
Cascading Citations Indexing Framework algorithm implementation and testing

Eleni Fragkiadaki, Georgios Evangelidis, Nikolaos Samaras
Dept. of Applied Informatics

University of Macedonia
Thessaloniki, Greece 54006

Email: eleni.fra@gmail.com, {gevan,samaras}@uom.gr

Dimitris A.Dervos
Information Technology Dept.

ATEI of Thessaloniki
Sindos, Greece 57400

Email: dad@it.teithe.gr

Abstract—The Cascading Citations Indexing Framework has
been proposed as a new method for calculating the impact a
researcher’s work has. The algorithm presented in this paper
calculates the total number of citations a distinct (article,
author) pair has received, taking into consideration not only
the direct citations but also the indirect ones. The algorithm
is tested against the CiteSeer bibliographic database. The
results presented demonstrate the different ranking of the pairs
based on the depth at which one examines the bibliographic
references received.

Keywords-citation analysis; citations graph; research evalu-
ation;

I. INTRODUCTION

Citation Analysis is of great importance to the scien-
tific community because it can assist researchers around
the world in locating articles relevant to their fields of
interest. Many methods have been proposed for ranking
the importance of articles, one of which is the Impact
Factor. The Impact Factor was proposed by Eugene Garfield
[1], [2], [3] and is used for ranking the importance of a
journal/conference taking into account the number of direct
citations received by the articles published in it.

In order to rank the importance of a specific scientific
article one can use the number of direct citations that it
received and the Impact Factor of the journal or conference
at which it was published.

Apart from this approach, which is more general in nature,
others more specific ones that quantify the importance of
a researcher’s work have been proposed. Such metrics are
the h-Index [4] and the g-Index [5]. These metrics use the
collection of all the articles a researcher has (co-) authored,
plus the sum of all direct citations received in order to
calculate one distinct value that quantifies the impact the
researcher has made on his scientific field.

The Cascading Citation Analysis approach [6], [7], [8],
in a way analogous to that of the Google Page Rank
algorithm [9], and to Rousseau’s approach [10], evaluates
(ranks) the scientific impact of a published article not just
by considering the number of direct citations received, but
also by taking into consideration the scientific impact of the
articles that cite the given (cited) article. More specifically,
the scientific impact a given (published) article represents

is calculated by considering not only the direct but also the
indirect citations received. The Cascading Citations Indexing
Framework suggests that citations should be addressed at
the (article, author) level for us to be able to rank the
contribution of each author’s scientific work.

The rest of the paper is organized as follows; In Section
II the Cascading Citations Indexing Framework (cc-IF) is
presented in order to explain the terminology used in the
rest of the paper. Section III presents the methodology used
for testing the algorithm, which is presented in detail in
Section IV. The results from the execution of the algorithm
against the CiteSeer database [11] are shown in Section V,
and, finally, the last section presents the conclusions.

II. THE CASCADING CITATIONS INDEXING FRAMEWORK

Before describing the algorithm it is necessary to present
the terminology used in the Cascading Citation Indexing
Framework (cc-IF). We are going to use the Citation Graph
to depict the relationships that exist among articles and
explain the fundamentals of the cc-IF which include the
terms citation, self-citation, n-gen citations (citation of rank
n), n-chord and n-self-chord (chord/self-chord of rank n).

A. The Citation Graph
The citation graph is a representation of the relationships

that exist between scientific articles, based on the references
that each article provides. In Figure 1, the articles are
presented as the nodes of the directed graph. Therefore in
this example 5 articles are included, numbered 1 to 5. For
each article we have also included the corresponding authors
which appear as labels above each node. A label used more
than once implies that this author has authored/co-authored
more than one of the articles presented here.

The edges of the graph represent references among arti-
cles. For example, the edge leaving node 2 can be interpreted
as “Article 2 references article 1”. The incoming edges are
the direct citations received by a specific article. For article
1 we can state that “Article 1 receives 3 direct citations, one
from article 2, one from 3 and one from 5”.

B. Cascading Citation Analysis Terminology
According to the cc-IF direct citations like the ones

discussed in the previous section are named 1-gen citations.



Figure 1. Citation Graph

If we carefully examine the graph we are going to find that
article 1 also receives an indirect citation from article 4
through article 2. This is considered to be a 2-gen citation.
In general an n-gen citation exists between a source article
S and the target article T if there is a directed path in
the citation graph from node S to node T. In the example
presented, the greatest gen citation is of rank 3, from article
5 to article 1, through the citation path 5 → 4 → 2 → 1.

If we now consider not only the citations from article to
article but also the authors of each article we are able to
define the self citations of rank n. For example, article 1
receives a 1-gen citation from article 2. Article 1 is written
by authors A and B, and article 2 is written by author A.
In such a case the pair (1, B) receives a 1-gen citation from
article 2 whereas the pair (1, A) receives a 1-gen-self-citation
from the same article. We consider a citation to be a self-
citation for a pair (article, author) if the author of the article
is also found in the author list of the citing article.

Apart from the information listed above we are able to
detect even more relations among the articles included in the
example. By carefully examining the citation paths presented
in Figure 1, we are able to detect more than one paths that
have the same source article and the same target article,
differentiated only by the fact that they are of different
rank. For example, consider articles 3 and 1. The citations
provided from article 3 to article 1 are two; the 1-gen citation
through the path 3 → 1 and the 2-gen citation through the
path 3 → 2 → 1. In this case the 2-gen citation is called
a 2-gen-chord. In other words a n-gen chord (n>1) exists
between a source article S and a target article T if apart
from the n-path between S and T a direct 1-gen citation
exists between the two articles. Chords are also considered
at the (article, author) level, thus, we define the n-gen-chords
and the n-gen-self-chords, where n > 1.

According to the cc-IF, the citations that a (article, author)
pair receives can be calculated up to depth n, thus, producing
a number of distinct values. If, for example, we choose
to consider the citations up-to depth 2 then the following
values are going to be calculated: 1-gen citations, 1-gen-self
citations, 2-gen citations, 2-gen-self citations, 2-gen chords
and 2-gen-self chords. These values are stored in a table
named Medal Standings Output (MSO). This table can then
be used in order to examine the importance of a specific
article or author.

<record>
<header>
<identifier>oai:CiteSeerPSU:number#</identifier>
</header>
<metadata>
<dc:title>The Title</dc:title>
<oai_citeseer:author name="authorName"> </oai_citeseer:author>
<oai_citeseer:relation type="References">
<oai_citeseer:uri>oai:CiteSeerPSU:number#</oai_citeseer:uri>
</oai_citeseer:relation>
<oai_citeseer:relation type="References">
<oai_citeseer:uri>oai:CiteSeerPSU:number#</oai_citeseer:uri>
</oai_citeseer:relation>
</oai_citeseer:oai_citeseer>
</metadata>

</record>

Figure 2. CiteSeer Record

III. METHODOLOGY

The algorithm we present calculates and stores all the
citations present in a bibliographic database, producing the
MSO table for all the distinct (article, author) pairs stored
up-to depth 3. In order to test the algorithm we used the
CiteSeer bibliographic database. Due to the large amount
of data that need to be stored, accessed and retrieved, a
relational database was used. The database is used in order
to store part of the original data from CiteSeer as well as to
keep the calculated values, the 1-gen, 2-gen, 3-gen citations
(plus all individual citation paths) and the MSO table.

A. Data

CiteSeer provides the bibliographic data using the Open
Access Initiative (OAI) format, which is XML based. A
sample record is shown in Figure 2. For simplicity, only
the identifiers that are used by the algorithm are listed.

Each article is identified by a unique identifier generated
by CiteSeer, defined by the <identifier> tag, as shown in
Figure 2. Other fields required by the algorithm are the title,
defined by <dc:title> tag, the authors, defined by the tag
<oai_citeseer:author> and the list of references included in
each article, defined by the <oai_citeseer:relation> tag.

B. Database Structure

We used a relational database schema that includes the
following relations:

• article(identifier, title): Information about the articles.
• authors(authorid, name): Information about the au-

thors.
• art_has_authors(identifier, authorid): Maps the articles

with their authors.
• citations(identifier, isrefby): The citations that each

article has received.
• gen1(id, identifier, authorid, fromid, self): The 1-gen

citations for all (article, author) pairs. The citation path
is fromid→ identifier where fromid is the source article
and identifier is the target article. One extra field is used
(self) that is assigned the value of 1 in the case of a
self citation.



• gen2(id, identifier, authorid, fromid, throughid01,
chord, self): The 2-gen citations for all (article, author)
pairs and the citation path. The citation path is fromid
→ throughid01→ identifier. The chord field is assigned
the value of 1 in the case of a 2-gen chord.

• gen3(id, identifier, authorid, fromid, throughid01,
throughid02, chord, self): The 3-gen citations for all
(article, author) pairs and the citation paths. The cita-
tion path is fromid → throughid01 → throughid02 →
identifier. The chord field is assigned the value of 1 in
the case of a 3-gen chord.

• mso(identifier, authorid, g1, g2, g3, sg1, sg2, sg3, cg2,
cg3, scg2, scg3): The MSO table keeps summarized
information about all types of citations received by each
(article, author) pair.

C. Parse Algorithm

The CiteSeer database consists of 72 files, each hold-
ing 10.000 articles with their corresponding bibliographic
details. Articles appearing in the list of references of a
particular article, are also part of the CiteSeer database. In
order to retrieve the necessary information for the execution
of the algorithm and to store it in the relational database
presented at Section III-B we developed a parsing algorithm.

The algorithm parses the files and stores all necessary
information in the first four relations of the database schema
of Section III-B. We should mention though that certain
errors occurred during this process, like articles with no
information about the authors and records which included
special characters that we could not process. The former
records were excluded because they lack the completeness
required by the algorithm and the latter in order to simplify
the procedure.

We should also note that the authors are identified only
by their name, and since a person’s name can be written in
many different formats, the name alone does not guarantee
the uniqueness of the author. For the purpose of testing
our algorithm each name is considered to uniquely identify
an author. We might encounter mismatching problems, like
two authors with the same name that are considered to be
the same person or a person whose name appears in many
formats and, thus, the algorithm considers him to be not one
but multiple authors.

IV. CC-IF ALGORITHM

In previous work ([6], [7]) we introduced an algorithm
that calculated the direct and indirect citations received by
a (article, author) pair up to depth 3.

The algorithm presented in this paper considers the cita-
tions at the (article, author) level and calculates all values
presented in Section II-B up to depth 3. That is, it calculates
the 1-gen, 2-gen, 3-gen, 1-gen-self, 2-gen-self, 3-gen-self,
2-gen-chord, 3-gen-chord, 2-gen-self-chord, and 3-gen-self-
chord citations.

Algorithm 1 cc-IF

1 // R, T, L are articles
2 // A is author
3 // through_info is the collection of columns
4 // that contain the path information
5 cc-IF(depth, I, ADC, AA)
6 if depth = 1 then
7 foreach R in I do
8 foreach T in ADC[R] do
9 foreach A in AA[R] do

10 S = check_self(AA[R], AA[T])
11 insert_gen{1}(autoid, R, A, T, [], S)
12 else
13 cc-IF(depth-1, I, ADC, AA)
14 prev_gen = data from table gen{depth-1}
15 foreach row in prev_gen
16 R = row[identifier]
17 A = row[authorid]
18 T = row[fromid]
19 foreach L in ADC[T] do
20 S = check_self(AA[L], A)
21 C = check_chord(R, L)
22 TI = make_row[row[through_info], S]
23 insert_gen{depth}(autoid, R, A, TI, S)
24 calculate_mso()

In addition it not only creates the MSO table but for
each citation received by a distinct (article, author) pair
it calculates and stores in the database the corresponding
citation path.

A. Pre-processing stage

Three data structures are necessary for the execution of the
algorithm: the Article Direct Citations (ADC), the Article
Authors (AA), and the list of the articles I that need to be
processed. These structures are created based on the tables
articles, art_has_authors and citations.

We denote an article by Rx. Let the list of all articles
that need to be processed be I=[R1, R2, R3, ..., Rm] that is,
the database contains m articles. Let CRx denote the list of
articles that reference Rx. Thus, CRx is a subset of I and the
Article Direct Citations (ADC) data structure is ADC=[CR1,
CR2 ,CR3 , ... , CRm].

Let the list of all authors of Rx be ARx=[A, B, C,...]
where A, B, C are the distinct co-authors which are different
for each article. The Article Authors (AA) data structure is
AA=[AR1, AR2, AR3, ..., ARm].

B. The algorithm

The algorithm presented is recursive and the number of
iterations is equal to the depth at which we want to examine
the citations. It receives as input the desired depth, the
list of identifiers (I) to be processed, the Article Direct
Citations (ADC) data structure and the Article Authors (AA)
data structure presented in Section IV-A. The output of the
algorithm is the full list of all citation paths up-to the desired
depth, and the characterization of each path at the (article,
author) level based on the terms presented in Section II-B.

The algorithm recursively executes until the value of depth
is equal to 1. At this point (line 6) the if condition is met and



the algorithm begins the calculations for 1-gen citations. For
each article R in the list of articles I, the algorithm iterates
through all the citations that this article has received (line 7).
This information is found in the ADC structure. Then, for
each such referencing article, identified by T, and for each
author A of the article in question, the algorithm checks
whether the specific author also exists in the list of authors
of T (line 10). If the check_self function returns TRUE then
this is a self citation. Finally, a new record is inserted in
table gen1 that consists of information about the article, the
author, the referencing article, the “through” information and
the indication of whether this is a self-citation or not (line
11).

As soon as it checks all articles in list I, the algorithm
returns to the incomplete recursive calls starting with the
one where the value of depth equals two. For each recursive
call the algorithm re-uses the information it calculated in the
exact previous recursive call in order to calculated the new
citations of higher rank. In other words, in order to calculate
the 2-gen citations the algorithm retrieves all (article, author)
1-gen pair citations and for each pair calculates the 2-
gen citations (lines 14-23). For each record present in the
previous level citations table we retrieve information for
the article (R), the author (A) and the source article of
the citation (T). All direct references that the source article
has received are considered n-gen citations for the target
article R. We then check whether the citation is a chord
and moreover if it is a self citation or not (lines 20-21).
Finally, the desired values along with the intermediate edges
are stored in the database (line 23).

After the calculation of all gen citations up-to the defined
depth we summarize the results for each (article, author)
pair, thus, producing the MSO table (line 24). A function
named calculate_mso() is used for this purpose, that counts
the total number of citations for each distinct value that
needs to be stored in the MSO table.

V. RESULTS OF THE ALGORITHM

The algorithm was programmed using the Python pro-
gramming language and MySQL was used for the creation
and manipulation of the relational database described at
III-B. The database that was created with the data provided
by CiteSeer consisted of 658.045 articles, with 410.945
identified authors and 1.643.057 direct references among the
articles. After the execution of the algorithm the following
records where stored in the database:

• Table gen1: Approximately 4 million records.
• Table gen2: Approximately 20 million records.
• Table gen3: Approximately 103 million records.
• Table mso: Approximately 450 thousand records.

These records represent the number of distinct (article,
author) pairs located in the database that receive at least
one 1-gen citation/self-citation.

Title Author 1-gen

1 Graph-Based Algorithms for Boolean ... Randal E. Bryant 1.600
2 Optimization by Simulated Annealing M. P. Vecchi 1.339
3 Optimization by Simulated Annealing C. D. Gelatt 1.339
4 Optimization by Simulated Annealing S. Kirkpatrick 1.339
5 A Method for Obtaining Digital ... R. L. Rivest 1.219
6 A Method for Obtaining Digital ... A. Shamir 1.219
7 A Method for Obtaining Digital ... L. Adleman 1.219
8 Congestion Avoidance and Control Michael J. Karels 1.123
9 Congestion Avoidance and Control Van Jacobson 1.123
10 Statecharts: A Visual ... Comm. A. Pnueli 1.043

Table I
TOP-10 PAIRS BASED ON 1-GEN CITATIONS

By sorting the MSO table we can demonstrate the results
of the algorithm based on the 1-gen, 2-gen and 3-gen
citations received by the individual (article, author) pairs.
We observe that the listing of the pairs that received greater
number of citations differentiates based on the sorting that
we apply to the results.

For example, if we choose to sort the results based on
the 1-gen citations received by each pair then the dominant
pair is (“Graph-Based Algorithms for Boolean Function
Manipulation”, Randal E. Bryant) which receives 1.600
references, as shown in Table I.

If we now choose to present the top 10 (article, author)
pairs based on the 2-gen citations received then we get the
results of Table II which are different from those in Table I.
Here we can see that the article “Congestion Avoidance and
Control” by Michael J. Karels and Van Jacobson has moved
to the first positions in the list with 13.444 2-gen citations
for Michael J. Karels and 13.424 citations for Van Jacobson.
The difference in the number of citations between the two
authors is due to the self citations that Van Jacobson received
by citing at future works this article. Such a difference can
also be noted for the “Supporting Real-Time Applications
in an Integrated Services Packet Network: Architecture and
Mechanism” article and its three authors each of which
receives a different number of 2-gen citations. If we search
for the position in the listing of the (article, author) pair
receiving the most 1-gen citations we are going to find that
it has moved down to the 11th position due to the fact that
even though it collected 1.600 1-gen citations it received
6.574 2-gen citations.

If we sort based on the 3-gen citations (Table III) that the
pairs received we are going to find that the article “Con-
gestion Avoidance and Control” remains in the first two
positions with Michael J. Karels receiving a total of 132.977
3-gen citations and Van Jacobson a total of 132.877 citations
(100 less than Michael J.Karels). In this case the “Graph-
Based Algorithms for Boolean Function Manipulation” by
Randal E. Bryant received 46.478 citations, thus, moving
down to the 32nd position in the listing.



Title Author 2-gen

1 Congestion Avoidance and Control Michael J. Karels 13.444
2 Congestion Avoidance and Control Van Jacobson 13.424
3 A Method for Obtaining Digital ... A. Shamir 8.996
4 A Method for Obtaining Digital ... L. Adleman 8.996
5 A Method for Obtaining Digital ... R. L. Rivest 8.996
6 Supporting Real-Time Applications ... David D. Clark 8.526
7 Supporting Real-Time Applications ... Lixia Zhang 8.497
8 Supporting Real-Time Applications ... Scott Shenker 8.434
9 Random Early Detection ... Van Jacobson 6.630
10 Tcl and the Tk Toolkit John K. Ousterhout 6.583

Table II
TOP-10 PAIRS BASED ON 2-GEN CITATIONS

Title Author 2-gen

1 Congestion Avoidance and Control Michael J. Karels 132.977
2 Congestion Avoidance and Control Van Jacobson 132.877
3 Supporting Real-Time Applications ... David D. Clark 83.380
4 Supporting Real-Time Applications ... Lixia Zhang 83.188
5 Supporting Real-Time Applications ... Scott Shenker 82.601
6 A Scheme for Real-Time Channel ... Dinesh C. Verma 73.663
7 A Scheme for Real-Time Channel ... Domenico Ferrari 73.560
8 A Method for Obtaining Digital ... A. Shamir 69.845
9 A Method for Obtaining Digital ... L. Adleman 69.845
10 A Method for Obtaining Digital ... R. L. Rivest 69.845

Table III
TOP-10 PAIRS BASED ON 3-GEN CITATIONS

It is also very interesting to notice the number of chords
that each of the three dominant pairs has received, as
shown in Table IV. In general, the fact that “Congestion
Avoidance and Control” received the greatest number of
chords (for both authors) could imply that this article is
of great importance in the specific field of research. In
order to safely draw a conclusion, these numbers have to be
examined in accordance with the overall number of citations
received by each pair and possibly taking into account the
number of research articles in the specific scientific area.

VI. CONCLUSIONS

Based on the Cascading Citation Indexing Framework
a new algorithm has been developed that calculates the
citations received by a (article, author) pair taking into
account not only the direct (1-gen) citations it receives but
also the indirect citations (2-gen, 3-gen) it receives through
articles that directly cited it. Other calculated values are the
self citations, the chords, and the self chords at all levels.

Title Author
2-gen
chords

3-gen
chords

1 Congestion Avoidance ... Michael J. Karels 4429 31881
2 Congestion Avoidance ... Van Jacobson 4383 32018
3 Graph-Based Algorithms ... Randal E. Bryant 3347 11055

Table IV
NUMBER OF CHORDS FOR 3 DOMINANT PAIRS

Through the presentation of the results, the different aspects
of the n-gen citations were demonstrated and it was noted
that if, in addition to the direct citations we also consider
the indirect ones, the sorting of the results can vary.

Future work on this field will: (a) test the algorithm for its
scalability, (b) improve the algorithm to operate on dynamic
article collections, and, (c) evaluate its performance in terms
of memory and CPU usage. Further research is also going
to assist us in identifying relations between the calculated
values and, if possible, in calculating a unique value based
on some criteria for the measurement of the scientific value
of a (article, author) pair in the context of the research field
it belongs to.

REFERENCES

[1] E. Garfield, “Citation indexes for science. a new dimension
in documentation through association of ideas,” Science, vol.
122, pp. 1123–1127, 1955.

[2] ——, “Journal impact factor: a brief review,” CMAJ, vol.
161, no. 8, pp. 979–980, October 1999. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/10551195

[3] ——, “The agony and the ecstasy - the history and meaning
of the journal impact factor.” International Congress on Peer
Review And Biomedical Publication, sep 2005.

[4] J. Hirsch, “An index to quantify an individual’s scientific
research output,” in Proceedings of the National Academy of
Sciences, vol. 102, no. 46. National Acad Sciences, 2005,
pp. 16 569–16 572.

[5] L. Egghe, “Theory and practise of the g-index,” Scientomet-
rics, vol. 69, no. 1, pp. 131–152, 2006.

[6] D. Dervos and T. Kalkanis, “cc-IFF: A Cascading Citations
Impact Factor Framework for the Automatic Ranking of
Research Publications,” 3rd IEEE International Workshop
on Intelligent Data Acquisition and Advanced Computer
Systems: Technology and Applications (IDAACS 2005),
Sofia, Bulgaria, September 2005. [Online]. Available:
http://dlist.sir.arizona.edu/1105/

[7] D. Dervos, N. Samaras, G. Evangelidis, and T. Folias,
“A new framework for the citation indexing paradigm,” in
Proc. of the ASSIST 2006 Annual Meeting, November 2006.
[Online]. Available: http://eprints.rclis.org/archive/00008405/

[8] D. Dervos and L. Klimis, “Exploiting cascading citations
for retrieval,” in Proc. of the ASSIST 2008 Annual Meeting,
October 2008.

[9] S. Brin and L. Page, “The anatomy of a large-scale hyper-
textual web search engine,” Computer Networks and ISDN
Systems, pp. 107–117, 1998.

[10] R. Rousseau, “The gozinto theorem: Using citations to deter-
mine influences on a scientific publication,” Scientometrics,
vol. 11, no. 3-4, pp. 217–229, 1987.

[11] CiteSeer, “http://citeseer.ist.psu.edu/.”


