
X-Compiler: Yet Another Integrated Novice Programming Environment

Georgios Evangelidis*, Vassilios Dagdilelis**, Maria Satratzemi*, Vassilios Efopoulos*

(*)Department of Applied Informatics, (**)Department of Educational and Social Policy
University of Macedonia, Thessaloniki, Greece

{gevan, dagdil, maya, efop}@uom.gr

Abstract

This paper presents a simple programming language,
called X, and an educational programming environment,
called X-Compiler, designed to introduce students to
programming. X-Compiler can be used to edit, compile,
debug and run programs written in X, a subset of Pascal.
X-Compiler could be didactically interesting because of
the following features: (a) users can watch the
intermediate steps of the execution of a program: source
code compilation, correspondence of source and pseudo-
assembly code during execution, registers content, and
intermediate values of user and temporary system
variables; also, they can edit the produced pseudo-
assembly code and re-execute it, (b) there are many
detailed and explanatory messages that can guide novice
programmers when debugging their programs and, in
general, help them write better programs.

1. Introduction

For many years now, the most common methodology
[4] for teaching principles of programming languages is
based on the use of a general purpose programming
language, like C or Pascal, and a commercial
programming environment. But, this approach does not
appear to be didactically effective, since novice
programmers are expected to become familiar at the same
time with many concepts related both to the structure and
operation of information systems and the programming
techniques. Du Boulay [2], for example, mentions the
following general factors that hinder the learning process:
1. The way students understand and control the

“mental” machine that executes their programs and its
relationship with the actual machine (the hardware).

2. The rules of the programming language (the
syntax and semantics of the language affect and/or
extend the behavior of the mental machine).

3. The need to first comprehend the language
control structures.

4. The need to master a problem solving
technique (students have to design, implement, test,
and debug a program using a predefined set of tools).

Below, we further elaborate on the factors mentioned
above:
 Program execution is a kind of mechanism

that accomplishes a certain task. It may be very hard
for students to distinguish between the program and
the mechanism it describes.

 A computer (hardware) and a programming
environment (software) comprise together a
mechanism that is used to create other mechanisms,
that is, programs. Students should be aware of the way
such a computing system operates, i.e., what exactly
happens in the internal of a computing system, or they
may develop their own theories of operation that are
usually insufficient and erroneous.

 In most programming environments, it is
usually hard for students to understand the
information presented on the computer screen. This
information may refer to a previous interaction
between the student and the programming
environment, to the input the student has just entered,
or to the output of the execution of some code.

 Students have to master procedures
regarding the editing, loading and saving of programs.

 The internals of the “mental” machine are
usually hidden. Students cannot “see” what is
happening during the compilation and/or execution of
their code.

 The code produced by students has to
adhere to strict syntactic and semantic rules or it
cannot be “understood” by the system. This is a
source of frustration for students because they usually
tend to lend human characteristics to the system.

 The use of English words as keywords is
another potential source of anomaly because it lends
the system a kind of intelligence. Also, these words
have different meanings when used in programs and
when in natural language.

 Most programming environments do not
provide adequate and user-friendly error handling and
reporting [7].
Considering the above-mentioned problems, we

believe that it is essential to develop alternative didactic
methodologies for introducing students to programming.
This can be aided by the use of specially designed
programming environments. In this paper we introduce a

programming language we have designed and we call X,
and its corresponding programming environment. In
Section 2, we present the basic design principles we used
when designing our programming environment (X-
Compiler). The specifications of the languages (X and
pseudo-assembly) are given in Section 3. In Section 4 we
describe the programming environment. Finally, Section
5 gives an insight on the didactic use of X-Compiler. We
conclude with a summary.

2. Design Principles

Programming environments for novice programmers
should be effective tools for achieving certain didactic
goals. Below, we list a number of principles [12] we
considered essential while developing the programming
environment for X.

Minimalism. The programming language should be as
simple as possible. We avoided the use of types and we
don’t require variables to be declared before use. Also,
the programming environment does not present
unnecessary information.

Simplicity. Novice programmers are asked to program
a mental machine they barely know and understand. This
is a machine whose nature is determined, or better,
implied by the programming language. It is essential that
the mental machine is as simple as possible, i.e., it should
consist of a small number of components that interact in a
well-defined and clear manner [3, 9, 13].

Stepped execution and control through visual
feedback. Instant feedback can help novice programmers
implement and debug their programs. A graphical
debugger is useful even for correct programs: it can help
novice programmers understand the way their programs
work. A programming environment should help novice
programmers test, debug, and execute their programs [8].
It is essential that the programming environment include a
low-level debugger and a code execution tracer together
with data visualization [7, 10, 11, 14].

3. Languages X and pseudo-assembly

We have designed a Pascal-like language, called X.
The language supports the assignment, if ... then,
while ... do, read, write and compound statements.
Identifiers and numbers are integers and all, possibly
nested, arithmetic expressions evaluate to integers. X
supports only three relational operators: >, =, and <>. A
comment is text enclosed in curly brackets ({}). In Table
1 that follows you can find the full specification of X.

Table 1. Specification of X
program BEGIN {statement;}* END.
statement id := expr |

READ id |

WRITE expr |
IF rel_expr THEN statement |
WHILE rel_expr DO statement |
BEGIN {statement;}* END

id any string consisting of letters, digits and
underscore and starts with a letter

expr id | number | expr op expr | (expr)
op + | - | * | /
number any long integer between
rel_expr expr rel_op expr
rel_op > | = | <>
comments anything enclosed in curly brackets

The assembly language used is a pseudo-assembly that
runs on a virtual machine with two registers and includes
the basic LOAD, STORE, COMPARE, JUMP, ADD,
etc., instructions needed to implement the source
language. In Table 2 below you can find a detailed
description of the instructions of the pseudo-assembly.

Table 2. The pseudo-assembly used in X-
Compiler

instruction Explanation
BLOCK v declare an integer variable or a

memory position with name v
LOAD(r, v) store contents of memory location v

in register r (r can be 0 or 1)
LOADN(r, n) store number n in register r
STORE(r, v) store contents of register r to

memory location v
ADD_R(r1, r2, r3)
SUB_R(r1, r2, r3)
MUL_R(r1, r2, r3)
DIV_R(r1, r2, r3)

add/subtract/multiply/divide
contents of registers r1 and r2 and
store the result in register r3

CMP(r1, r2, r3) compare the contents of registers r1
and r2 and store the result in register
r3; the result is –1 if r1 < r2,
1 if r1 > r2, and 0 if r1 = r2

INC(r) increment the contents of register r
DEC(r) decrement the contents of register r
NEG(r) negate the contents of register r
my_label: declare a label with the name

my_label
JUMP_ZERO(r,
lb)

jump to lb if contents of r = 0

JUMP_NEG(r, lb) jump to lb if contents of r < 0
JUMP_POS(r, lb) jump to lb if contents of r > 0
JUMP(lb) unconditionally jump to lb
READ(r) store user input to register r
WRITE(r) print contents of register r to the

output window

4. X-Compiler programming environment

The X-Compiler programming environment has been
implemented on the Microsoft Windows platform using
Macromedia Director 7 and the compiler construction
tools LEX and YACC [1].

X-Compiler allows users to edit, debug, and execute
their programs. It consists of five windows (1-source-
code, 2-assembly-code, 3-system-registers&tempvars, 4-
user-vars, 5-output), and has two modes of operation
(novice and advanced) (see Figure 1). In the novice mode
only windows 1 and 5 are active, whereas in the advanced
mode all windows are active. Of course, users can
activate or deactivate any window any time. The provided
menu-bar and window-specific toolbars allow the
intuitive use of the programming environment (open,
save, and edit source or assembly code, compile, execute,
or step-execute either type of code, arrange windows, get
help on the operation of the programming environment or
the X-language). Here, we should mention that double-
clicking any keyword, operator, or delimiter on the source
code window provides help on the specific feature of the
X-language.

Figure 1. The X-Compiler programming environment

During compilation, syntactic errors in the source code
trigger a pop-up window that contains two drop-down
lists, one for the detected errors and one for the warnings
issued by the compiler. Users can choose the list element
they desire to get an explanation of the type of the error
or warning. At the same time the appropriate line of the
source code is highlighted.

Once users succeed in compiling their code they can
either execute it or step-execute it so that they are able to
examine what actually happens during execution. For
each source code statement the corresponding assembly
code statement(s) are highlighted and at the same time the
appropriate system registers, temporary variables, and
user variables get updated if necessary. Input statements
are handled by using a pop-up window that allows users
to enter the desired value for their integer variables (see in
the center of Figure 1). The output window displays the
output generated by the WRITE statements of the user
programs.

An interesting feature of the assembly code window is
the ability to edit/alter the compiler produced assembly

code that corresponds to a given source code fragment
and execute it. Since the compiler produces non-
optimized assembly code this feature can allow teachers
to guide their students in manually optimizing their
assembly code. Alternatively, users can write their
assembly programs from scratch.

5. Didactic features of the Χ- Compiler

The didactic objective of X-Compiler is to offer
students a lightweight programming environment with
simple high level and pseudo-assembly languages and
clarify the phases of compilation and program execution
that usually constitute a "black box" in professional
programming environments [3, 4].

X-Compiler offers interesting didactic features. Users
get detailed feedback on the errors encountered during
compilation, and are always aware of everything that
happens to the internals of the mental machine during
program execution (by seeing the correspondence
between source and assembly code, the intermediate
values of the machine registers, the system generated
temporary variables, their own variables, and the contents
of the output window). Moreover, users can alter the
produced assembly code and then execute it.

We provide teachers and students with the appropriate
manuals that contain a series of educational activities on
the use of X-Compiler. We have designed the included
activities based on the findings of the research community
and our teaching experience on the difficulties
encountered by students that are novice programmers.

For example, the following case of “cognitive transfer”
[5, 6] could be a potential source of difficulties for novice
programmers trying to solve problems in a traditional
programming environment. Some students may believe
that the following code computes the area of a
parallelogram:

area := base * height;
read(base);
read(height);
write(area);

They will be surprised to realize that area is not
computed correctly. In the X-Compiler programming
environment they can see why the above program is not
correct by observing the intermediate values of their
variables.

Now, consider the code fragment below that swaps the
values of variables A and B.

ΤΕΜΡ:=Α
Α:=Β;
Β:=ΤΕΜΡ;

The teacher can observe that one can get the same
effect without using the extra variable TEMP, as shown in
the following code:

Α:=Α+Β;
Β:=Α-Β;
Α:=Α-Β;

Students can examine the intermediate values of the
variables and understand why this solution is correct. The
teacher could then show that this solution is slower
(because it uses more assembly instructions than the
previous solution) and also it does not always work
correctly (when we have integer addition underflow or
overflow).

Those two examples demonstrate the didactic
capabilities of our programming environment. Students
can not only examine whether their programs produce the
correct output, but also discover easily and fast the
syntactic and semantic errors they make.

6. Summary

X-Compiler is already being used by the Greek
Ministry of Education in a number of secondary
education schools and in the entry level university courses
on programming we teach (especially its assembly
language features). Currently, we are in the process of
implementing some additions to the software concerning,
(a) a small extension of X to include strings the
procedures, and (b) the creation of a “smart” advisor on
the logical errors made by students (see first example with
the calculation of the area of a parallelogram).

7. References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers:
principles, techniques, tools”, Addison-Wesley, 1988.
[2] B. Du Boulay, “Some Difficulties Of Learning To
Program”, Studying The Novice Programmer, E. Soloway
and J. Sprohrer (Eds.), Lawrence Erlbaum Associates,
1989, pp. 283-300.
[3] B. Du Boulay, T. O’Shea, and J. Monk, “The Black
Box Inside the Glass Box: Presenting Computing
Concepts to Novices”, Studying The Novice Programmer,
E. Soloway and J. Sprohrer (Eds.), Lawrence Erlbaum
Associates, 1989, pp. 431-446.
[4] P. Brusilovsky et al, “Mini-languages: a way to learn
programming principle”, Education and Information
Technologies, 2, 1997, pp. 65-83.
[5] V. Dagdilelis, “Conceptions des eleves a propos des
notions fontamentales de la programmation informatique
en classe de Troisieme”, Memoire D.E.A., Universite
Joseph FOURIER, Grenoble, France, 1986.

[6] V. Dagdilelis, “La validation en programmation: a
propos de conceptions des etudiants”, actes V Ecole d'ete
de Didactique des Mathematiques et de l'Informatique,
Plestin-les-Greves, France, 1989.
[7] S. N. Freund and E. S. Roberts, “THETIS: An ANSI
C programming environment designed for introductory
use”, ACM SIGSCE ’96, Philadelphia, PA, USA, pp. 300-
304, 1996.
[8] C. DiGiano, R. Baecker, and A. Marcus, “Software
visualization for Debugging”, Communications of the
ACM, Vol. 40, No. 4, pp. 44-54, 1997.
[9] P. Mendelsohn, T.R.G. Green, P. Brna, “Programming
Languages in Education: The Search for an Easy Start”,
Psychology of Programming, J. Hoc, T. Green, R.
Samurcay, and D. Gilmore (Eds.), Academic Press, 175-
200, 1990.
[10] S. Mukherjia and J. Stasko, “Applying Algorithm
Animation Techniques for Program Tracing, Debugging,
and Understanding”, IEEE 0279-5257/93, pp. 456-465,
1993.
[11] S. Mukherjia and J. Stasko, “Toward Visual
Debugging: Integrating Algorithm Animation Capabilities
within a Source-Level Debugger”, ACM Transactions on
Computer-Human Interaction, Vol. 1, No. 3, pp. 215-244,
1994.
[12] J. F. Pane and B. A. Myers, “Usability Issues in the
Design of Novice Programming Systems”, Technical
Report CMU-CS-96-132, School of Computer Science,
Carnegie Mellon University, 1996.
[13] M. Ruckert and R. Halpern, “Educational C”, ACM
SIGSCE Bulletin, pp. 6-9, 1993.
[14] R. S. Sangwan, J. F. Korsh, and P. S. LaFollette, “A
System for Program Visualization in the Classroom”,
ACM SIGSCE ’98, Atlanta, GA, USA, pp. 272-276, 1998.

	X-Compiler: Yet Another Integrated Novice Programming Environment

