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Abstract We propose a novel approach in multivariate time series similarity search
for the purpose of improving the efficiency of data mining techniques without sub-
stantially affecting the quality of the obtained results. Our approach includes a rep-
resentation based on Principal Component Analysis (PCA) in order to reduce the
intrinsically high dimensionality of time series, and utilizes as a distance measure a
variation of the Squared Prediction Error (SPE), a well-known statistic in the Statis-
tical Process Control community. Contrary to other PCA-based measures proposed
in the literature, the proposed measure does not require applying the computation-
ally expensive PCA technique on the query. In this paper, we investigate the use-
fulness of our approach in the context of query by content and 1-NN classification.
More specifically, we consider the case where there are frequently arriving objects
that need to be matched with the most similar object in a database or that need to
be classified into one of several pre-determined classes. We conduct experiments
on four datasets used extensively in the literature, and we provide the results of the
performance of our measure and other PCA-based measures with respect to classi-
fication accuracy and precision/recall. Experiments indicate that our approach is at
least comparable to other PCA-based measures and a promising option for similarity
search within the Data Mining context.
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1 Introduction

Rapid advances in automated monitoring systems and storing devices have led to
the generation of huge amounts of data in the form of time series, that is, series of
measurements recorded through time. Inevitably, (most of) this volume of data re-
mains unexploited, since the traditional methods of analyzing data do not adequately
scale to the massive datasets frequently encountered. In the last decade, there has
been an increasing interest in the Data Mining field, which involves techniques and
algorithms capable of efficiently extracting patterns that can potentially constitute
knowledge from very large databases.

The field of time series data mining mainly considers methods for the following
tasks: clustering, classification, novelty detection, motif discovery, rule discovery,
segmentation and indexing [30]. At the core of these tasks lies the concept of sim-
ilarity, since most of them require searching for similar patterns [21]. Two time se-
ries can be considered similar when they exhibit similar shape or pattern. However,
the presence of high levels of noise demands the definition of a similarity/distance
measure that allows imprecise matches among series [8]. In addition to that, the
intrinsically high dimensionality of time series affects the efficiency of data min-
ing techniques. Note that the dimensionality is defined by the length of the time
series. In other words, each time point can be considered as a feature whose value
is recorded. Thus, an appropriate representation of the time series is necessary in
order to manipulate and efficiently analyze huge amounts of data. The main objec-
tive is to reduce the dimensionality of a time series by representing it in a lower
dimension and analyze it in this dimension. There have been several time series rep-
resentations proposed in the literature for the purpose of dealing with the problem
of the “dimensionality curse” that appears frequently within real world data mining
applications [7, 9].

In this paper, we consider the case of multivariate time series, that is, a set of
time series recorded at the same time interval. Contrary to the univariate case, the
values of more than one attribute are recorded through time. The objects under con-
sideration can be expressed in the form of matrices, where columns correspond to
attributes and rows correspond to time instances. Notice that a univariate time series
can be expressed as a column (or row) vector that corresponds to the values of one
attribute at consecutive time instances. Multivariate time series frequently appear
in several diverse applications. Examples include human motion capture [27], geo-
graphical information systems [7], statistical process monitoring [20], or intelligent
surveillance systems [34]. For instance, it is of interest to form clusters of objects
that move similarly by analyzing data from surveillance systems or classify cur-
rent operating conditions in a manufacturing process into one of several operational
states.

As a motivating example, consider the task of automatically identifying people
based on their gait. Suppose that data is generated using a motion capture system,
which transmits the coordinates of 22 body joints every second (i.e. 66 values) for
two minutes (i.e. 120 seconds). The resulting dataset consists of 66 time series and
120 time instances, and corresponds to a specific person. This dataset can be ex-
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pressed as a matrix X120×66. Also, suppose that we have obtained gait data for every
known person under different conditions, for example, under varying gait speeds,
and stored it in a database. Each record corresponds to one person and holds the
gait data, which can be considered as a matrix, along with a label that indicates the
identity of this person. Note that there is more than one record that corresponds to
the same person, since we have obtained gait data under different conditions for ev-
ery known person. Given this database, the objective is to identify a person under
surveillance. In this case, we search the database for the most similar matrix to the
one that is generated by this person. This task can be considered as a classification
task. Each known person represents a class that consists of the gait data of this per-
son generated under different conditions. The task is to classify (identify) a person
under surveillance into a class.

This classification problem can be virtually handled by (other) classic classifica-
tion techniques [35, 29], if each matrix is represented as a vector by concatenating
its columns (i.e., the values of the corresponding attributes). However, we have to
consider two issues with respect to this approach. The first issue is that the problem
of high dimensionality deteriorates in the case of multivariate time series, since it is
not only the length of the time series, but also the number of attributes that determine
the dimensionality. In the previous example, the matrix X120×66 that corresponds to
the gait data of one person constitutes an object of 7920 (120×66) dimensions. The
second issue is that the correlations among attributes of the same multivariate time
series are ignored. This loss of information may be of serious importance within a
classification application.

We introduce a novel approach in identifying similar multivariate time series,
which includes a PCA-based representation for the purpose of dimensionality re-
duction and a distance measure that is based on this representation. Principal Com-
ponent Analysis (PCA) is a well-known statistical technique that can be used to
reduce the dimensionality of a multivariate dataset by condensing a large number of
interrelated variables into a smaller set of variates, while retaining as much as pos-
sible of the variation present in the original dataset [16]. In our case, the interrelated
variables are in the form of time series. We provide a novel PCA-based measure
that is a variation of the Squared Prediction Error (SPE) or Q-statistic, which is
broadly utilized in Multivariate Statistical Process Control [22]. Contrary to other
PCA-based measures proposed in the literature, this measure does not require ap-
plying the computationally expensive PCA technique on the query. Moreover, we
provide a method that further speeds up the calculations of the proposed measure
by reducing the dimensionality of each one of the time series that form the query
object during the pre-processing phase. Although our approach can be applied on
other types of data, we concentrate on time series for two reasons. First, this type of
data differs from other domains in that it exhibits high dimensionality, high feature
correlation, and high levels of noise. Second, a large portion of data is generated in
the form of time series in almost all real- world applications.

The objective of our approach is to provide a means for improving the efficiency
of data mining techniques without substantially affecting the quality of the cor-
responding results. In particular, the dimensionality reduction of the original data
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improves the scalability of any data mining technique that will be applied subse-
quently, and the proposed measure aims at maintaining the quality of the results.
In this paper, we investigate the potential usefulness of our approach, mainly in the
context of query by content and 1-NN classification. More specifically, we consider
the case where there are frequently arriving objects that need to be matched with
the most similar object in a database or that need to be classified into one of several
pre-determined classes.

In Section 2, we discuss PCA with respect to similarity search and we provide
related work. Section 3 introduces our approach and provides a distance measure
that is based on Multivariate Statistical Process Control. In Section 4, we describe
the experimental settings with respect to the datasets, the methods, and, the rival
measures. The results of our experiments are presented and discussed in Section 5.
Finally, conclusions and future work are provided in Section 6.

2 Background

We briefly review Principal Component Analysis on multivariate data in Section 2.1.
Similarity search is based on shapes, meaning that two time series are considered
similar when their shapes are considered to be “close enough”. Apparently, the no-
tion of “close enough” depends heavily on the application itself, a fact that affects
the decision of the pre-processing phase steps to be followed, the similarity mea-
sure to be utilized and the representation to be applied on the raw data (Section 2.2).
Finally, in Section 2.3, we review several PCA-based measures.

2.1 Review of PCA

PCA is applied on a multivariate dataset, which can be represented as a matrix
Xn×p. In the case of time series, n represents their length (number of time instances),
whereas p is the number of variables being measured (number of time series). Each
row of X can be considered as a point in p-dimensional space. The objective of
PCA is to determine a new set of orthogonal and uncorrelated composite variates
Y( j), which are called principal components:

Y( j) = a1 jX1 +a2 jX2 + . . .+ap jXp, j = 1,2, . . . p (1)

The coefficients ai j are called component weights and Xi denotes the ith variable.
Each principal component is a linear combination of the original variables and is de-
rived in such a manner that its successive component accounts for a smaller portion
of variation in X . Therefore, the first principal component accounts for the largest
portion of variance, the second one for the largest portion of the remaining variance,
subject to being orthogonal to the first one, and so on. Hopefully, the first m com-
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ponents will retain most of the variation present in all of the original variables (p).
Thus, an essential dimensionality reduction may be achieved by projecting the orig-
inal data on the new m-dimensional space, as long as, m ¿ p.

The derivation of the new axes (components) is based on Σ, where Σ denotes
the covariance matrix of X . Each eigenvector of Σ provides the component weights
ai j of the Y( j) component, while the corresponding eigenvalue, denoted λ j, provides
the variance of this component. Alternatively, the derivation of the new axes can
be based on the correlation matrix, producing slightly different results. These two
options are equivalent when the variables are standardized (i.e. they have mean equal
to zero and standard deviation equal to one).

Intuitively, PCA transforms a dataset X by rotating the original axes of a p-
dimensional space and deriving a new set of axes (components), as in Fig. 1. The
component weights represent the angles between the original and the new axes. In
particular, the component weight ai j is the cosine of the angle between the ith origi-
nal axis and the jth component [12]. The values of Y( j) calculated from Eq. 1 provide
the coordinates of the original data in the new space.

Conclusively, the application of PCA on a multivariate dataset Xn×p results in
two matrices, in particular the matrix of component weights Ap×p and the matrix of
variances Λp×1. In addition to that, the matrix of the new coordinates Yn×p of the
original data can be calculated from A, since Y = X ·A.

2.2 Implications of PCA in Similarity Search

Regarding the pre-processing phase, there are four main distortions that may exist
in raw data, namely, offset translation, amplitude scaling, time warping and noise.
Distance measures may be seriously affected by the presence of any of these dis-
tortions, resulting most of the times in missing similar shapes. Offset translation
refers to the case where there are differences in the magnitude of the values of two
time series, while the general shape remains similar (Fig. 2). This distortion is in-
herently handled by PCA, since it is based on covariances, which are not affected
by the magnitude of the values. This is a potential disadvantage of PCA, if simi-

Fig. 1 A multivariate time
series consisting of two vari-
ables (X1 and X2) and ten time
instances. Dots represent the
time instances, while solid
lines represent the principal
components that have been
derived by PCA. A dimen-
sionality reduction can be
achieved, if only the first
component Y(1) is retained
and data is projected on it.
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larity search is to be based also on the magnitude of the values. Amplitude scaling
refers to the case where there are differences in the magnitude of the fluctuations
of two time series, while the general shape remains similar (Fig. 2). In this case,
PCA representation can be based on the correlations among variables, instead of
the covariances. This is an alternative way of deriving the principal components
that produces slightly different results, but not essentially different in the context
of dimensionality reduction. Time warping, which may be global or local, refers to
the acceleration or deceleration of the evolvement of a time series through time. In
the case of global time warping (i.e. two multivariate time series evolve in different
rates), PCA representation is expected to be similar, since the shorter time series
can be considered as a systematic random sample of the longer one, resulting to a
similar covariance matrix. Intuitively, the existence of local time warping distortions
may be captured by the covariances of the corresponding variables. Finally, noise
is intrinsically handled by PCA, since the discarded principal components account
mainly for variations due to noise.

Fig. 2 Two of the distortions that may exist in raw time series data

Another issue in the pre-processing phase is the handling of time series of dif-
ferent lengths. PCA requires variables (time series) of equal length for the same
object. For example, an object Xn×p consists of p time series that all have the same
length n. Therefore, this is a limitation of this technique. However, similarity search
is performed among objects, and thus, it is based on the produced matrices Ap×p
and Λp×1, which are independent of the lengths of the series. For example, the com-
parison of two objects Xn×p and Qm×p is feasible, since their PCA representations
are independent of n and m, respectively.

Similarity search also requires a measure that quantifies the similarity or dis-
similarity between two objects. Under PCA transformation, this measure should be
based on at least one of the produced matrices, mentioned in the previous paragraph,
Ap×p, Λp×1, and Yn×p. The central concept is that, if two multivariate time series are
similar, their PCA representations will be similar, that is, the produced matrices will
be close enough. Searching similarity based on Ap×p, means to compare the angles
of principal components derived from two multivariate time series, whereas search-
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ing based solely on Yn×p is useless, since these values are coordinates in different
spaces. Λp×1 contains information about the shape of the time series and it may be
used in conjunction with Ap×p for further distinguishing power.

The PCA representation of a dataset Xn×p consists of the component weight ma-
trix Ap×p and the variances matrix Λp×1. The data reduction may be substantial as
long as the number of time instances n is much greater than the number of vari-
ables p. Moreover, a further data reduction can be achieved, if only m components
are retained, where m < p. There are several criteria for determining the number of
components to retain, such as the scree graph or the cumulative percentage of total
variation [16]. According to the latter criterion, one could select that value for m,
for which the first m components retain more than 90% of the total variation present
in the original data.

Although PCA-based similarity search is complicated and usually requires ex-
pensive computations, it may improve the quality of similarity search providing at
the same time useful information for post hoc analysis.

2.3 Related Work

Although there is a vast literature in univariate time series similarity search, the case
of multivariate time series has not been extensively explored. Most of the papers
concentrate on indexing multidimensional time series and provide an appropriate
representation scheme and/or a similarity measure. In addition to that, most of the
research interest lays on trajectories, which usually consist of 2 or 3 dimensional
time series.

The authors of [37] and [5] suggest similarity measures based on the Longest
Common Subsequence (LCSS) model, whereas a modified version of the Edit Dis-
tance for real-valued series is provided in [8]. Bakalov et al. [2] extend the Symbolic
Aggregate Approximation (SAX) [26] and the corresponding distance measure for
multivariate time series. Vlachos et al. [36] propose an indexing framework that
supports multiple similarity/distance functions, without the need to rebuild the in-
dex. Several researchers approach similarity search by applying a measure and/or
an indexing method on transformed data. Kahveci et al. [18] propose to convert a
p-dimensional time series of length n to a univariate time series of length np by con-
catenation, and then apply a representation scheme for the purpose of dimension-
ality reduction. Lee et al. [24] propose a scheme for searching a database, which,
in the pre-processing phase includes the representation (e.g. DFT) of each one of
the p time series separately. Cai & Ng [6] approximate and index multidimensional
time series with Chebyshev polynomials. In the latter three papers, the Euclidean
distance is applied as a distance measure.

On the other hand, there are several PCA-based measures that have been pro-
posed in order to compare two objects, which are in the form of multivariate time
series. The main idea is to derive the principal components for each one and then to
compare the produced matrices.
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Suppose that we have two multivariate time series denoted Xn×p and Qn×p. Ap-
plying PCA on each one results in the matrices of component weights AX and AQ
and variances ΛX and ΛQ respectively. All the following measures assume that the
number of variables p is the same for all series. This is a rational assumption, since
these series are usually generated by the same process within a specific application.

One of the earliest measures has been proposed by Krzanowski [23]. This mea-
sure (Eq.2) is applicable to time series, although originally it was not applied on
such type of data. The proposed approach is to retain m principal components and
compare the angles between all the combinations of the first m components of the
two objects.

SimPCA(X ,Q) = trace(AT
X AQAT

QAX ) =
m

∑
i=1

m

∑
j=1

cos2θi j, 0 ≤ SimPCA ≤ m (2)

where θi j is the angle between the ith principal component of X and the jth prin-
cipal component of Q.

Johannesmeyer [15] modified the previous measure by weighting the angles with
the corresponding variances as in Eq. 3.

Sλ
PCA(X ,Q) =

m

∑
i=1

m

∑
j=1

(λXi ·λQ j · cos2θi j)/
m

∑
i=1

λXi ·λQ j , 0 ≤ Sλ
PCA ≤ 1 (3)

Yang & Shahabi [38] propose a similarity measure, Eros, which is based on the
acute angles between the corresponding components from two objects X and Q
(Eq. 4). Contrary to the previous measures, all components are retained from each
object and their variances form a weight vector w. More specifically, the variances
obtained from all the objects in a database are aggregated into one weight vector,
which is updated when objects are inserted or removed from the database. Finally,
the authors provide lower and upper bounds for this measure.

Eros(X ,Q,w) =
p

∑
i=1

w(i) · |cosθi|, 0 ≤ Eros ≤ 1 (4)

Li & Prabhakaran [25] propose a similarity measure for recognizing distinct
motion patterns in motion streams in real time. This measure, which is called k
Weighted Angular Similarity (kWAS), can be obtained by applying singular value
decomposition on the transformed datasets, XT X and QT Q, and retaining the first m
components. kWAS is based on the acute angles between the corresponding com-
ponents weighted by the corresponding eigenvalues (Eq. 5).

Ψ(X ,Q) =
1
2

m

∑
i=1

((σi/
n

∑
i=1

σi +λi/
n

∑
i=1

λi)|ui · vi|), 0 ≤Ψ(X ,Q) ≤ 1 (5)
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where σi and λi are the eigenvalues corresponding to the ith eigenvectors ui and
vi of matrices XT X and QT Q. When the original datasets are mean centered, the
above procedure is equivalent to applying PCA on the original data. The eigenvec-
tors ui and vi are the corresponding principal components, while the eigenvalue-
based weight in Eq. 5 is equal to the one obtained, if σi and λi are replaced by
the variances of the corresponding components. The absolute value implies that the
cosine of the acute angles is computed.

Singhal & Seborg [32] extend Johannesmeyer’s [15] measure by incorporating
an extra term, which expresses the distance between the original values of the two
objects. This term is based on Mahalanobis distance and on the properties of the
Gaussian distribution.

Another measure that incorporates the distance between the original values of
two objects has been proposed by Otey & Parthasarathy [28]. The authors define a
distance measure in terms of three dissimilarity functions that take into account the
differences among the original values, the angles between the corresponding compo-
nents and the difference in variances. For the first term, the authors propose to use
either the Euclidean or the Mahalanobis distance, whereas the second term is de-
fined as the summation of the acute angles between the corresponding components,
given that all components are retained. The third term accounts for the differences
in the distributions of the variance over the derived components and is based on the
symmetric relative entropy [9].

In the context of Statistical Process Control, Kano et al. [19] propose a distance
measure for the purpose of monitoring processes and identifying deviations from
normal operating conditions. This measure is based on the Karhunen-Loeve expan-
sion, which is mathematically equivalent to PCA. However, it involves applying
eigenvalue decomposition twice during its calculation, which is the most computa-
tionally expensive part.

3 Proposed Approach

In this paper, we propose a novel approach in multivariate time series similarity
search that is based on Principal Component Analysis. The main difference to other
proposed methods is that it does not require applying PCA on the query object.
Remember that an object is a multivariate time series that is expressed in the form
of a matrix.

More specifically, PCA is applied on each object Xn×p of a database and the de-
rived matrix of component weights Ap×m is stored (where m is the number of the
retained components). Although this task is computationally expensive, it is per-
formed only once during the preprocessing phase.

When a query object arrives, the objective is to identify the most similar object in
the database. We propose a distance measure that relates to the Squared Prediction
Error (SPE), a well-known statistic in Multivariate Statistical Process Control [22].
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In particular, each time instance qi of a query object Qν×p is projected on the plane
derived by PCA and its new coordinates (q′i) are obtained (Eq. 6).

q′i = qi ·A, i = 1,2, . . .ν (6)

In order to determine the error that this projection introduces to the new values,
we need to calculate the predicted values (q̂i) of qi (Eq. 7).

q̂i = q′i ·AT , i = 1,2, . . .ν (7)

SPE is the sum of the squared differences between the original and the predicted
values, and represents the squared perpendicular distance of a time instance from
the plane (Eq. 8).

SPEi =
p

∑
j=1

(qi j − q̂i j)2, i = 1,2, . . .ν (8)

This measure can be extended in order to incorporate all time instances of the
query object Qν×p (Eq. 9). We call this new distance measure SPEdist (Squared
Prediction Error Distance).

SPEdist(X ,Q) =
ν

∑
i=1

p

∑
j=1

(qi j − q̂i j)2 (9)

SPE is particularly useful within statistical process control because it is very
sensitive to outliers, and thus, it can efficiently identify possible deviations from the
normal operating conditions of a process. However, this sensitivity may be problem-
atic in other applications that require more robust measures. Therefore, we propose a
variation of SPEdist, that utilizes the absolute differences between the original and
the predicted values (Eq. 10). We call this measure APEdist (Absolute Prediction
Error Distance).

APEdist(X ,Q) =
ν

∑
i=1

p

∑
j=1

|qi j − q̂i j| (10)

The main concept is that, the most similar object in a database is defined to be the
one, whose principal components describe more adequately the query object with
respect to the reconstruction error. A similar approach can be found in the work of
Barbic et al. [3], who propose a technique for the purpose of segmenting motion
capture data into distinct motions. However, the authors utilize the squared error
of the projected values and not the predicted values, as we propose in our work.
Moreover, they focus on an application that involves one multivariate time series,
which should be segmented.

As it was mentioned earlier, the proposed approach does not apply the compu-
tationally expensive PCA technique on the query object. Moreover, we provide a
method that further speeds up the calculation of APEdist, hopefully, without sub-
stantially affecting the quality of similarity search. This method involves applying
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a dimensionality reduction technique on each one of the time series that form the
query object, as a pre-processing step. The proposed technique is the Piecewise
Aggregate Approximation (PAA) that was introduced independently by Keogh et
al. [21] and, Yi & Faloutsos [39]. PAA is a well-known representation in the data
mining community that can be extremely fast to compute. This technique segments
a time series of length n into N consecutive sections of equal-width and calculates
the corresponding mean for each one. The series of these means is the new represen-
tation of the original series. According to this approach, a query object that consists
of p time series of length n is transformed to an object of p time series of length
N. Under this transformation, we only need a fraction (N/n) of the required calcu-
lations in order to compute APEdist. Equivalently, the required calculations will be
executed n/N times faster than the original ones. The consequence of this method in
the quality of similarity search depends mainly on the quality of PAA representation
within a specific dataset. Intuitively, APEdist is computed on a set of time instances,
which may be considered as representatives of the original ones.

In general, our approach can be applied on data types other than time series. For
example, suppose that we have customer data, such as age, income, gender, from
several stores. Each store is represented by a matrix whose rows correspond to cus-
tomers and columns correspond to their attributes. The objective is to identify sim-
ilar stores with respect to their customer profiles. The PCA representation is based
on the covariance matrix, which is independent of the order of the corresponding
rows (time instances), and thus, the time dimension is ignored under the proposed
representation.

In this paper, we focus on time series because this type of data is generated at
high rates and is of high dimensionality. Our approach has two advantages. First,
PCA-based representation dramatically reduces the size of the database while re-
taining most of the important information present in the original data. Second, the
proposed distance measure does not require applying the computationally expensive
PCA technique on the query.

4 Experimental Methodology

The experiments are conducted on three real-world datasets and one synthetically
created dataset used extensively in the literature and described in Section 4.1. Sec-
tion 4.2 presents the evaluation methods and Section 4.3 discusses the rival measures
along with their corresponding settings.

4.1 Datasets

The first dataset relates to Australian Sign Language (AUSLAN), which contains
sensor data gathered from 22 sensors placed on the hands (gloves) of a native AUS-
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LAN speaker. The objective is the identification of a distinct sign. There are 95
distinct signs, each one performed 27 times. In total, there are 2,565 signs in the
dataset. More technical information can be found in [17].

The second dataset, HUMAN GAIT, involves the task of identifying a person
at a distance. Data are captured using a Vicon 3D motion capture system, which
generates 66 values at each time instance. 15 persons participated in this experiment
and were required to walk in 3 sessions, at 4 different speeds, 3 times for each
speed. In total, there are 540 walk sequences. More technical information can be
found in [33].

The third dataset relates to EEG (electroencephalography) data that arises from a
large study to examine EEG correlates of genetic predisposition to alcoholism [4]. It
contains measurements from 64 electrodes placed on the scalp and sampled at 256
Hz (3.9-msec epoch) for 1 second. The experiments were conducted on 10 alcoholic
and 10 control subjects. Each subject was exposed to 3 different stimuli, 10 times
for each one. This dataset is provided in the form of a train and a test set, both
consisting of 600 EEG’s. The test data was gathered from the same subjects as with
the training data, but with 10 out-of-sample runs per subject per paradigm.

Finally, the transient classification benchmark (TRACE) is a synthetic dataset
designed to simulate instrumentation failures in a nuclear power plant [31]. There
are 4 process variables, which generate 16 different operating states, according to
their co-evolvement through time. There is an additional variable, which initially
takes on the value of 0, until the start of the transient occurs and its value changes to
1. We retain only that part of data, where the transient is present. For each state, there
are 100 examples. The dataset is separated into train and test sets each consisting of
50 examples per state.

Table 1 summarizes the profile of the datasets.

Table 1 Description of Datasets

DATASET # of variables mean length # of classes size of class size of dataset

AUSLAN 22 57 95 27 2565
HUMAN GAIT 66 133 15 36 540
EEG 64 256 2 600 1200
TRACE 4 250 16 100 1600

4.2 Evaluation Methods

In order to evaluate the performance of the proposed approach, we conducted several
experiments in three phases.

First, we perform one-nearest neighbor classification (1-NN) and evaluate it by
means of classification error rate. We use 9-fold cross validation for AUSLAN and
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HUMAN GAIT datasets taking into account all the characteristics of the experi-
ments, while creating the subsets. The observed differences in the error rates among
the various methods were statistically tested. Due to the small number of subsets
and to the violation of normality assumption in some cases, Wilcoxon Signed-Rank
tests were performed at 5% significance level. For the EEG and TRACE datasets,
we use the existing train and test sets.

Second, we perform leave-one-out k-NN similarity search and evaluate it by plot-
ting the recall-precision graph [14]. In particular, every object in the dataset is con-
sidered as a query. Then the r most similar objects are retrieved, where r is the
smallest number of objects that should be retrieved in order to obtain k objects of
the same class with the query (1 ≤ k ≤ size of class-1). The precision and recall
pairs corresponding to the values of k are calculated. Finally, the average values
of precision and recall are computed for the whole dataset. Precision is defined as
the proportion of retrieved objects that are relevant to the query, whereas Recall is
defined as the proportion of relevant objects that are retrieved relative to the total
number of relevant objects in the dataset. In these experiments, the training and
testing datasets of EEG and TRACE are merged.

Third, we evaluate the trade-off between classification accuracy and speed of cal-
culating the proposed measure APEdist by applying 1-NN classification on objects
that have been pre-processed as described in Section 3.

All the necessary codes and experiments were developed in MATLAB, whereas
the statistical analysis was performed in SPSS.

4.3 Rival Measures

The similarity measures that were tested on our experiments are SimPCA, Sλ
PCA,

Eros, kWAS, SPEdist, and APEdist. We choose to omit the results for SPEdist,
because it performed similarly or slightly worse than APEdist in most cases. For
comparison reasons, we also included in the experiments the Euclidean distance.
Since this measure requires datasets of equal number of time instances, we decided
to apply linear interpolation on the original datasets and set the length of the time
series equal to the corresponding mean length (Table 1). The transformed datasets
were utilized only when Euclidean distance was applied. The rest of the measures
we reviewed in Section 2.3 are not included in these experiments because they take
into consideration the differences among the original values, whereas in our experi-
ments, the measures are calculated on the mean centered values.

Regarding Eros, the weight vector w was computed by averaging the variances of
each component across the objects of the training dataset and normalizing them so
that ∑wi = 1, for i = 1,2, . . . p. In [38] one can find alternative ways for computing
the weight vector.

All other measures require determining the number of components m to be re-
tained. For AUSLAN, HUMAN GAIT and EEG, we have conducted classification
for consecutive values of m between 1 and 20. For m = 20, at least 99% of the total
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variation is retained for all objects in AUSLAN and HUMAN GAIT, whereas at least
90% of the total variation is retained for all objects in EEG. For TRACE, we have
conducted classification for all possible values of m (m = 1,2,3,4). Precision-Recall
graphs are plotted for the “best” value that it was observed in the classification ex-
periments. In general, this value is different for each measure.

Principal Component Analysis is performed on the covariance matrices. For com-
parison reasons, the similarity measures kWAS, and APEdist were computed on the
mean centered values.

5 Results

We provide and discuss the results of 1-NN classification for each dataset separately
in Section 5.1. In particular, we present the classification error rates that the tested
measures achieved across various values of m (the number of components retained),
and we also report the m that corresponds to the lowest error rate for each measure.
In Section 5.2, the results of performing leave-one-out k-NN similarity search are
presented in precision-recall graphs for each dataset. Finally, in Section 5.3, we
provide and discuss the effect APEdist with PAA has on the classification accuracy
for various degrees of speed up.

5.1 1-NN Classification

In the following figures (Fig. 3 to Fig. 6), the classification error rates are presented
graphically for various values of m (the number of components retained) for each
dataset. For the first three datasets, we show the error rates up to that value of m
beyond which the behavior of similarity measures does not change significantly. For
the TRACE dataset, which has only four variables, we show error rates for values
of m up to three. For Euclidean Distance (ED) and Eros the rates are constant across
m.

Regarding the first three datasets (Fig. 3 to Fig. 5), we observe that all measures
seem to achieve the lowest error rate, when only a few components are retained.
Moreover, as the number of components is further increased, the improvement in
error rates seems to be negligible. In AUSLAN (Fig. 3), the performance of APEdist
and SimPCA deteriorates with the increase of m. Note that these two measures do
not take into account the variance that each component explains, contrary to the
other three PCA-based measures. A second observation is that the performance of
APEdist is comparable, if not better, to the “best” measure in each one of the three
datasets. Regarding TRACE, which consist of only 4 variables, ED achieves con-
siderably lower error rates than any other measure (Fig. 6).
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Fig. 3 1-NN Classification Error Rates (AUSLAN dataset)

Fig. 4 1-NN Classification Error Rates (HUMAN GAIT dataset)

In Table 2, the lowest classification error rates are presented along with the cor-
responding number of the retained components. First, we will compare similar-
ity/distance measures with respect to each dataset separately.

In AUSLAN, APEdist produces the lowest classification error rate. Statistically
testing the differences across the specific subsets, APEdist produces better results
than all measures (p < 0.05).

Regarding HUMAN GAIT, SimPCA, Eros, kWAS and APEdist seem to provide
the best results. Statistically testing their differences across the specific subsets, Sim-
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Fig. 5 1-NN Classification Error Rates (EEG dataset)

Fig. 6 1-NN Classification Error Rates (TRACE dataset)

PCA produces better results than all (p < 0.05), whereas the performances of Eros,
kWAS and APEdist are statistically similar (p > 0.05).

For EEG, SimPCA and APEdist seem to provide considerably better results
than other measures, with classification error rates of 0.00% and 1.83% respec-
tively, when the next best performing measure, Eros, has a classification error rate
of 14.83%.

Finally, for TRACE that consists of only 4 variables, Euclidean distance, a non-
PCA-based measure, performs essentially better than all measures with 3.9% clas-
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sification error rate. The next best performing measures are Eros and kWAS with
classification error rates of 21.38% and 21.88% respectively.

Table 2 Classification Error Rates (%) [Numbers in parentheses indicate the number of principal
components retained. Lack of number indicates measures that exploit all components]

Measure ASL HG EEG TRC

ED 13.76 5.74 30.17 3.88
SimPCA (1) 12.05 (8) 0.00 (14) 0.00 (1) 50.25
SλPCA (4) 11.46 (3) 17.78 (10) 16.50 (3) 31.38
Eros 9.71 2.96 14.83 21.38
kWAS (6) 9.24 (12) 2.59 (17) 25.33 (4) 21.88
APEdist (3) 7.68 (7) 1.85 (14) 1.83 (3) 72.00

5.2 k-NN Similarity Search

In the following figures, the precision-recall graphs are presented for each dataset
separately. The number of retained components is set equal to the one for which the
corresponding measure provided the lowest classification error rates (Table 2). Re-
garding AUSLAN (Fig. 7), all measures seem to perform similarly to each other and
better than the Euclidean distance. APEdist provides better results than all, however
the differences can not be considered significant.

In HUMAN GAIT (Fig. 8) and EEG (Fig.9), however, SimPCA and APEdist
perform better than all. As mentioned in the previous section, these two measures
do not take into consideration the explained variance of the retained components.
This fact may imply that for these specific datasets, the variance information may
not be significant. On the other hand, in AUSLAN, where this information may be
important, APEdist provides comparable results to other measures.

In the final dataset, TRACE, Euclidean distance performs better for recall values
up to 0.3, whereas kWAS performs better for greater recall values (Fig. 10). Com-
pared to other measures, APEdist seems to improve its performance for recall values
greater than 0.6.

5.3 Speeding up the calculation of APEdist

The idea is to apply PAA on each one of the time series that comprise the query
object (see Section 3), in order to speed up the calculations of APEdist. We exper-
imented with various degrees of dimensionality reduction by using PAA to retain
10%, 20%, and 30% of the original dimensions of the query object, thus, expecting
a 10x, 5x, and 3.33x speed up of the calculations, respectively.
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Fig. 7 Precision-Recall Graph for Various Measures (AUSLAN dataset)

Fig. 8 Precision-Recall Graph for Various Measures (HUMAN GAIT dataset)

Table 3 presents the effect the speed up has on the classification error rate. The
number of the retained components is different among datasets and is set equal to
the optimal value obtained in Section 5.1 (Table 2).

As it was expected, the classification error rate increases as the speed up in-
creases. Nevertheless, in all datasets, we are able to achieve similar classification
error rates by doing at most 20% of the required calculations (a 5x speed up). More
specifically, for AUSLAN, even a 5x speed up provides better results than rival mea-
sures (Table 2). Regarding HUMAN GAIT, a 10x speed up results into exactly the
same classification error rate as the one observed when full calculations were ap-
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Fig. 9 Precision-Recall Graph for Various Measures (EEG dataset)

Fig. 10 Precision-Recall Graph for Various Measures (TRACE dataset)

plied. In EEG, although the error rates differ significantly for the various degrees
of speed up, the 10x speed up provides lower error rate than rival measures (ex-
cept from SimPCA). Regarding TRACE, a 5x speed up results into almost the same
classification error rate as the one observed when full calculations were applied.
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Table 3 1-NN Classification Error Rates for various degrees of dimensionality reduction on the
query object

Percentage of Retained Dimensions 10% 20% 30% 100%
Speed up 10x 5x 3.33x 1x

AUSLAN 10.80 8.50 8.27 7.68
HUMAN GAIT 1.85 1.85 1.85 1.85
EEG 8.00 3.67 2.33 1.83
TRACE 72.12 74.50 71.38 72.00

6 Conclusion

The main contribution of this paper is the introduction of a novel approach in mul-
tivariate time series similarity search for the purpose of improving the efficiency of
data mining techniques without affecting the quality of the corresponding results.
We investigate the usefulness of our approach, mainly in the context of query by
content and 1-NN classification.

Experiments were conducted on four widely utilized datasets and various mea-
sures were tested with respect to 1-NN classification and precision/recall. There are
three key observations with respect to the results of these experiments. First, there
is no measure that can be clearly considered as the most appropriate one for any
dataset. Second, in three datasets, our approach provided significantly better results
than the Euclidean distance, whereas its performance was at least comparable to the
four other PCA-based measures that were tested. Third, there is strong evidence that
the application of the proposed approach can be accelerated with little cost in the
quality of similarity search. In all datasets, one tenth up to one third of the required
calculations was adequate in order to achieve similar results to the full computation
case.

A secondary contribution of this paper is the review of several PCA-based sim-
ilarity/distance measures that have been recently proposed from diverse fields, not
necessarily within data mining context. A more general conclusion is that Principal
Component Analysis has not been extensively explored in the context of similarity
search in multivariate time series and hence, it has the potential to offer more in the
Data Mining field.

Future work will focus on improving the speed up of the proposed approach
during the pre-processing stage by exploiting the features of other dimensionality
reduction techniques. We also intend to conduct experiments on more datasets in
order to further validate our approach.
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