice programmers meet when
they attempt to program a computer. Programming appears to be
the hardest faculty to master when dealing with computers. Since
the seminal work of Weinberg [22], hundreds of related papers
have been published ([5], [6], [19], [12], [11], [9], [3], and [4]).

In addition, during all these years we had the emergence of
journals dedicated to the teaching of Computer Science (e.g.,
Computer Science Education [7]), or journals that regularly
published papers about psychology and the teaching of
programming (e.g., International Journal of Human-Computer
Studies, formerly International Journal of Man-Machine Studies
[14]).

Annual symposia and conferences that deal exclusively with
Computer Science Education have been established (e.g.,
ITiCSE/SIGSCE [2], and NECC [16]), and, in the past, a series of
workshops under the general title Empirical Studies of
Programmers were organized. Well-established organizations are
keenly interested in the teaching of Computer Science; in addition
to the likes of ACM and IEEE that are closely related to the
science and profession of Computer Science, organizations like
AACE [1] and ISTE [16] systematically deal with the teaching of
Computer Science, Informatics and, especially, Computer
Programming. We should also mention the existence of special
interest groups (e.g., PPIG [21]), and groups of researchers in
universities and research centers.

Despite the great interest in the teaching of Computer Science and
the relatively high number of research studies, we claim that a
general theoretical framework is evidently still missing. This is
not the case in Mathematics and Physics, two other scientific
areas that deal with similar subjects for a longer period of time
compared to Computer Science. The lack of a theoretical
framework in the case of Computer Science and more specifically
Programming, unfortunately, in effect promotes an empirical way
of tackling issues that does not allow the integration of the vast
data and findings reported in the research literature, does not
distinguish the most relevant research methods, and, does not
permit the methodical verification of the reported ascertainment.
As a result, one gets the feeling that simple findings, isolated
facts, or even curriculums or new languages and tools ([17], [18])
are being designed and redesigned in an attempt to overcome the
difficulties novice programmers meet without referring to a
general framework that would allow for a possible unification of
the findings and also provide a means to verify them. The validity
of such findings is, thus, questionable.

In this paper we present the design principles of WIPE (Web
Integrated Programming Environment). WIPE is an educational
software we have developed to introduce novices to programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006…$5.00.

We also report on the feedback we collected by extensively using
WIPE in secondary education schools. WIPE is based on a
previous project that did not focus exclusively on the teaching of
Programming ([10], [13]). The design of WIPE was based upon
and was influenced by some fundamental didactic principles and
the experience obtained by former research regarding the teaching
of introductory concepts on Programming. WIPE is also equipped
with some powerful tools targeting the teacher, rather than the
student. These tools can assist teachers pinpoint the specific areas
where students have difficulties. Finally, to make its use more
effective, WIPE is accompanied by educational material
(exercises and didactic situations).

In Section 2 we present the design principles of WIPE and in
Section 3 its main features. The results of an evaluation of WIPE
in three secondary education schools are presented in Section 4.

2. DESIGN PRINCIPLES
Although the OOP model dominates the international teaching
practice, the greek secondary education system still uses the
model of imperative programming. Thus, WIPE supports the
teaching of imperative programming. Thanks to its modular
design, though, a transition to an OO language is a quite
straightforward task to accomplish.

In the following subsections we address the basic design
principles WIPE follows.

2.1 Simplicity
The graphical user interface of WIPE is user friendly and easy to
operate. WIPE requires no installation - it is accessible via the
Internet or the school intranet and all that is needed to use it is a
web browser. One of our primary design goals was to offer novice
programmers an easy-to-use programming environment. It is a
well-documented fact that most programming environments
feature a quite complex user interface [6].

These environments are, primarily, designed for professional
programmers and the complexity of their tools renders their use
prohibitive by novice programmers. Compared to commercial
environments, WIPE includes a small set of tools to aid novices
understand the basic principles of programming and the way a
program is executed, rather than increase their programming
productivity. Students can start using the programming
environment of WIPE without any formal introduction. After the
first half hour of their first session with WIPE, they can use it
effectively. Thus, we have designed a programming environment
that cannot be exploited by professional programmers, because it
is oriented to novice programmers and their learning needs.

2.2 Consistency
The need and importance of consistency in a programming
language and a programming environment is a subject that has
been extensively addressed by the research community, quite
often with dissenting opinions, especially when regarding the
language syntax issue ([19], [8]). WIPE attempts to avoid all
kinds of inconsistencies. For example, the syntax of I/O
commands remains identical for all data types. The differentiation
that one can observe in languages like C (for example in the
syntax of scanf and printf) undeniably offers greater flexibility to
the programmer but it, almost always, confuses novice
programmers. In addition, each language statement has a unique
syntax and all its constituent elements have unique semantics. For

example, subroutine parameters are passed by value (and never by
reference) and there is a single way of updating the values of
variables and table elements (in contrast to C/C++ that support
multiple alternative ways of doing things).

This limitation in the programming capabilities of the language
supported by WIPE is, in our opinion, consistent to a fundamental
teaching principle, according to which complex concepts are
usually taught via successive approaches in a school setting (a
spiral like approach). For example, many complex concepts in
Mathematics and Physics are taught again and again in different
grades, each time at an increasing degree of difficulty/complexity.
Similarly, in WIPE the initial approach of programming concepts
is addressing students that should become familiar with these
concepts at an elementary level. These students are not
professional programmers and they should not become familiar
with the full range of programming concepts and programming
tools.

2.3 Emphasis on the source code
In accordance to the above rationale, WIPE emphasizes on the
production of source code and it does not come with code
generation tools or graphical user interface design aids. Our goal
is to have the student concentrate on writing source code and not
on designing a user interface. Such an approach helps novice
programmers get acquainted quickly to the programming
environment and produce source code, without inhibiting their
imagination and expressiveness.

Also, the time students spend in learning the programming
language and its syntax should not hinder their learning of the
fundamental programming and algorithmic concepts. WIPE
attempts to adhere to its main goal that is the teaching of
programming. Students should spend more time learning than
debugging. Otherwise, they can become discouraged since they
spend most of their time dealing with secondary (organizational)
issues and not the problem at hand.

3. FEATURES
The programming environment of WIPE sports certain features
that are dictated by its indented didactic use.

3.1 Web-based operation
The whole programming environment is web-based. Students can
use it in any computer that is connected to the school intranet or
the Internet and is equipped with a web browser.

3.2 Visualization tools
WIPE Compiler is the most important tool of WIPE. It is a
specially designed web-based compiler implemented in
Macromedia Director (Shockwave output), that, in its current
version, compiles the source code of a simple, imperative, Pascal-
like programming language to a pseudo-assembly code. WIPE
Compiler gives students the freedom to experiment by allowing
them to write their programs, check their correctness, visualize
their execution by observing the intermediate values of the
machine registers and the program and temporary (compiler)
variables and observe their output. Figure 1 displays a snapshot of
the WIPE Compiler after a successful compilation of a source
program (top left window), the corresponding variable watch
window (bottom left), the messages window (bottom center) and
the output window (bottom right).

Figure 1. The WIPE Compiler environment

3.3 Pseudo-assembly
The WIPE Compiler takes the source code and produces a
pseudo-assembly code that runs in a virtual machine with two
registers and a stack. More advanced programmers can activate
the assembly code window and observe the relationship between
the source and assembly code by executing their program in a
step-by-step fashion. In Figure 1, the top right window contains
the assembly code that corresponds to the source code of the top
left window. An additional tab in the variable watch window
(bottom left) displays the intermediate values of the virtual
machine registers during program execution. Notice the various
controls beneath both the source and assembly windows.

Of course, we do not recommend the activation of the assembly
window for novice programmers. This is a feature that teachers
could use in certain didactic situations or motivated students
could explore (textbooks in Greek secondary schools cover some
basics of assembly programming).

The use of an intermediate pseudo-assembly code was a design
decision. It was adopted so that WIPE becomes rather easily
extensible. By adding additional source language to pseudo-
assembly compilers, WIPE can support for additional source
languages (e.g., C/C++, Java).

3.4 Learning Aids
WIPE implements a series of features that simplify the learning
process for novice programmers.

�� The implemented source programming language in WIPE
does not require variable and constant declarations.
Programmers do not have to worry about declaration
statements.

�� Error messages are not cryptic, a common problem in
commercial compilers. We tried to make them precise and
also included hints for possible solutions.

�� WIPE provides run-time error detection. The programmer is
informed about the presence of run-time errors, such as,
division by zero, use of variables that have not been
initialized, and, operand type checking in the case of
arithmetic operations like mod or div.

3.5 Recordability
A very important and novel feature of WIPE is the recording of all
student actions, i.e., recordability. A series of student actions,
such as, compilation, program execution, and step-by-step
execution, are being recorded in a special database. All that data
are readily available to the teacher either as raw data from the
database or via the use of specially designed tools. These tools
help the teacher visualize the data and infer useful information.
For example, see Figure 2 where the teacher can compare
successive compilations of a student program. Differences of
successive versions of the code of the program are pinpointed as
well as the corresponding compiler errors.

Figure 2. Code version visualization tool for teachers

3.6 Didactic Situations
Perhaps the most valuable element in the use of educational
software is not the software itself but its usage. This is what the
modern theory of didactics of Mathematics identifies by the term
didactic situations. Since this rationale appears to be valid not
only in Mathematics but also in the teaching of Programming
(which according to some researchers is a branch of Mathematics
[14]), we use WIPE in the context of pre-designed didactic
situations. These didactic situations include select problems that
are tackled under certain conditions in order to address and reveal
the usual misconceptions of novice programmers (e.g.,
anthropomorphism, the role and usage of variables, etc. [20]).

3.7 Implementation Details
The WIPE components were implemented using: (a) C and the
compiler generation tools Flex and Bison, for the Pascal-like
language Compiler, (b) PHP, for the web pages and the
communication between client and server, and, (c) Macromedia
Director (Shockwave output), for the front end on the client side.
Also, we used the open source DBMS MySQL. A demonstration
of WIPE is available at http://eos.uom.gr/~efop.

4. EVALUATION
In the end of 2003 and the beginning of 2004, WIPE was tested in
three secondary education schools (1st Gymnasium of
Asvestochori Thessaloniki, 1st Technological and Vocational
School of Argos Orestiko Kastoria, and 1st Lyceum of Nestorio
Kastoria).

Forty-five students were taught six two-hour long laboratories
using WIPE during the regular teaching hours of computer
science related courses.

The collected data came from:

�� Classroom observation during the laboratories.

�� Analysis of the student programs and their actions that
were recorded in the WIPE database.

�� Programming environment evaluation questionnaires
that were completed by the students after the completion
of the six laboratories.

�� Interviews with the teachers that were responsible for
the software evaluation process.

In the following, we briefly report on the most important findings
of the evaluation.

An analysis of the source code written by students reveals two
categories of errors: syntax and logic errors. Table 1 summarizes
the most common syntax errors that were detected:

Table 1. Syntax errors

typo errors

missing “end” statement

missing keywords
“do” in structures while .. do and for .. do
“then” in structure if .. then .. else .. endif

missing “;” at the end of each statement

missing brackets and quotes

missing comma in a write statement (between two expressions)

These errors could be attributed to the particular syntax
requirements of the WIPE source language, which differ from the
syntactic conventions of a natural language that allows great
flexibility (for example the end of the condition in a natural
language arises from the meaning of statement and not from some
specific keyword such as “endif”).

Table 2 summarizes the most common logic errors that were
detected.

Table 2. Logic errors

failure to increment a loop counter variable (infinite loops)

erroneous incrementing of a loop counter variable (i.e., outside
the loop)

erroneous prompting (the user is asked to enter a value for a
variable after the value has been read). For example:

read number;
write “Enter a number: ”;

accessing of non existing array elements

Our conclusions from the testing and evaluation process match the
didactic goals we set during the design phase of our educational
software. We briefly list them below:

�� The programming environment and the accompanying
educational material (didactic situations) greatly assisted the
students to understand the fundamentals of programming.
This conclusion results from the answers of students in the
evaluation questionnaire but also from the analysis of the
information recorded in the database. The majority of
students (about 80%) consider the accompanying educational
material very helpful for acquiring new knowledge and better
comprehending programming.

�� The students did not hesitate to use the programming
environment and their adaptation was easy. The
programming environment proved to be user friendly and
functional and in general stirred the interest of students.
Most of them wish to use WIPE while studying programming
on their own (about 81%). They would also welcome the
option to have such kind of software be distributed together
with their programming language textbooks (about 78%).

�� The WIPE compiler messages were simple and
comprehensible for the average student. Most students
consider the messages comprehensible and believe that they
facilitate the detection of errors (average 4 in a 1-5 scale),
while 86% of them classified the error messages among the
characteristics of the programming environment that satisfied
them the most.

�� Of course, no programming environment can eliminate the
errors novice programmers make. WIPE, however, assisted
students in easily correcting their errors by having the
compiler provide comprehensible error messages, by using
coloring for keywords, by implementing a step-by-step
source code execution feature, and by displaying the
intermediate values of variables. The recorded data reveal
that students use very often the step-by-step execution
feature (more than 50% of program runs are step-by-step
executions). That particular feature is evaluated positively as
one of the features of the environment that satisfied the
students (about 83% are in favor), while 94% of the students
appreciate the feature of displaying the intermediate values
of program and system (temporary) variables and registers.

�� The teachers that used the environment for teaching
programming were cautious in the beginning. But in the
course of the evaluation they started making positive
comments and expressed their satisfaction for being able to
use this educational environment. The teacher tool was a
surprise for them and they were impressed by the wealth of
information that it provides. Our final conclusion was that
WIPE constituted a useful tool for the teachers for teaching
the fundamentals of programming to novice students.

�� The accompanying educational material (a series of carefully
designed exercises to be used as didactic situations)
supported the teachers during the teaching process and
provided them with a productive way of using the
programming environment. As far as the students are
concerned, those exercises helped them become familiar with
the environment, learn how to use it, and make proper and
productive use of its various features. These didactic
situations offer students directions for better exploitation of
the provided features. The average ranking for the
educational material was 3.5 (scale 1 to 5).

5. CONCLUSION
Although educational environments for teaching programming
appear to have clear advantages over the commercial solutions,
almost all of the currently available such environments have a
hard time trying to establish themselves. There are many obstacles
they should overcome, namely, the commercial competitors that
strongly promote their own solutions, the perception of novice
programmers that hesitate to use and doubt the usefulness of a
non-brand name environment that nobody uses in the real world,
and finally the teachers that resist change and prefer to use tools
they are already familiar with.

WIPE is an educational environment for teaching programming
whose design is based on the accumulated experience and practice
gained from numerous related research efforts in the broader area
of the teaching of programming. Its application in the school
setting has revealed some operational and didactical
shortcomings, but we claim that the overall design and
implementation process that was followed is satisfactory. We
expect that WIPE will be used as a means for directly or indirectly
collecting data that will form the basis for a more systematic study
of the issues related to the teaching of programming. At any rate,
regardless of the didactic means used, we claim that an
improvement in the teaching practices of programming and
computer science in general has to use a unifying framework that
will sort out the various results and gathered data, establish
successful methodologies, and verify research findings.

6. ACKNOWLEDGMENTS
Our thanks to the teachers and students that evaluated WIPE.

7. REFERENCES
[1] AACE, Association for the Advancement of Computing in

Education, http://www.aace.org/default.htm

[2] ACM SIGCSE, ACM Special Interest Group on Computer
Science Education, http://www.sigcse.org

[3] Bonar, J. & Soloway, E. Preprogramming Knowledge: A
Major Source of Misconceptions in Novice Programmers. In
Human-Computer Interaction, 1(2), 1985, 133-161.

[4] Brooks, R. Towards a theory of the cognitive processes in
computer programming. In International Journal of Man-
Machine Studies 9, 1977, 737-751.

[5] Bruckman, A. & Edwards, E. Should We Leverage Natural-
Language Knowledge? An Analysis of User Errors in a
Natural-Language-Style Programming Language. In
Proceedings Computer Human Interaction (CHI'99),
Pittsburgh, USA, May 1999.

[6] Brusilovsky, P., Calabrese, E., Hvorecky, E., Kouchnirenko,
A., & Miller, P. Mini-languages: A Way to Learn
Programming Principles. In Education and Information
Technologies, 2(1), 1999, 65-83.

[7] Computer Science Education Journal, Taylor & Francis,
http://www.tandf.co.uk/journals/titles/ 08993408.asp

[8] Conway D. Criteria and Consideration in the Selection of a
First Programming Language. Technical Report 93/192,
Department of Computer Science, Monash University,
December 1993.

[9] Dagdilelis V. Conceptions des eleves a propos des notions
fontamentales de la programmation informatique en classe
de Troisieme. Memoire D.E.A., Universite Joseph
FOURIER, Grenoble, France, 1986.

[10] Dagdilelis, V., Evangelidis, G., Satratzemi, M., Efopoulos,
V., Zagouras, C. DELYS: A novel microworld-based
educational software for teaching Computer Science
subjects. Computers & Education, Elsevier Science, 40(4),
May 2003, 307-325.

[11] Du Boulay, B. Some Difficulties of Learning to Program”. In
Studying the Novice Programmer. E. Soloway and J. C.
Spohrer (eds), Hillsdale, NJ, Lawrence Erlbaum Associates:
283-299, 1989.

[12] Eisenstadt, M., Lewis, M. W. Errors in an Interactive
Programming Environment: Causes and Cures. In Novice
Programming Environments: Explorations in Human-
Computer Interaction and Artificial Intelligence, Marc
Eisenstadt, Mark T. Keane, and Tim Rajan, (eds), Lawrence
Erlbaum Associates, Hillsdale USA, 1992.

[13] Evangelidis, G, Dagdilelis, V.,Satratzemi, M., Efopoulos, V.
X-Compiler: Yet Another Integrated Novice Programming
Environment. In Proceedings of the IEEE International
Conference on Advanced Learning Technologies (ICALT
2001), 166-169, Madison, WI, USA.

[14] Hoare C.A.R. Is there a mathematical basis for computer
programming? NAG Newsletter, 2, 6-15, 1981.

[15] International Journal of Human-Computer Studies, Elsevier,
http://www.elsevier.com/wps/find/journaldescription.cws_ho
me/622846/description#description

[16] ISTE, International Society for Technology in Education,
http://www.iste.org

[17] Kölling, M. Teaching Object Orientation with the Blue
Environment. Journal of Object Oriented Programming,
12(2), May 1999, 14-23.

[18] McIver, L., Conway, D. GRAIL: A Zeroth programming
language, In Proceedings of the International Conference on
Computing in Education (ICCE99), 43-50.

[19] Murnane J. The Psychology of Computer Languages For
Introductory Programming Courses. New Ideas in
Psychology, 11(2), 1993, 213-228.

[20] Pea, R. D. Language-independent conceptual bugs in novice
programming. Journal of Educational Computing Research,
2(1), 1986, 25-36.

[21] PPIG, Psychology of Programming Interest Group,
http://www.ppig.org

[22] Weinberg, G.M. The Psychology of Computer Programming.
New York, Van Nostrand Reinhold, 1971.

