
A system for program visualization and problem-solving path
assessment of novice programmers

Maria Satratzemi*, Vassilios Dagdilelis+, Georgios Evangelidis*
*Department of Applied Informatics, +Department of Educational and Social Policy

University of Macedonia, GR-54006 Thessaloniki, Greece
{ maya, dagdil, gevan}@uom.gr

Abstract
This paper describes an educational programming environment,
called AnimPascal. AnimPascal is a program animator that
incorporates the ability to record problem-solving paths followed
by students. The aim of AnimPascal is to help students understand
the phases of developing, verifying, debugging, and executing a
program. Also, by recording the different versions of student
programs, it can help teachers discover student conceptions about
programming. In this paper we describe how our system works and
present some empirical results concerning student conceptions
when trying to solve a problem of algorithmic or programming
nature. Finally, we present our plans for further extensions to our
software.

1 Introduction
Over the past decades a great number of research studies
have been conducted on the comprehension difficulties
students meet when they are taught introductory
programming concepts [3], [6], [7]. These studies came
upon important factors that can negatively affect the process
of learning programming, and explain why existing
languages, programming environments, and teaching
methods are effective or not.
Some of the reported difficulties met by novice
programmers are summarized below [3], [6]:
 Difficulties arising from the way novice programmers

perceive the general properties of the “notional”
machine (the one they learn to control) and its
relationship with the physical machine (the computer).

 Difficulties attributed to the syntax and semantics of
programming languages that are supposed to constitute
an extension of the properties and the behavior of the
notional machine.

 The need to understand the established programming
structures.

 The need to learn how to design, develop, verify, and
debug a program when given certain tools.

 The fact that program editors, compilers, and debuggers
are usually designed to be used by professional
programmers. So, they pose extra burdens to novice
programmers.

 Programming environments are not capable of offering
visualization of program execution. So, the details of
program execution remain “hidden” and students tend
to perceive it as something that has to do with data input
and data output. The lack of visual feedback makes the
understanding of language semantics hard.

The results of these studies and the advancement of
technology led to the development of programming
environments that support the effective teaching of
programming. Such environments include systems with
compilers with enhanced diagnostic capabilities, and
systems that focus on program animation. The most
representative tools of these types of environments are
THETIS [7] and DYNALAB [2]. THETIS provides
improved error reporting, strengthened syntactic restrictions,
run-time error detection and debugging and visualization
tools. DYNALAB is a program animator.
Based on the above findings we developed an educational
programming environment, called AnimPascal1. It is a
program animator [9] and the characteristic that
differentiates it from similar systems is its build in capability
of recording student actions (recordability). We consider
these actions as steps in the problem-solving paths followed
by students, i.e. as important data to understand the
particular way each student follows to solve a problem. Thus,
AnimPascal has a dual goal: (i) to help novice programmers
develop, verify, debug, and execute their program, and, (ii)
to help teachers detect misconceptions of their students
about programming.
We believe that knowledge of the path followed by students
to the solution of a problem is, usually, extremely valuable
information to someone wishing to explore student
conceptions about programming and problem solving
techniques. The capability to systematically record such
paths can open up interesting new possibilities for exploring
the conceptions of students. Our educational programming
environment systematically records the actions of students,
thus offering teachers with invaluable information about the
path to the solution followed by the students, the steps
backward, the repeated tries, the mistakes, and the

1 This research is being funded by the EU and the Greek Ministry of
Education.



hesitations. We designed an educational programming
environment that records and stores what is didactically
essential.

2 An overview of AnimPascal
AnimPascal has the following features:
 Ability to edit and compile standard Pascal programs.
 Dynamic visualization of program execution.
 Recording of different versions of user programs and

associated compilation outputs.
The software has a simple and functional GUI. The main
window consists of six components: menu, toolbar, and four
areas (Source Area, Program Output, Display Variables,
Compiler Output) as shown in Figure 1.

Figure 1 - Main Window and Program Visualization

It is interesting to explain the way AnimPascal informs
students about errors, and warnings, hints, or notes
regarding their program. In the case of errors the
background of the appropriate line in the Compiler Output
area becomes red, while in the other cases it becomes green.
In all cases the font color becomes white. Students can
interact with the software by clicking a red or green line and
the cursor in the Source Code area moves to the appropriate
source code line. That is, the Compiler Output area offers a
dynamic visualization of the compilation output.
Every time students recompile their program the system
automatically records the new version of the source code
and the corresponding compiler output. The option History
of menu item Compile presents the above information in the
format shown in Figure 2.
The History of Compilations window can help teachers
realize common mistakes and misconceptions of their
students, and address them in their lectures.

Figure 2 - Compilation History

The options of menu item Animate allow the dynamic
visualization of program execution. The current source
statement is highlighted and the result of its execution
affects one the following areas:
 Display Variables: program variables have their values

updated whenever they are assigned new values, that is,
this area visualizes program memory.

 Program Output: whenever an output producing
statement is executed, the output is appended here.

 Program Input: input statements cause the appearance
of a window where students can type an input value that
is assigned to a program variable.

AnimPascal was implemented in C++ for the MS Windows
95/98/ME platform. We used compiler Free Pascal [4] and
debugger gdb [10], both under the GNU Public License.
Free Pascal was used because of its compatibility with
Borland Turbo Pascal, the most popular compiler for
teaching Pascal. Free Pascal offers more detailed compiler
output than Turbo Pascal and helpful hints for both novice
and advanced programmers. It also allows the porting of
AnimPascal to various platforms since it is available for
many operating systems.

3 Using AnimPascal
We will briefly describe our findings from a typical
laboratory class where first year students used AnimPascal.
Students were asked to implement the classic binary search
algorithm, which was chosen because it is a well-known
algorithm to the computer science community for its
deceptive simplicity. While the algorithm appears to be
simple, there are certain peculiarities one has to consider
when trying to program it and verify its correctness [1].
Lesuisse [8] showed that even published versions of the
algorithm contain errors, weaknesses, and special cases (for
example they require the number of elements to be a power
of 2).



The algorithm had been taught in the class a month and a
half before the laboratory. The laboratory intended to:
 Evaluate the programming environment.
 Record student conceptions and verify the difficulties

reported in the literature regarding the implementation
of the binary search algorithm.

 Record the paths to the solution (or a solution) followed
by students during program design, development,
verification, and debugging.

After assessing the recorded student input we conclude the
following:
(i) The warning messages and hints provided by AnimPascal
helped students comprehend the real meaning of certain
program constructs. For example, students ended up using
expression (2) instead of expression (1), thus correcting the
incompatible operands syntax error reported by Pascal
(AnimPascal hints on using DIV instead of /).
Midpoint := (LowLimit+HighLimit) / 2 (1)
Midpoint := (LowLimit+HighLimit) div 2 (2)
So, students focused on program development and testing
instead of trying to correct expression (1) based on the
hypothesis that it contained a logical error.
(ii) Many students made semantic mistakes confusing array
positions with array elements, i.e., i with A[i], or logical
mistakes miscalculating the limits of the sub-array where
the target element would lie if it existed at all. These are
quite common mistakes when students use arrays.
(iii) Students usually fail to consider «extreme» cases, like
arrays with no elements, or one element, or arrays that did
not include the element in question.
(iv) On the contrary, many students tried to verify the
correctness of their solution once it was syntactically correct.
They usually attempted to avoid infinite loops by modifying
the termination condition. In those cases they used a
termination condition that was quite different than the one
they had been taught in the class. It is clear that they were
trying to test their code in all the cases they considered
possible to happen.
(v) Most of the students developed algorithms with infinite
loops. This happened because they replaced one of the limits
with the midpoint assuming (indirectly) that the space of the
search gets shorter continually. This is not always true – for
example when HighLimit–LowLimit=1 in the code fragment
below:
LowLimit:=1;
HighLimit:=n;
...
Midpoint:=(LowLimit+HighLimit) div 2;
if v <> A[Midpoint] then

if v > A[Midpoint] then LowLimit:= Midpoint
else HighLimit:= Midpoint;

Thus, we can conclude that, students do not systematically
check their algorithms and base their reasoning on their
intuitions.

(vi) Lesuisse [8] noticed that some categories of algorithm
implementations have repeated sections. He considered that
as a case of «poor» programming analysis and made the
hypothesis that these programs were a result of «mental
execution». We also got programs of this type, strongly
confirming Lesuisse’s hypothesis. Repetition of algorithm
sections shows that, once students ascertain the correct
sub-array, they partition it in two by repeating the same
code.
The findings of AminPascal allowed us to get an overall idea
for student errors that we summarize in the following table:
1 did nothing at all 1,4%
2 solved it correctly 5,8%
3 some syntactic errors 4,3%
4 split the initial array into two parts, then searched each

part sequentially
4,3%

5 did not use a loop 4,3%
6 wrong termination condition (related to point 9) 17,4%
7 computed the middle element once for the initial array

but not for each resulting sub array
1,4%

8 presumed that the element existed in the array 8,7%
9 wrong computation of the index of the middle element 7,2%
10 wrong computation of the boundaries of each sub array 10,1%
11 confused the index of the array holding the number

with the number itself
10,1%

12 correct termination condition, but wrong display
condition

1,4%

13 used the “for” statement but computed anew its index
values hoping to reduce the size of the array

1,4%

14 difficulties in formulating the termination condition
(used AND) that resulted in repeated modifications of
the code

2,9%

Table 1 - Summary of student errors

Table 1 directed us to a more concise analysis of the paths to
the solution followed by students. This analysis provided us
with qualitative data for each student. Figure 3 shows a
typical path followed by a student; the timeline can provide
a better understanding of the path followed by a student.
Syntactic Errors Logical Errors Semantic Errors

us
ed

pa
re
nt
he
si
s

in
st
ea
d
of
br
ac
ke
t

us
ed

di
v

er
ro
ri
n
if
…

th
en

…
el
se
sta
te
m
en
t

w
hi
le
an
d
A
N
D

va
lu
e
as
si
gn
m
en
t

In
iti
al
iz
at
io
n
of

Lo
w
Li
m
it,
H
ih
gL
im
it

co
nf
us
ed

I,
A
[I
]

co
nd
iti
on

in
w
hi
le

sta
te
m
en
t

Figure 3 - Typical case of the path to a solution followed
by a student and the corresponding timeline



The typical timeline presented in Figure 3 helps us establish
the following:
The continuous movement of the timeline between the
syntactic and logical errors clearly demonstrates the
difficulties posed to the novice student programmer by the
idiosyncratic nature of “real” programming languages [3],
[6]. In particular, the repeated attempts of students to correct
syntactic errors shows that students should be introduced to
programming through languages with simple syntactic rules.
Although the time spend in correcting syntactic errors is not
shown in Figure 3, it is clear that programming language
syntax can be a negative factor in problem solving.
Similarly, it is clear that the messages generated by the
system can play an important role in the process of problem
solving. In our example, the hint for using operator DIV is
an effective help to the user, whereas the message about the
array boundaries is incomprehensible. Students repeatedly
attempt to correct their errors without understanding the
meaning of the error message produced by the compiler. The
above observation suggests that a systematic study of
student errors and an investigation of the reasons students
cannot take advantage of the compiler error messages could
improve the produced error messages. Our empirical studies
show that this could be achieved by using more detailed
and/or translated in our language error messages.
A study of the timelines brings to light the parts of the
algorithm students find hard to implement. For example,
regardless of their final solution, almost all students had a
hard time determining the boundaries of the sub-array to
search next. The timelines indirectly indicate the way
students think. It is clear that most students use simulation to
develop their programs: they “run” their code in a “mental
machine”.

4 Conclusions
AnimPascal appears to be of great help to novice
programmers. It can help them improve their ability to
design, develop, verify, and debug programs. It can also
offer teachers with invaluable information about the
techniques used by students for program developing,
verification and debugging.
The current version of AnimPascal records and reports the
various versions of student programs and their
corresponding compiler output. A very interesting feature,
that we plan to add in a future version of our software, is the
automated processing of the recorded information.
We plan to add the following two procedures:
 Classification of the messages encountered in the

compiler output. We plan to use statistical analysis to
automatically detect the most common student mistakes,
the category they belong to, and the time students spend
to correct them.

 Discovery of the differences between two successive
versions of a given program. It is important to have a

visual representation of the differences between two
successive versions both of the student source code and
the corresponding compiler generated output. A
possible implementation could use a tool like diff [5].
One could then draw conclusions about the degree of
comprehension of the compiler output by students, the
way it influences problem solving, and student
conceptions about it.

References
[1] Bentley J., Programming Pearls, Addison-Wesley,

1986.
[2] Birch, M., Boroni, C., Goosey, F., Patton, S., Poole, D.,

Pratt, C., Ross, R., DYNALAB: A Dynamic Computer
Science Laboratory Infrastructure Featuring Program
Animation, In 26th SICGSE Technical Symposium on
Computer Science Education (1995), SICGSE Bulletin,
vol. 27, pp. 29-33.

[3] Brusilovski, P., Calabrese, E., Hvorecky, J.,
Kouchnirenko, A. & Miller P., Mini-languages: a way
to learn programming principles, Education and
Information Technologies, 2, pp. 65-83.

[4] Canneyt M. V., Klämpfl F., Free Pascal: Users' Manual
[1999]. Available Online:
http://www.brain.uni-freiburg.de/~klaus/fpc/docs.html

[5] Diff, Available Online:
http://www.cslab.vt.edu/manuals/diff/diff_toc.html

[6] du Boulay, B., Some Difficulties Of Learning To
Program, In Studying The Novice Programmer,
Soloway, E., Sprohrer, J. (Eds.), Lawrence Erlbaum
Associates, 1989, pp. 283-300.

[7] Freund, S. N. & Roberts, E. S., THETIS: An ANSI C
programming environment designed for introductory
use, ACM SIGSCE 1996, Philadelphia, PA USA, pp.
300-304.

[8] Lesuisse R., Some Lessons Drawn from the History of
the Binary Search Algorithm, The Computer Journal,
26(2), 1983, pp. 154-163.

[9] Price, B., Baecker, R. & Small, I., An Introduction to
Software Visualization, In Software Visualization:
Programming as a multimedia Experience, In Stasko, J.,
Domingue, J., Brown, M. and Price, B., (Eds.), MIT
Press, Cambridge, 1997, pp. 3-28.

[10]Stallman, R., and Cygnus Support, Debugging with
GDB, Free Software Foundation, Boston, 1995.

http://www.brain.uni-freiburg.de/~klaus/fpc/docs.html
http://www.cslab.vt.edu/manuals/diff/diff_toc.html

	Abstract
	1Introduction
	2An overview of AnimPascal
	3Using AnimPascal
	4Conclusions
	References


