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Abstract. Editing is a crucial data mining task in the context of k-
Nearest Neighbor classification. Its purpose is to improve classification
accuracy by improving the quality of training datasets. To obtain such
datasets, editing algorithms try to remove noisy and mislabeled data
as well as smooth the decision boundaries between the discrete classes.
In this paper, a new fast and non-parametric editing algorithm is pro-
posed. It is called Editing through Homogeneous Clusters (EHC) and is
based on an iterative execution of a clustering procedure that forms clus-
ters containing items of a specific class only. Contrary to other editing
approaches, EHC is independent of input (tuning) parameters. The per-
formance of EHC is experimentally compared to three state-of-the-art
editing algorithms on ten datasets. The results show that EHC is faster
than its competitors and achieves high classification accuracy.
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1 Introduction

Classification is a traditional data mining problem that has attracted the in-
terest of many researchers in the past decades [11]. Classification algorithms (or
classifiers) attempt to assign unclassified items to a class from a set of predefined
classes. Classifiers can be divided into eager and instance-based (or lazy) classi-
fiers. Contrary to eager classifiers, lazy classifiers do not build any classification
model that is then used to classify new items. Instead they use the training set
(TS) as the classification model.

A popular lazy classification method is k-Nearest Neighbor (k-NN) classi-
fier [5]. It is simple, very easy to implement and has many applications. The
k-NN classifier works as follows: for each new item x, it searches TS and re-
trieves the k nearest items to x according to a distance metric. The class of x is
determined by a majority vote, i.e., the most common class among the classes
of the k nearest neighbors. Possible ties during voting can be resolved either
randomly or by assigning x to the class of the nearest neighbor.
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k-NN classifier is considered to be an effective classifier. However, it has some
weaknesses. The first one is high computational cost since it must compute
all distances between each unclassified item and all items in TS. In cases of
large datasets, this drawback renders its use a time-consuming procedure and in
some cases even prohibitive. Another weakness is large storage requirements for
storing TS. A third weakness is that k-NN classifier is a noise-sensitive method.
Classification accuracy depends on the level of noise in TS. Usage of high k
values extend the examined neighbourhood and thus can partially remedy this
drawback. However, this implies a high number of trial-and-error executions to
determine the appropriate k value and that noise is uniformly distributed in TS
(otherwise, dynamic determination of k should be adopted [19]).

Data Reduction Techniques (DRTs) [26, 8, 15, 25, 28, 13, 10, 4, 17] can effec-
tively deal with the aforementioned weaknesses. They can be divided into Pro-
totype Selection (PS) [8] and Prototype Abstraction (PA) [26] algorithms. PS
algorithms select items from TS whereas PA algorithms generate items by sum-
marizing similar items from TS and use them as prototypes.

PS algorithms are divided into condensing and editing algorithms. PA and
PS-condensing algorithms aim to built a small representative set (condensing
set) of the initial TS. Usage of a Condensing Set (CS) has the benefits of low
computational cost and storage requirements while accuracy remains at high
levels. PS-editing algorithms aim to improve accuracy rather than achieve high
reduction rates. To achieve this, they remove noisy and mislabelled items and
smooth the decision boundaries (see Figure 1). Ideally, a PS-editing algorithm
builds an Edited training Set (ES) without overlaps between the classes.

The reduction rates of many PA and PS-condensing algorithms depend on the
level of noise in TS. The higher the level of noise, the lower the reduction rates
achieved. Therefore, effective application of such algorithms implies removal of
noise from the data, i.e., application of an editing algorithm beforehand [6, 15].
Hence, editing has a double goal: accuracy improvement and effective application
of PA and PS-condensing algorithms. We should mention that some condensing
algorithms, such as IB3 [1], integrate the idea of editing into their reduction
procedures. These algorithms are called hybrid (see [8, 26] for details).

Although PS-editing algorithms contribute in obtaining high quality training
data, they constitute a costly preprocessing step. Moreover, most PS-editing al-
gorithms are parametric, i.e., the user defines the values of certain input (tuning)
parameters. This implies time-consuming trial-and-error procedures to tune the
parameters. These observations are behind the motivation of this paper. The
contribution is the development and evaluation of a fast, non-parametric PS-
editing algorithm that is based on a k-means clustering [16] procedure that
forms homogeneous clusters. The proposed algorithm is called Editing through
Homogeneous Clusters (EHC), leads to accurate k-NN classifiers and has low
preprocessing cost.

The rest of the paper is organized as follows: Section 2 reviews the most
well-known editing algorithms. Section 3 presents the proposed EHC algorithm.
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(a) Initial training set (b) Edited set

Fig. 1: Smoothing decision boundaries and removing noisy items

Performance evaluation experiments are presented in Section 4 and, finally, Sec-
tion 5 concludes the paper.

2 Editing algorithms

2.1 The Edited Nearest Neighbor (ENN) rule

The reference editing algorithm is Wilson’s Edited Nearest Neighbor (ENN)
rule [29]. It constitutes the base of all other editing algorithms. ENN-rule is
very simple. Algorithm 1 contains the pseudocode of the algorithm. Initially,
the edited set (ES) is set to be equal to the TS (line 1). For each item x of
TS, the algorithm scans TS and retrieves its k nearest neighbors (line 3). If
x is misclassified by the majority vote of the retrieved nearest neighbors, it is
removed from ES (lines 4–7). ENN-rule considers wrongly classified items to be
noisy or close-border items and, thus, they must be removed. Note that, in each
algorithm iteration, ENN-rule searches for nearest neighbors in the original TS
and not in the “under construction” ES.

Algorithm 1 ENN-rule

Input: TS, k
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: NNs← find the k nearest to x neighbors in TS − {x}
4: majorClass← find the most common class of NNs
5: if xclass ̸= majorClass then
6: ES ← ES − {x}
7: end if
8: end for
9: return ES

Obviously, the cost of editing depends on the size of TS. In cases of large
datasets, ENN-rule is a time-consuming algorithm. ENN-rule must compute all
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distances between the items of TS. Therefore, N∗(N−1)
2 distances must be esti-

mated, where N is the number of items in TS.
A crucial issue that should be addressed is the determination of the value of

k that defines the size of the examined neighborhood. [28, 9, 17] consider k = 3
to be a typical value. This is adopted in many papers (e.g. [20]), whereas, other
papers use k = 3 and additional k values (e.g., [23, 12]). In some cases, re-
searchers determine the value of k that achieves the best performance through
trial-and-error procedures (e.g., [27]). In [29], the impact of k is discussed in
detail. Furthermore, in [12], a large number of k values are experimentally eval-
uated. It turns out that the best value of k depends on the dataset at hand and
should be determined by considering the distribution of items in the multidimen-
sional space. Even the best value of k may not be optimal and it may remove
non-noisy items (see [9]) or keep noisy items. This happens because ENN-rule
uses a unique k value for the entire TS. Different k values may be optimal for
different regions in space.

2.2 All k-NN

All-kNN [24] is a popular variation of ENN-rule. It iteratively executes ENN-
rule with different k values (see Algorithm 2). All-kNN adopts kmax as an upper
limit for the value of k. Initially, ES is set to be the whole TS (line 1). For each
item x in TS (line 2), All-kNN applies k-NN classifier on the items of TS (lines
6–7), initially, with k = 1 and tries to remove x from ES in a way similar to
ENN-rule. If x is misclassified, it is removed and the procedure continues with
the next item (lines 8–11). Otherwise, k is incremented by one (line 12) and the
algorithm retries to remove x. If the item is not removed after kmax iterations
(line 5), x remains in the final ES and All-kNN continues with the next item.

Since All-kNN uses more than one values for k, it removes more items than
ENN-rule. Although All-kNN is an iterative version of ENN-rule, an efficient
implementation of it does not re-compute the same distances again and again.
Therefore, All-kNN computes as many distances as ENN-rule and is parametric,
too. The value of kmax must be defined by the user. This usually implies tuning
through a trial-and-error procedure. M. Garcia-Borroto et al. consider kmax = 7
or kmax = 9 to be appropriate values [9].

2.3 Multiedit

Multiedit [7] is another well-known editing approach (see Algorithm 3). Initially,
ES is set to be equal to TS (line 1). Then, TS is divided into n random subsets,
s1, s2, . . . , sn (line 5). The algorithm continues by applying ENN-rule over each
item x ∈ si (line 7) of each subset si (line 6), but searching for the single nearest
neighbor (1-NN) in the module n following subset, i.e., s(i+1)modn (line 8). The
misclassified items are removed from ES (line 10). Then, TS is set to be ES
(line 20) and the whole process is repeated. Multiedit continues until the last R
iterations produce no editing (lines 15–19, line 21).
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Algorithm 2 All-kNN

Input: TS, kmax
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: k ← 1
4: flag ← FALSE
5: while (k ≤ kmax) and (flag == FALSE) do
6: NNs← find the k nearest to x neighbors in TS − {x}
7: majorClass← find the most common class in NNs
8: if xclass ̸= majorClass then
9: ES ← ES − {x}
10: flag ← TRUE
11: end if
12: k ← k + 1
13: end while
14: end for
15: return ES

Here, parameter k is not used since multiedit utilizes 1-NN classifier during
editing. However, parameters n and R influence the resulting ES. Parameter
n ≥ 3 defines the number of subsets. In many papers (e.g., [9, 23]), n = 3
is either adopted or proposed. Parameter R defines the number of non-editing
iterations. In [9], R = 2 is suggested as an appropriate value. Nevertheless, the
best values for these parameters can not be determined without tuning through
a trial-end-error procedure.

Multiedit usually achieves higher reduction rates than ENN-rule. It can suc-
cessfully remove noisy, outlier and close-border items. However, it may also re-
move non-noisy items. If items of two or more classes are close to each other,
multiedit may eliminate entire classes [9]. Another drawback of multiedit is that
it is based on a random formation of subsets, i.e., repeated applications may
build a completely different ES from the same TS.

Multedit is usually more time-consuming than ENN-rule. However, it may

compute even fewer than N∗(N−1)
2 distances. An efficient implementation of mul-

tiedit does not compute a distance more than once. However, since the distances
that have been already computed should be available until the end of the ex-
ecution, such an implementation requires more memory. In cases where each
distance is computed more than once, the computational cost of the algorithm
highly depends on the value of R.

2.4 Other Editing algorithms

Subsections 2.1, 2.2 and 2.3 presented in detail three state-of-the-art editing
algorithms that we use for comparison purposes in our experimental study in
Section 4. Many more editing approaches have been proposed in the literature.
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Algorithm 3 Multiedit

Input: TS, n,R
Output: ES

1: ES ← TS
2: r ← 0
3: repeat
4: flag ← FALSE
5: S ← set of n random subsets, s1, s2, . . . , sn of TS
6: for each si ∈ S do
7: for each x ∈ si do
8: nn← find the nearest neighbor in s(i+1)modn

9: if xclass ̸= nnclass then
10: ES ← ES − {x}
11: flag ← TRUE
12: end if
13: end for
14: end for
15: if flag = FALSE then
16: r ← r + 1
17: else
18: r ← 0
19: end if
20: TS ← ES
21: until r == R {until the last R iterations do not edit data}
22: return ES

EENProb and ENNth [27] are extensions of ENN-rule. Both retrieve the k
nearest neighbors, and then perform editing based on probability estimations.
Repeated ENN (RENN) rule [24] is also a variation of ENN-rule. Actually, it is
quite similar to All-kNN. RENN-rule applies ENN-rule in an iterative way until
each item’s majority of k nearest items have the same class. In [12], another
simple variation of ENN is proposed. It places an item in ES, if all its k nearest
neighbors have the same class label with it (distance ties increase the value of
k).

Sanchez et al. proposed two editing algorithms that are based on geometric
information provided by proximity graphs [23]. They are also based on the con-
cept of removal of misclassified items. To the best of our knowledge, they are
the only non-parametric editing algorithms. Nevertheless, the type of proximity
graphs used influence the resulting ES. In [23], two types of proximity graphs
were used. Consequently, four editing approaches were obtained and evaluated.
From this point of view, even these algorithms can be characterized to be para-
metric methods.

k-NCN editing and its iterative version [20] are also based on ENN-rule.
Particularly, they use k nearest centroid neighborhood classifier [22] instead of
k-NN classifier. Both are based on the following simple idea: the appropriate
neighborhood that should be examined for each item is defined by taking into
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consideration not only its nearest neighbors but also the symmetrical distribution
of neighbors around it.

In [3, 20] a depuration algorithm is proposed for editing training data. In
addition to removing some items from TS, the algorithm also changes the class
labels of some items. To achieve this, it uses two input parameters (see [3] or [20]
for details). [14] considers and evaluates editing approaches based on the depu-
ration algorithm and proposes the Neural Network Ensemble Editing (NNEE).
This method is also parametric. NNEE trains a neural network ensemble that
is then used to relabel some items. Last by not least, a recent paper [21] pro-
poses the use of local support vector machines for noise reduction. Like the other
methods, its performance depends on parameter tuning.

3 Editing through Homogeneous Clusters (EHC)
algorithm

As we already mentioned in Section 2, PS-editing algorithms either extend ENN-
rule or are based on the same idea. The proposed EHC algorithm follows a com-
pletely different, non-parametric strategy in order to remove noisy, mislabeled
and close-border data items. Actually, it is based on RHC [18], a PA algorithm
we have recently proposed. EHC iteratively applies k-means clustering on TS
until all constructed clusters contain items of a specific class only, i.e., they are
homogeneous. In the process, EHC removes all the clusters that contain only
one item. We call these clusters one-item clusters.

Initially, EHC considers TS to be a non-homogeneous cluster. The algorithm
computes a mean item for each class (class-mean) by averaging the corresponding
items in the non-homogeneous cluster. If the cluster contains items from c classes,
EHC computes c means. Then, it applies k-means clustering on the cluster, using
the class-means as initial means, and builds c clusters. k-means clustering is
recursively applied on the items of each non-homogeneous cluster built. One-
item clusters are removed.

Two examples that demonstrate the operation of EHC are depicted in Fig-
ures 2 and 3. More specifically, Figure 2 demonstrates how EHC identifies and
removes a close-border item, while Figure 3 demonstrates how the algorithm
removes a noisy item. Note that non-homogeneous clusters are depicted with
dashed borders. EHC identifies and removes outliers in a similar way.

Of course, EHC may assign a typical data item (non-noisy, non-close-border)
to an one-item cluster and remove it. For instance, suppose that a non-homogeneous
cluster with two items is built. EHC will remove both items even when one of
them belongs to the major class of the region.

Algorithm 4 describes a possible implementation of EHC. It utilizes a queue
data structure Q in order to hold the unprocessed clusters. Initially, ES is set
to be TS (line 1) and Q includes the whole TS as one unprocessed cluster (lines
2–3). In each algorithm iteration, cluster C is taken from the head of Q and is
examined (line 5). If C is homogeneous (line 6), the algorithm counts the items
in C and if C is a one-item cluster, its item is removed from ES (lines 7–9). If C
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(a) initial data (b) means of classes

(c) k-Means on initial data (d) means of classes in cluster A

(e) k-Means on
non-homogeneous cluster A

(f) final edited set

Fig. 2: EHC: Smoothing decision boundaries
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(a) initial data (b) means of classes (c) k-Means on initial
data

(d) means of classes in
cluster A

(e) k-Means on
non-homogeneous clus-
ter A

(f) final edited set

Fig. 3: EHC: Removing noisy items

is a non-homogeneous cluster, the class means for all the classes present in it are
computed and added to set R (lines 11–14). Set R and cluster C are the input
parameters to k-means clustering (line 15). The returned clusters are enqueued
in Q (lines 16–18). The loop continues as long as there are non-homogeneous
clusters (line 20).

Concerning the computational cost, we can easily conclude that EHC is a
fast algorithm. It uses the fast k-means clustering algorithm that is also sped-
up by considering as initial means the means of the classes that are present in
each cluster. One expects that the resulting clusters are quickly consolidated and
the cost is lower than when opting for random means initialization. It is worth
mentioning that contrary to all other editing methods, EHC does not compute
distances between “real” items. It computes distances between items and mean
items. Moreover, contrary to ENN-rule and some of its variations that compute
a fixed number of distances regardless the item distribution in the multidimen-
sional space, the number of distances computed by EHC is difficult to predict in
advance. It exclusively depends on the item distribution in the data space. Fi-
nally, the main advantage of the proposed method is that it is non-parametric.
Therefore, there is no need for time-consuming trial-end-error procedures. Fi-
nally, note that EHC builds the same ES regardless of data ordering.
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Algorithm 4 EHC

Input: TS
Output: ES

1: ES ← TS
2: Q← ∅
3: Enqueue(Q, TS)
4: repeat
5: C ← Dequeue(Q)
6: if C is homogeneous then
7: if |C| = 1 then
8: ES ← ES − C
9: end if
10: else
11: R← ∅ {R is the set of class means}
12: for each class M in C do
13: R← R ∪mean of(M)
14: end for
15: Clusters ← K-MEANS(C, R)
16: for each cluster Cl ∈ Clusters do
17: Enqueue(Q, Cl)
18: end for
19: end if
20: until IsEmpty(Q) {until all constructed clusters are homogeneous}
21: return ES

4 Performance evaluation

4.1 Experimental setup

The proposed EHC algorithm was coded in C and evaluated on ten datasets.
We downloaded eight datasets from KEEL dataset repository1 [2]. Their main
characteristics are shown in Table 1. Initially, we did not know the level of noise
in each dataset. After our experimentation, we realized that LIR is an almost
noise-free dataset and LS and PH have low levels of noise. Since, we wanted
to test how editing behaves on noise-free datasets, we decided to include these
datasets in our experimentation. Moreover, we built two additional datasets by
adding 10% random noise in LS and PH. We refer to these datasets as LS-n
and PH-n respectively. Practically, we changed the class label of each item with
a probability of 0.1. No other data transformation was performed. No dataset
included missing values. Finally, euclidean distance was adopted as the distance
metric.

For comparison purposes, we coded the three state-of-the-art algorithms
presented in detail in Section 2 (ENN-rule [29], All-kNN [24], Multiedit [7]).
We coded and used a non-optimized implementation of multiedit that may re-
compute same distances more than once.

1 http://sci2s.ugr.es/keel/datasets.php
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Table 1: Dataset details
Dataset Size (items) Attributes Classes

Magic Gamma Telescope (MGT) 19020 10 2

Landsat Satellite (LS) 6435 36 6

Phoneme (PH) 5404 5 2

Letter Image Recognition (LIR) 20000 16 26

Banana (BN) 5300 2 2

Ecoli (ECL) 336 7 8

Pima (PM) 768 8 2

Yeast (YS) 1484 8 10

An important issue that we had to address was the tuning of the parameters
of the aforementioned methods. For all of them, we adopted the settings proposed
in [9]. In particular, we used k = 3 for ENN-rule, k = 7 and k = 9 for All-kNN
and n = 3 and R = 2 for multiedit. These settings are very common in many
experimental studies in the literature. In addition, we used k = 5 for ENN-
rule and n = 5 for multiedit. Of course, we also measured and present the
performance of the conventional 1-NN classifier (classification without editing).

The four editing algorithms were compared to each other in terms of two
main criteria: classification accuracy and preprocessing (editing) cost. The lat-
ter was estimated by counting the distances computed by each algorithm. Ac-
curacy measurements were estimated by executing 1-NN classifier on the edited
sets. For each algorithm and dataset, we report the average accuracy and cost
measurements obtained via a five-fold cross validation. We used the pairs of
training/testing sets distributed by KEEL repository. Although the reduction
rates achieved by each method do not indicate the best performing algorithm,
they reveal the percentage of data that is considered as noise by each algorithm.
Therefore reduction rates were estimated and are reported.

4.2 Comparisons

The performance measurements of our experimental study are presented in Ta-
ble 2. Each table cell contains three measurements that correspond to the exe-
cution of an editing approach on a particular dataset. The three measurements
are: accuracy (Acc), reduction rate (RR) and preprocessing cost (PC). The best
measurements are in bold.

As we expected, EHC is the fastest approach. It achieves very low average
PC measurements compared to its competitors (see the last row of the table).
EHC computes the fewest distances in nine out of ten datasets. Furthermore, we
observe that the cost gains are very high for large datasets. Finally, as we men-
tioned in Section 3, EHC computes a completely different number of distances
for LS, LS-n and PH, PH-n. Here, we should mention that multiedit would have
computed as many distances as ENN-rule and All-kNN had we used a more
efficient implementation.
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Table 2: Experimental measurements Accuracy (Acc(%)), Reduction Rate
(RR(%)) and Preprocessing Cost (PC (millions of distance computations))

Dataset 1-NN
ENN ENN Multiedit Multiedit AllkNN AllkNN

EHC
(k=3) k=5) (n=3, R=2) (n=5, R=2) (k=7) (k=9)

MGT
Acc 78.144 80.44 80.57 76.75 75.26 80.76 80.86 79.52
RR - 20.08 19.20 39.98 42.36 29.67 30.38 10.70
PC - 115.76 115.76 2,839.55 1,447.93 115.76 115.76 4.08

LS
Acc 90.60 90.30 90.43 86.79 86.03 90.12 90.16 90.55
RR - 9.07 9.27 24.13 26.17 13.92 14.51 3.11
PC - 13.25 13.25 266.22 139.53 13.25 13.25 1.69

PH
Acc 90.10 88.14 87.53 80.77 79.72 86.55 86.23 89.06
RR - 11.25 11.93 34.14 36.91 17.92 19.30 7.36
PC - 9.35 9.35 166.22 53.71 9.35 9.35 0.66

LIR
Acc 95.83 94.98 94.87 70.94 58.35 94.28 94.00 95.23
RR - 4.33 4.44 43.43 56.59 7.31 7.97 3.95
PC - 127.99 127.99 7,214.38 2,900.53 127.99 127.99 41.85

BN
Acc 86.906 89.36 89.55 89.83 90.38 89.509 89.79 88.60
RR - 11.53 10.98 20.12 21.64 17.10 17.51 10.65
PC - 8.99 8.99 106.69 60.26 8.99 8.99 0.56

ECL
Acc 79.781 81.57 81.86 63.10 46.11 81.26 80.66 82.16
RR - 20.45 20.45 47.29 60.15 28.63 30.48 17.01
PC - 0.036 0.036 0.100 0.055 0.036 0.036 0.035

PM
Acc 68.358 71.87 71.75 71.36 68.89 72.65 73.30 70.32
RR - 30.16 29.43 53.07 58.96 45.56 46.24 16.59
PC - 0.19 0.19 0.51 0.26 0.19 0.19 0.06

YS
Acc 52.156 56.47 57.07 52.90 50.54 58.29 58.42 54.45
RR - 45.73 43.89 74.34 80.93 59.90 61.25 29.58
PC - 0.70 0.70 1.19 0.58 0.70 0.70 0.84

LS-n
Acc 82.067 89.96 90.13 86.70 85.86 89.74 89.79 89.67
RR - 20.21 18.08 37.90 40.25 30.01 30.57 13.80
PC - 13.25 13.25 131.95 94.98 13.25 13.25 8.06

PH-n
Acc 81.884 87.71 87.25 80.63 79.66 86.20 85.83 88.40
RR - 21.78 20.21 34.14 36.91 32.36 33.46 22.29
PC - 9.35 9.35 166.22 53.71 9.35 9.35 4.35

AVG
ACC 80.23 83.08 83.10 75.98 72.08 82.93 82.90 82.80
RR - 19.46 18.79 40.85 46.09 28.24 29.17 13.50
PC - 29.89 29.89 1,089.30 475.15 29.89 29.89 6.22
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Concerning accuracy measurements, we observe that the proposed algorithm
is comparable to ENN-rule and All-kNN. Multiedit has the worst accuracy, es-
pecially for LIR and ECL, where its accuracy is unacceptable. This happens
because multiedit removes data that should not be removed. Although the dif-
ferences in accuracy between EHC, ENN and All-kNN are not statistically sig-
nificant, we observe that EHC has the highest Acc measurements in half the
datasets. However, ENN-rule has the highest average Acc measurement.

For LIR, LS and PH that contain low levels of noise, all editing approaches
seem to negatively affect accuracy since conventional 1-NN classifier achieves the
highest Acc measurements. However, in all these cases, EHC is the most accurate
editing algorithm. In contrast, in the rest seven datasets, most of the editing
approaches achieve higher Acc measurements than conventional-1NN classifier.
Therefore, it appears that editing constitutes a necessary preprocessing step.

The proposed algorithm has the lowest reduction rate. EHC removes items
by using the strict criterion of one-item clusters. For datasets with extremely
high levels of noise (e.g. 30% or more), it is not certain that EHC will improve
classification accuracy like ENN-rule with an appropriate k value does. On the
other hand, EHC is not expected to negatively affect classification accuracy as
much as the other methods do.

5 Conclusions

Classification accuracy achieved by k-NN classifier strongly depends on the qual-
ity of the available training data. Noisy and mislabeled data as well as outliers
and overlaps between regions of different classes are the reasons of bad classifi-
cation performance for the particular classifier. Editing algorithms can improve
classification accuracy by removing such data. In this paper, we presented a
short review of editing algorithms. Then, we proposed a non-parametric algo-
rithm, called Editing through Homogeneous Clusters (EHC), which follows a
completely different strategy than the other editing approaches. EHC is based
on a clustering procedure that forms homogeneous clusters in the training data.
The clusters that contain only one item are considered redundant (they contain
noisy, outlier or close-border items) and are removed. An experimental study
with ten datasets showed that the proposed algorithm is very fast and achieves
comparable classification accuracy to the state-of-the-art methods.
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