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Abstract—Data reduction is very important especially when
using the k-NN classifier on large datasets. Many prototype
selection and generation algorithms have been proposed aiming
to condense the initial training data as much as possible and
keep the classification accuracy at a high level. The Prototype
Selection by Clustering (PSC) algorithm is one of them and
is based on a cluster generation procedure. Contrary to many
other prototype selection and generation algorithms, its main
goal is the fast execution of the data reduction procedure rather
than high reduction rate. In this paper, we demonstrate that
the reduction rate and the classification accuracy of PSC can be
improved by generating a larger number of clusters. Moreover,
we compare the performance of the particular algorithm
with two state-of-the-art algorithms, one selection and one
generation, using six real life datasets. The experimental results
indicate that the classification performance of the Prototype
Selection by Clustering algorithm is comparable with that of
its competitors when using many clusters.
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I. INTRODUCTION

The k-Nearest Neighbor (k-NN) classifier [6] is an ef-
fective lazy classifier. It classifies a new item by searching
for its k nearest training items (neighbors) according to
a distance metric. Then, the new item is classified to the
most common class defined by the majority vote of its k
nearest neighbors. Ties (two or more classes collecting the
same number of votes) can be resolved by choosing either
randomly one of the common classes or the class of the
nearest neighbor.

The k-NN classifier is a widely-used classification algo-
rithm because: (i) it is simple, (ii) it is easy to implement,
and, (iii) it can be exploited in various application domains.
On the other hand, since the distances between a new item
and all items in the Training Set (TS) must be computed, the
main drawback of the algorithm is the high computational
cost that can render its execution prohibitive for large
datasets. In other words, the computational cost depends on
the size of TS. The more items in TS, the higher the cost
involved.

The drawback of the high cost is an active research issue
during the last decades. Many methods have been proposed

that speed-up the nearest neighbor search. Particularly, the
aforementioned drawback can be dealt with by using either
a multi-attribute indexing method [27], [21] or a Data
Reduction Technique (DRT)1. Contrary to indexing methods,
DRTs have the extra benefit of the reduction of storage
requirements. This work focuses on DRTs.

Data Reduction Techniques [24], [10], [23], [26], [16],
[14], [12], [4], [18] are based on the following simple idea:
they attempt to build a small set that represents the initial
TS as accurately as possible. This small representative set
is called Condensing Set (CS). Many DRTs build their CS
using the following strategy. They consider that the items
that lie in the “internal” data area of a class (i.e., far from
decision borders) can be removed without significant loss
of classification accuracy. Thus, they put in CS only the
“useful” for classification data which are items that lie
in the close-class-border data areas. Figure 1 depicts this
strategy. The idea is that the k-NN classifier will be able to
have similar classification accuracy using either TS or CS.
However, a scan of CS involves much lower computational
cost than that of TS.

(a) Training Set (b) Condensing Set

Figure 1: Data Reduction

DRTs are categorized into two main algorithm categories:
(i) Prototype Selection (PS) [10], and (ii) Prototype Genera-
tion (PG) [24]. Both have as motivation the construction of
CS. However, they differ on the way that this is achieved.
PS algorithms select the close-border items and place them

1Data reduction has two points of view: (i) item reduction, and, (ii)
dimensionality reduction. We consider them from the item reduction point
of view.



in CS. On the other hand, PG algorithms generate new items
by summarizing similar TS items. Efficient PG algorithms
generate many items for the close-class-border data areas
and few (or none) items for the non close-class-border data
areas. We should mention that although editing algorithms,
such as the ENN-rule [25], constitute a subcategory of PS
algorithms, they have a different motivation. They attempt to
improve the accuracy rather than reduce the computational
cost by removing the noisy items and “smoothing” the
decision borders. The reduction rate of DRTs depend mainly
on the level of noise in TS. Their success usually implies the
execution of editing before the application of the main data
reduction routine [16]. The interested reader can find recent
reviews with taxonomies and comparisons of PS and PG
algorithms respectively in [10] and [24]. Other DRT reviews
can be found in [23], [26], [16], [14], [12], [4], [18].

Lopez et al, have recently proposed a PS algorithm called
Prototype Selection by Clustering (PSC) [19]. Its main goal
is the fast construction of CS (low pre-processing cost).
High reduction rate and accuracy continue to be desirable
but constitute secondary goals. PSC is based on cluster
generation. The main goal of PSC is achieved by the creation
of a small number of clusters for each class. Of course, there
are many other DRTs based on clustering. Some of them
are the Self-Generating Prototypes (SGP) algorithms [9],
the Prototype Generation and Filtering (PGF) [15] and the
Symbolic Nearest Mean Classifier (SNMC) [7].

The motivation of this paper is to examine whether
the creation of a larger number of clusters can improve
the classification accuracy and the reduction rate of PSC
algorithm as well as how the goal of low pre-processing
cost is affected. The contribution of the paper is an extensive
experimental study that compares our improved version of
PSC with two state-of-the art DRTs, the PS algorithm CNN-
rule [13] and the PG algorithm RSP3 [22].

The rest of this paper is organised as follows. Section II
considers the CNN-rule as well as the family of RSP algo-
rithms. Section III presents the PSC algorithm and explores
how the construction of multiple clusters can improve its
performance. Finally, Section IV presents the experimental
results, and Section V concludes the paper and gives future
directions.

II. STATE-OF-THE-ART DRTS

A. Condensing Nearest Neighbor Rule

Hart proposed one of the first and well-known PS algo-
rithms, the Condensing Nearest Neighbor (CNN) rule [13].
Many other approaches extend or are based on the idea of
CNN-rule. Some known are: the Reduced NN rule [11], the
Selective NN rule [20], the Modified CNN rule [8], the Fast
CNN rule [3] and the IB algorithms [1].

However, CNN-rule remains the PS algorithm of refer-
ence until today and it is used in experimental studies for
comparison purposes.

CNN-rule tries to remove the non-close-class-border (or
“internal”) items as follows. It uses two lists, S and T .
Initially, a TS item is placed in S and all other items are
placed in T . Then, the CNN-rule attempts to classify the
items of T by scanning the items of S and applying the
1-NN rule. If an item is wrongly classified, it is moved to
S. The procedure continues while there are moves from T
to S. The final list S constitutes the CS.

The main idea of CNN-rule is that if an item is mis-
classified, it is close to a border data area and so it must
be placed into the CS. Contrary to many other DRTs, CNN-
rule determines the CS size automatically (i.e., without user-
defined parameters).

B. Reduction by Space Partitioning

Chen and Jzwik [5] have proposed an effective PG al-
gorithm which constitutes the ancestor of the Reduction by
Space Partitioning (RSP) [22] algorithm family. We call it
Chen and Jzwik Algorithm (CJA).

CJA initially retrieves the pair of the most distant items,
X and Y in TS. These items define the diameter of the
dataset. Then, TS is split into two subsets SX and SY . The
TS items closer to X are put in SX , whereas the ones closer
to Y are put in SY . The aforementioned splitting procedure
is applied recursively on each created subset and stops when
a predefined number of subsets is built. In the end, for each
subset S, CJA generates an item C by averaging the items
in S. C is labeled by the most common class in S. The
user must determine the algorithm parameter that defines
the number of prototypes that will be generated.

The RSP algorithm family includes three algorithms
that are based on the CJA idea. RSP1 generates as many
prototypes as the different classes in the subset. RSP1
computes a larger CS than that of CJA. However, it aspires
to improve accuracy since it takes into account all TS
items. RSP1 and RSP2 differ on how they select the next
subset to be split. RSP1 uses the subset diameter as the
splitting criterion, based on the idea that the subset with
the larger diameter may include more items, and so, a
higher reduction rate could be achieved. In contrast, RSP2
uses as its splitting criterion the highest overlapping degree.
This criterion considers that the items that belong to a
class must be as close to each other as possible. RSP3
iteratively splits all non-homogeneous subsets until they do
not include items from other classes. RSP3 is the only non-
parametric RSP algorithm. It automatically determines the
size of CS. Considering RSP3 algorithms, we conclude that
they generate few prototypes for representing non close-
class-border areas, and many prototypes for representing
close-class-border areas.

III. PROTOTYPE SELECTION BY CLUSTERING

Prototype Selection by Clustering (PSC) [19] is a recently
proposed PS algorithm whose main goal is the fast execution



(a) TS (b) clustered TS

(c) finding non-border prototypes (d) finding border prototypes

Figure 2: Prototype Selection by Clustering

of the reduction procedure. In order to achieve that, it adopts
the fast and well-known k-means clustering algorithm [17].

PSC is based on the idea that homogeneous clusters
include items that lie in non-close-border data areas. On
the other hand, non-homogeneous clusters include close-
border items. Initially, PSC uses k-means clustering in
order to partition the training data into clusters. For each
homogeneous cluster, the nearest to the cluster mean item
is put in CS. For each non-homogeneous cluster, the items
that define the decision boundaries are placed into the CS.

More formally, PSC, initially, creates |C| clusters, Ci

where i = 1, 2, . . . , |C|. For each homogeneous cluster Ci,
PSC places the nearest item p ∈ Ci to the cluster mean
in CS. This item is the prototype that represents the whole
data area of that cluster and is called a non-border prototype.
For each non-homogeneous cluster Ci, PSC chooses a set
of prototypes as follows. Initially, it finds the majority class
TM in Ci. Then, for each item pj ∈ Ti, i ̸= M , it puts in
CS item pM ∈ TM that is the nearest to pj ∈ Ti. Also, it
puts in CS, item pCi ∈ Ti that is the nearest to pM (pCi

may be different than pj). The prototypes collected from a
non-homogeneous cluster are called border prototypes.

The PSC routine is summarized in figure 2. k-means
identifies four clusters in TS. Clusters A and D are homoge-
neous. For these clusters, PSC keeps the nearest items to the
cluster means as non-border prototypes. They represent the
corresponding clusters data area. On the other hand, Clusters
B and C are non-homogeneous. Thus, PSC analyzes the
cluster items and keeps only the border prototypes by ap-
plying the methodology described in the previous paragraph.

Of course, the selected number of border and non-border
prototypes depends on the number of clusters that are
initially created (|C|). The higher the |C| value, the more

homogeneous clusters are generated and the more non-
border prototypes are collected. In contrast, the larger the
clusters, the more border prototypes selected and the lower
reduction rate achieved. Lopez et al considered a small
number of clusters in order to achieve fast execution of
the algorithm. In particular, in their experiments [19], they
built only r × j, j = 2, 4, · · · , 10, clusters, where r is the
number of discrete classes. We claim that a larger number
of clusters could improve the classification performance in
terms of accuracy and reduction rate.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We compared the performance of CNN-rule, RSP3 and
PSC by applying the k-NN classifier on the condensed sets
they generate. In all cases, we used the k value that achieved
the highest classification accuracy. Furthermore, we used a
5-cross validation schema on six real life datasets distributed
by the KEEL Dataset Repository2[2]. Thus, we run five
training/testing set k-NN experiments for each dataset and
each algorithm and we report the averages. Of course, only
the TS was preprocessed by the reduction algorithms. We
used the five already constructed pairs of Training/Testing
splits hosted by the KEEL repository. The six datasets are
summarized in Table I. None of them has missing values.
All algorithm runs were executed on the original datasets,
i.e., without normalization or any other data transformation.
Moreover, we used euclidean distance as the distance metric.

Table I: Dataset description

dataset Size Attr. Classes
Letter Recognition (LIR) 20000 16 26

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2

The three algorithms are compared by estimating three
metrics: (i) Accuracy (Acc.), (ii) Reduction Rate (R.R.) and
Processioning Cost (P.C.) in terms of million (M) distance
computations (we counted the distances computed during
the procedure of CS construction). For each dataset, we
present one diagram for each metric. For PSC, we built
24 CSs. Each one was built by using different number of
clusters, k = r × CL clusters, where r is the number
of discrete classes. CL takes 25 different values: CL =
2, 4, 6, 8, 10, 20, · · · , 190, 200. The x-axis of each compar-
ison diagram represents the CL values. CNN-rule and RSP3
are not parametric approaches and so their performance is
not affected when varying the CL value.

2http://sci2s.ugr.es/keel/datasets.php



B. Comparisons

Figures 3-8 present the comparison measurements of the
three methods on the six datasets. Each figure includes three
diagrams, one for each metric, i.e., Acc., R.R. and P.C.
The Accuracy diagrams include one extra curve for the
measurements achieved by the Conventional k-NN classifier
(Conv-k-NN), i.e., k-NN over the original training data
(without condensing).

In all cases 3-8, CNN-rule executed faster and achieved
higher reduction rate than RSP3. On the other hand, with
the exception of dataset PH, RSP3 achieved higher accuracy
measurements than CNN-rule. In some cases, the accuracy
of RSP3 is close to the one of Conv-k-NN.

With the exception of dataset PH (figure 8), the highest
reduction rate in all datasets are achieved when 10 ≤ CL ≤
50. This means that the corresponding k-NN classifiers
executed faster than the classifiers built using the rest of
the CL values. In the case of PH, reduction rate continues
to improve with higher CL values.

Moreover, in the cases of LIR (figure 3), PD (figure 4),
LS (figure 5), and TXR (figure 7) datasets, for CL ≤ 50, the
preprocessing cost measurements were lower than or close to
those of RSP3. In the case of dataset SH (figure 6), which
is the largest one, RSP3 generates its CS at an extremely
high computational preprocessing cost. This is the result of
the farthest point computations in the subsets created during
RSP3 execution.

In the cases of LS (figure 5) and SH (figure 6), PSC could
not reach the accuracy levels of the other two methods, but
it was quite close. In all other datasets (figures 3, 4, 7, 8),
PSC achieved higher accuracy measurements than CNN-rule
and RSP3. Furthermore, PSC classifiers with CSs built using
CL values greater than 10, were more accurate and achieved
higher reduction rate than those built by lower CL values
(Lopez et al case [19]). However, the generation of these
CSs was an “expensive” procedure since it computed more
distances. For non-dynamic environments, there is no need
for periodical CS reconstruction. Thus, we claim that these
measurements may not be so significant since the CS is built
only once.

We conclude that PSC is an adaptive algorithm that can be
used either for fast CS generation but with lower reduction
rate and accuracy (this is the scenario presented by Lopez
et al), or for accurate and fast k-NN classification but with
“expensive” CS generation. The desirable performance can
be achieved by tuning the CL parameter.

V. CONCLUSIONS

In this paper, we presented and compared three known
DRTs, namely, CNN-rule, RSP3, and PSC. In addition, we
demonstrated how the creation of a large number of clusters
can improve the performance of PSC. The experimental
measurements derived by a cross-validation schema on six
real life datasets indicate that PSC can reach and exceed the

Figure 3: LIR (Acc., R.R., P.C.)

Figure 4: PD (Acc., R.R., P.C.)



Figure 5: LS (Acc., R.R., P.C.)

Figure 6: SH (Acc., R.R., P.C.)

Figure 7: TXR (Acc., R.R., P.C.)

Figure 8: PH (Acc., R.R., P.C.)



classification performance of the other two state-of-the-art
algorithms.

We plan to keep on examining the way clustering algo-
rithms can be used for effective data reduction. In particular,
we plan to develop fast and incremental data reduction algo-
rithms that achieved high reduction rates without sacrificing
the classification accuracy.
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