
Efficient Dataset Size Reduction by Finding
Homogeneous Clusters

Stefanos Ougiaroglou
∗

stoug@uom.gr
Georgios Evangelidis

gevan@uom.gr
Department of Applied Informatics

University of Mecedonia
Thessaloniki, Greece

ABSTRACT
Although the k-Nearest Neighbor classifier is one of the most
widely-used classification methods, it suffers from the high
computational cost and storage requirements it involves.
These major drawbacks have constituted an active research
field over the last decades. This paper proposes an effective
data reduction algorithm that has low preprocessing cost
and reduces the storage requirements, and maintains classi-
fication accuracy at an acceptable high level. The proposed
algorithm is based on a fast pre-processing clustering pro-
cedure that produces homogeneous clusters. The centroids
of these clusters constitute the reduced training-set. Experi-
mental results, based on real-life datasets, illustrate that the
proposed algorithm is faster and achieves higher reduction
rates than three known existing methods, while it does not
significantly reduce the classification accuracy.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.5.3 [Pattern Recognition]:
Clustering—Algorithms

General Terms
Algorithms, Experimentation

Keywords
k-NN Classification, Clustering, Data reduction

1. INTRODUCTION
The k-Nearest Neighbor (k-NN) Classifier [4] is an exten-
sively used lazy classification algorithm. It is a simple and
easy to implement classifier and can be exploited in many

∗Stefanos Ougiaroglou is supported by a scholarship from
the Greek Scholarships Foundation (I.K.Y.)

domains. It classifies a new item x by searching in the train-
ing set (TS) for the k nearest items (neighbors) to x accord-
ing to a distance metric (e.g., Euclidean distance). Then,
x is assigned to the most common class determined via a
majority vote of the retrieved k nearest neighbors. Ties are
resolved either randomly or by the single nearest neighbor.

Although the k-NN classifier is considered to be an effective
method, it has two major weaknesses that render its use ir-
relevant for large datasets: (i) it involves high computational
cost, since all distances between the new, unclassified item
and the training data items must be estimated, and, (ii)
storage requirements are high since it has to maintain the
TS. Multi-attribute indexes [17] can deal with the first weak-
ness for datasets with moderate dimensionality (e.g. 2-10).
In higher dimensions, the curse of dimensionality degrades
their performance to the degree that sequential scans are
more effective.

On the other hand, Data Reduction Techniques (DRTs) [20,
7, 13, 19, 23, 11, 8] can cope with both weaknesses since
they build a small representative set of the available training
data, which is usually called condensing set (CS).1 Applying
the k-NN classifier using this small set, we have the benefit
of much lower computational cost and storage requirements.
A DRT is effective when classification accuracy does not de-
grade significantly. DRTs are distinguished into selection [7]
and abstraction [20] algorithms. Selection algorithms choose
some items of the TS as representative items and put them
into CS. On the other hand, abstraction approaches generate
representatives by summarizing similar TS items.

Although many DRTs can achieve extremely high reduction
rates, their execution constitutes a costly preprocessing step.
In addition, many of the DRTs are parametric, i.e., the user
has to define the number of representative items in advance
(this usually involves an iterative execution of a trial-and-
error procedure). The aforementioned procedure is inappro-
priate in application domains that periodically accept new
training items, and thus, the CS must be rebuilt.

These observations and the need for fast k-NN classification
algorithms in large and high-dimensional datasets constitute
the motivation of our work. The contribution is the devel-

1DRTs have two points of view: (i) item reduction, and, (ii)
dimensionality reduction. We consider them from the first
point of view.



opment of a fast, non-parametric, and easy to implement al-
gorithm that achieves high reduction rates. The algorithm,
which we call Reduction through Homogeneous Clusters (or
RHC), is based on the well-known k-Means clustering algo-
rithm2 [14] and, thus, it can be easily integrated in many
existing environments.

The rest of this paper is organized as follows. Section 2
briefly presents the related work. Section 3 considers in de-
tail the RHC algorithm. In Section 4, RHC is experimentally
compared to three known DRTs on eight real life datasets.
Finally, Section 5 concludes the paper.

2. RELATED WORK
A great number of DRTs have been proposed in the litera-
ture. Space restrictions force us to present in details only the
methods we compare our method with in Section 4. In ad-
dition, we mention some methods that also adopt clustering
in order to speed-up the k-NN classifier. For the interested
reader, abstraction and selection algorithms are reviewed,
evaluated, and compared to each other in [20] and [7] re-
spectively. Other relevant reviews can be found in [11, 8,
13, 19, 23].

The earliest and best known selection algorithm is the Con-
densing Nearest Neighbor (CNN) Rule [9]. It tries to put
only the close-class-border items in CS. The basic idea be-
hind CNN is that, since the non-close-class-border (or cen-
tral) items do not define the decision boundaries, they can be
removed without affecting the classification accuracy. Con-
trary to many other DRTs, CNN automatically determines
the CS size based on the level of noise that exists in the TS
as well as the number of classes (or, in other words, the num-
ber of boundaries). The algorithm uses two bins, S and T .
Initially, a TS item is placed in S while the remaining items
are placed in T . CNN classifies the content of T using that
of S by employing the 1-NN classifier. Whenever an item of
T is misclassified, it is moved to S. When there is no move
during a complete pass of T , the procedure terminates. The
items that have been placed in S constitute the CS. Many
other selection approaches either extend the CNN-rule or
are based on the same idea (see [7] for details). However,
CNN continues to be the reference algorithm and it is used
for comparison purposes in many research papers.

Prototype Selection by Clustering (PSC) [15] is a recently
proposed selection algorithm whose main goal is fast execu-
tion of the reduction procedure rather than high reduction
rate. PSC executes k-Means clustering [14] in order to find
c clusters in TS. For the homogeneous clusters (i.e., clus-
ters that contain only items of a specific class), it keeps
only the nearest to the centroid TS item. For each non-
homogeneous cluster, it keeps only the items that define the
decision boundaries between different classes in the cluster.
A disadvantage of PSC is that the user has to determine the
value of parameter c through a trial-and-error procedure.

Other DRTs based on clustering include the Self-Generating
Prototypes (SGP) algorithms [6] and the Symbolic Nearest
Mean Classifier (SNMC) [5]. Contrary to PSC, both be-
long to the abstraction category and, like PSC, they are

2One should not confuse k of k-NN with k of k-Means.

parametric. Additionally, there are some methods based on
clustering that although they do not reduce the TS size, they
speed-up the k-NN classifier [10, 24, 16, 21, 12]. For each
new item, they dynamically determine which subset of the
initial TS should be searched. All of them are parametric.

The family of Reduction by Space Partitioning (RSP) al-
gorithms [18] constitutes a popular set of three abstraction
algorithms known as RSP1, RSP2 and RSP3. They can be
characterized as extensions of the Chen and Jozwik algo-
rithm (CJA) [3]. The latter, initially finds the most distant
items, A, B in TS. Then, it divides the TS into two sub-
sets. One subset includes the items nearest to A, while the
other the TS items nearest to B. CJA continues by divid-
ing the subset with the greatest diameter. This procedure
is executed repetitively until the number of subsets is equal
to a user-predefined threshold. Finally, it places in CS a
mean item (centroid) for each produced subset. The class
label of each centroid is the most common class in the cor-
responding subset. In contrast, RSP1 computes as many
centroids as the number of different classes in the subset.
RSP1 and RSP2 differ to each other on how they choose the
next subset that will be split. RSP3 continues splitting the
non-homogeneous subsets and terminates when all of them
become homogeneous. RSP3 is non-parametric since it au-
tomatically determines the CS size.

Some selection algorithms attempt to improve the classifi-
cation accuracy rather than achieve high reduction rates.
This is achieved by removing the noisy and the close-class-
border items leaving smoother decision boundaries. These
approaches are called editing algorithms. The reduction
rates of the DRTs depend mainly on the level of noise in
the TS. Thus, their success usually implies the execution
of an editing routine before the application of the main re-
duction procedure [13]. Some selection approaches, such as
DROP algorithms [23] and IB3 [1], integrate the idea of
editing, and are called hybrid (see [7] for details). The refer-
ence editing algorithm is the ENN-rule [22]. It removes the
irrelevant items by using the following rule: a TS item is
removed, if its class does not agree with the majority of its
k nearest neighbors. Thus, ENN-rule needs to compute all

the distances among the TS items, i.e., N∗(N−1)
2

distances.

3. PROPOSED METHOD
The Reduction through Homogeneous Clusters (RHC) algo-
rithm is based on a simple idea that adopts the well-known
k-Means clustering algorithm in a repetitive manner. Par-
ticularly, it continues constructing clusters until all of them
are homogeneous, i.e., they contain items only of a specific
class. RHC is summarized in Figure 1.

The RHC algorithm begins by finding the mean item (cen-
troid) for each class by averaging the attribute values of
the corresponding items in TS (Figure 1(b)). Thus, for a
dataset with c classes, it computes c centroids. Then, RHC
executes the k-Means clustering algorithm using the c afore-
mentioned centroids and builds c clusters (Figure 1(c)). For
each homogeneous cluster, it places the cluster centroid in
CS. On the other hand, for each non-homogeneous cluster
x, RHC counts the number of distinct classes in x and com-
putes their initial centroids (Figure 1(d)). Afterwards, it
executes the k-Means algorithm for the items of cluster x



(a) Initial data (b) Initial centroids (c) k-Means on initial data

(d) Centroids in a
non-homogeneous cluster

(e) k-Means on a
non-homogeneous cluster

(f) Condensing set

Figure 1: Reduction through Homogeneous Clusters

(Figure 1(e)). This procedure stops when all clusters are
homogeneous. In the end, CS contains centroids of homoge-
neous clusters (Figure 1(f)).

Considering the proposed algorithm, it is obvious that RHC
generates many representative items for close-class-border
data areas and few representative items for the “central”
class data areas. Thus, the more the classes in the training
data and/or the higher the noise, the lower the reduction
rates achieved.

Algorithm 1 is a non-recursive implementation of RHC. It
uses a queue data structure, QueueClust, to hold unpro-
cessed clusters. Initially, the whole TS constitutes an un-
processed cluster and is inserted in QueueClust (line 1).
At each repeat-until iteration, the algorithm dequeues the
cluster C from the head of QueueClust (line 3) and checks
whether C is homogeneous or not. If it is a homogeneous
cluster (line 4), its centroid is placed in CS (line 5). Other-
wise, that is, if C is a non-homogeneous cluster (line 6), RHC
computes a list of centroids (InitCentroids), one for each
of the different classes that exist in C (lines 8-11). Then,
RHC calls the function K-MEANS, which implements the
k-Means clustering algorithm, with parameters the current
non-homogeneous cluster C and the list of the initial cen-
troids InitCentroids. The function returns a list of clusters
(ClList) produced (line 12). The clusters of ClList are in-
serted into QueueClust (lines 13-15). The loop continues
until QueueClust becomes empty (line 16), i.e., there are
no more non-homogeneous clusters.

Algorithm 1 RHC Algorithm

Input: TS Output: CS

1: Enqueue(QueueClust, TS)
2: repeat
3: C ← Dequeue(QueueClust)
4: if C is homogeneous then
5: Put the mean vector (centroid) of C into CS
6: else
7: InitCentroids← ∅
8: for each Class L in C do
9: CentroidL ← Compute the mean vector of items

that belong to L
10: InitCentroids ← InitCentroids ∪ CentroidL
11: end for
12: ClList ← K-MEANS(C, InitCentroids)
13: for each new cluster X in ClList do
14: Enqueue(QueueClust, X)
15: end for
16: end if
17: until IsEmpty(QueueClust)
18: return CS

Actually, RHC combines the idea of RSP3 [18] with that
of PSC [15]. It retains their advantages and avoids their
weaknesses. Let’s recall that PSC is a fast and parametric
algorithm, while RSP3 is non-parametric but involves high
computational cost (procedure for finding the most distant
items in each subset). Thus, RSP3 is inappropriate for large
datasets. Contrary to PSC, RHC is a non-parametric algo-



rithm. Contrary to RSP3, RHC is a fast approach since it is
based on the k-Means algorithm. Note that we have adopted
the full cluster consolidation (no item re-assignment during
a complete pass of data) as the k-Means stopping condi-
tion. The proposed method could become even faster, had
we used a more efficient stopping condition.

4. PERFORMANCE EVALUATION
4.1 Experimental setup
The proposed algorithm was evaluated by using eight real
life datasets distributed by KEEL Repository3 [2]. These
datasets are summarized in Table 1. None of them has miss-
ing values. For comparison purposes, we implemented two
selection algorithms, CNN-rule [9] and PSC [15] as well as an
abstraction approach, RSP3 [18]. We selected these meth-
ods because: (i) CNN-rule and RSP3 are popular algorithms
that have been used in many research papers for compari-
son purposes, (ii) PSC and RHC have the same goal, that
is, the fast execution of the reduction procedure (or, low
preprocessing cost), and, (iii) RHC is based on the idea of
RSP3 and PSC.

In addition, we wanted to evaluate how the proposed method
works on noise-free data. Thus, we run our tests twice us-
ing the original and an edited version of the TS. For edit-
ing purposes, we implemented the ENN-rule [22] and used
it by defining k=3 [23]. All implementations were written
in C. Moreover, the Euclidean distance was adopted as the
distance metric. The datasets were used without data nor-
malization or any other data transformation.

For each dataset and algorithm, we report three measure-
ments: (i) Accuracy (Acc), (ii) Reduction Rate (RR), and,
(iii) Preprocessing Cost (PC) in terms of distance compu-
tations. These measurements were obtained by a five-cross-
fold validation schema. Thus, we run five training/testing
set k-NN experiments for each dataset and each algorithm
and we report the averages. We used the five already con-
structed pairs of sets hosted by the KEEL repository (it
distributes all datasets in three forms: original, 5-folds and
10-folds). Of course, only the training set was preprocessed
by the reduction algorithms (ENN-rule was included to re-
veal the level of noise in the datasets). For each one of the
five pairs of training/testing sets, we used the k parameter
that achieved the highest accuracy. Ties were resolved by
the 1-NN rule.

Apart from PSC, all algorithms are non-parametric. For de-
termining the value of c for PSC (number of clusters built),
we run experiments by building c = r × j, j = 2, 4, · · · , 10,
clusters, where r is the number of discrete classes in the
data, as Lopez et al. did in their experiments [15]. Thus,
we built five PSC classifiers for each dataset.

4.2 Comparisons
The results of our experiments can be found in Table 2 and
Table 3, for the original and the edited datasets, respec-
tively. Each table column lists the measurements of a spe-
cific classifier. The PC measurements are in million distance
computations. For reference, in both tables we report the
accuracy values of the conventional k-NN classifier (the one

3http://sci2s.ugr.es/keel/datasets.php

Table 1: Dataset description

dataset Size Attr. Classes

Letter Recognition (LR) 20000 16 26
Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2
Ring (RNG) 7400 20 2

applied on the original training set) and the ENN measure-
ments. We note that, in Table 3, the PC measurements of
CNN, RSP3, PSC and RHC algorithms do not include the
cost of editing. In these cases, the total preprocessing cost
can be computed by adding the PC measurements of the
ENN column.

At a glance, we observe that RHC has the lowest preprocess-
ing cost. In almost all cases, it is lower than PSC, whose
major goal is to reduce the preprocessing cost. To be fair,
we should mention that the k-Means part of RHC includes a
small extra preprocessing overhead for computing the initial
mean items. However, this cost is almost insignificant com-
pared to the cost of distance computations that assign items
to clusters, and we do not include it in our measurements.

In all cases, RHC achieves the highest reduction rates. This
means that the k-NN classifier executes faster when us-
ing the condensing set produced by RHC. Our measure-
ments confirm that RSP3 is a time-consuming approach that
achieves low reduction rates. However, RSP3 has the high-
est accuracy, very close to the one measured for the conven-
tional k-NN classifier. RHC is more accurate than PSC and
as accurate as CNN. Although the accuracy measurements
of RHC do not reach that of RSP3, in most cases, they are
close enough. Thus, they can be characterized as acceptable.

Concerning the difference between the two tables (original
vs edited data), we observe that the reported accuracies are
similar. On the other hand, all DRTs executed faster and
produced smaller condensing sets. In the cases of MGT,
LS, PH and RNG, the ENN rule removed many irrelevant
items (> 9%) and so, the differences in Acc and PC mea-
surements between the two tables are obvious. It is worth
noting that, in the case of edited data, RHC produces its
CS by calculating an extremely low number of distances.

We can make a final comment concerning the average mea-
surements (bottom row of both tables): the proposed algo-
rithm builds the smallest condensing sets with the lowest
preprocessing cost, and in all cases, it has an acceptable
classification accuracy similar to that of CNN-rule.

5. CONCLUSIONS
Data reduction is very important when using the k-NN clas-
sifier on large datasets. In this paper, we presented a new
fast non-parametric algorithm for data reduction. It works
by using the k-Means algorithm to recursively cluster the
training dataset into homogeneous clusters. The condensed
set consists of the centroids of the final clusters. The pro-



Table 2: Comparisons on original datasets: Accuracy (Acc(%)), Reduction Rate (RR(%)) and Preprocessing Cost (PC(in
million of distance computations))

Dataset k-NN ENN CNN RSP3
PSC PSC PSC PSC PSC

RHC
j=2 j=4 j=6 j=8 j=10

LR
Acc: 96.01 94.98 92.84 95.51 82.73 85.65 87.14 87.73 89.43 93.59
RR: - 4.33 83.54 61.98 81.40 79.76 79.46 79.88 79.90 88.09
PC: - 127.99 163.03 326.52 66.32 110.06 129.16 165.32 169.92 41.85

MGT
Acc: 81.32 80.95 80.64 81.08 70.60 71.11 73.13 73.24 73.36 80.09
RR: - 20.08 59.94 53.70 70.72 71.13 71.46 71.62 71.72 73.76
PC: - 115.76 277.18 511.67 24.19 19.60 24.05 24.56 24.99 4.09

PD
Acc: 99.37 99.30 98.68 99.18 96.83 96.80 96.29 96.89 96.97 98.30
RR: - 0.67 95.36 89.04 91.44 92.86 93.72 94.41 94.83 96.52
PC: - 38.65 11.76 94.80 6.55 15.37 28.37 34.53 37.14 2.88

LS
Acc: 91.22 90.41 90.15 91.06 84.16 84.51 84.97 84.97 85.47 90.16
RR: - 9.07 79.83 73.14 85.05 84.60 84.64 84.99 85.09 89.84
PC: - 13.25 18.59 37.70 3.50 5.05 7.90 12.14 10.26 1.69

SH
Acc: 99.82 99.79 99.77 99.75 99.67 98.24 97.93 98.82 95.96 98.09
RR: - 0.18 99.37 98.59 96.88 97.68 97.87 98.33 98.54 99.55
PC: - 1076.46 45.40 17597.68 123.96 54.33 150.69 224.34 256.99 16.83

TXR
Acc: 99.02 98.64 97.38 98.29 92.84 95.22 95.96 96.80 96.27 97.04
RR: - 1.24 91.96 83.31 42.13 40.94 46.44 54.86 58.96 94.70
PC: - 9.68 5.57 27.63 5.18 8.92 11.24 13.99 17.57 3.63

PH
Acc: 90.10 88.14 87.83 87.77 78.82 79.56 79.41 79.24 79.04 86.36
RR: - 11.25 76.05 69.91 23.45 35.43 32.70 32.13 32.61 80.71
PC: - 9.35 13.47 20.32 7.79 3.46 4.02 4.37 4.38 0.65

RNG
Acc: 74.69 62.20 84.61 81.84 74.96 72.43 73.19 73.57 73.59 84.55
RR: - 28.81 72.95 56.48 21.79 22.23 19.58 18.86 18.57 90.35
PC: - 17.52 29.63 43.42 16.41 11.64 10.82 12.25 13.79 2.00

Average
Acc: 91.44 89.3 91.49 91.81 85.07 85.44 86.00 86.41 86.26 91.02
RR: - 9.45 82.38 73.27 64.11 65.58 65.73 66.89 67.53 89.19
PC: - 176.08 70.58 2332.47 31.74 28.55 45.78 61.44 66.88 9.20

posed method combines the advantages of PSC and RSP3
algorithms while avoiding their drawbacks.

Experimental measurements, derived by using the original
and the edited versions of eight real life datasets, showed
that the proposed method used the lowest preprocessing cost
(in terms of distance computations) and achieved the high-
est reduction rates without significant loss of accuracy. We
claim that these properties render the proposed method ap-
propriate for environments where fast classification and/or
low preprocessing cost are critical and slightly lower accu-
racy is acceptable.

6. REFERENCES
[1] D. W. Aha, D. F. Kibler, and M. K. Albert.

Instance-based learning algorithms. Machine Learning,
6:37–66, 1991.

[2] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and
S. Garćıa. Keel data-mining software tool: Data set
repository, integration of algorithms and experimental
analysis framework. Multiple-Valued Logic and Soft
Computing, 17(2-3):255–287, 2011.

[3] C. H. Chen and A. Jóźwik. A sample set condensation
algorithm for the class sensitive artificial neural
network. Pattern Recogn. Lett., 17:819–823, July 1996.

[4] B. V. Dasarathy. Nearest neighbor (NN) norms : NN
pattern classification techniques. IEEE Computer
Society Press, 1991.

[5] P. Datta and D. Kibler. Learning symbolic prototypes.
In In Proceedings of the Fourteenth ICML, pages
158–166. Morgan Kaufmann, 1997.

[6] H. A. Fayed, S. R. Hashem, and A. F. Atiya.
Self-generating prototypes for pattern classification.
Pattern Recogn., 40:1498–1509, May 2007.

[7] S. Garcia, J. Derrac, J. Cano, and F. Herrera.
Prototype selection for nearest neighbor classification:
Taxonomy and empirical study. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
34(3):417–435, 2012.

[8] M. Grochowski and N. Jankowski. Comparison of
instance selection algorithms ii. results and comments.
In Artificial Intelligence and Soft Computing - ICAISC
2004, volume 3070 of Lecture Notes in Computer
Science, pages 580–585. Springer Berlin / Heidelberg,
2004.

[9] P. E. Hart. The condensed nearest neighbor rule. IEEE
Transactions on Information Theory, 14(3):515–516,
1968.

[10] S. Hwang and S. Cho. Clustering-based reference set
reduction for k-nearest neighbor. In 4th international
symposium on Neural Networks: Part II–Advances in
Neural Networks, ISNN ’07, pages 880–888. Springer,
2007.

[11] N. Jankowski and M. Grochowski. Comparison of
instances seletion algorithms i. algorithms survey. In
Artificial Intelligence and Soft Computing - ICAISC



Table 3: Comparisons on edited data: Accuracy (Acc(%)), Reduction Rate (RR(%)) and Preprocessing Cost (PC(in million
of distance computations))

Dataset k-NN ENN CNN RSP3
PSC PSC PSC PSC PSC

RHC
j=2 j=4 j=6 j=8 j=10

LR
Acc: 96.01 94.98 92.06 94.56 81.72 85.23 86.82 88.00 88.56 92.73
RR: - 4.33 87.74 65.94 82.96 81.28 81.13 81.72 82.06 90.34
PC: - 127.99 118.38 344.39 34.30 49.85 59.32 78.32 85.36 31.05

MGT
Acc: 81.32 80.96 80.90 81.32 75.71 75.68 77.12 77.19 77.54 80.76
RR: - 20.08 89.97 84.04 88.66 88.65 89.13 89.34 89.30 93.06
PC: - 115.76 92.97 540.66 7.19 4.94 6.71 8.39 10.66 2.83

PD
Acc: 99.37 99.30 98.60 99.00 97.46 96.90 97.16 97.19 97.17 98.45
RR: - 0.67 96.42 90.39 91.95 93.53 94.27 95.12 95.63 97.19
PC: - 38.65 9.35 106.23 2.82 8.28 13.13 18.25 17.60 2.83

LS
Acc: 91.22 90.41 89.56 89.95 83.70 84.74 85.28 85.77 85.72 89.14
RR: - 9.07 91.27 85.62 91.26 91.18 91.44 91.87 91.91 95.06
PC: - 13.25 7.97 45.94 1.38 2.53 4.81 4.29 4.96 1.74

SH
Acc: 99.82 99.79 99.75 99.72 99.56 98.35 97.90 98.89 98.20 99.60
RR: - 0.18 99.58 98.87 97.09 97.87 98.12 98.46 98.69 99.66
PC: - 1076.46 26.17 15829.73 54.37 31.01 74.90 98.14 105.57 22.41

TXR
Acc: 99.02 98.64 97.15 97.91 92.16 94.85 95.69 95.75 95.33 97.11
RR: - 1.24 93.37 84.96 40.76 44.52 49.55 59.52 65.20 95.58
PC: - 9.68 4.48 27.34 2.17 4.10 5.88 6.13 8.92 3.00

PH
Acc: 90.10 88.14 86.88 86.46 80.06 79.74 79.87 79.52 79.50 85.40
RR: - 11.25 90.44 85.09 30.45 40.49 38.82 43.05 46.35 92.10
PC: - 9.35 6.44 20.43 3.64 1.55 1.77 1.42 2.26 0.47

RNG
Acc: 74.69 62.20 70.49 72.28 59.84 61.57 61.14 61.51 60.88 77.47
RR: - 28.81 87.84 79.12 36.93 33.57 34.06 32.96 34.64 96.73
PC: - 17.52 12.12 74.06 6.37 4.46 4.03 4.60 5.05 1.04

Average
Acc: 91.44 89.30 89.42 90.15 83.78 84.63 85.12 85.48 85.36 90.08
RR: - 9.45 92.08 84.25 70.01 71.39 72.06 74.01 75.47 94.96
PC: - 176.08 34.74 2123.60 14.03 13.34 21.32 27.44 30.05 8.17

2004, volume 3070 of Lecture Notes in Computer
Science, pages 598–603. Springer Berlin / Heidelberg,
2004.

[12] L. Karamitopoulos and G. Evangelidis. Cluster-based
similarity search in time series. In Proceedings of the
2009 Fourth Balkan Conference in Informatics, BCI
’09, pages 113–118, Washington, DC, USA, 2009. IEEE
Computer Society.

[13] M. Lozano. Data Reduction Techniques in
Classification processes (Phd Thesis). Universitat
Jaume I, 2007.

[14] J. McQueen. Some methods for classification and
analysis of multivariate observations. In Proc. of 5th
Berkeley Symp. on Math. Statistics and Probability,
pages 281– 298, Berkeley, CA : University of California
Press, 1967.

[15] J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and
J. F. M. Trinidad. A new fast prototype selection
method based on clustering. Pattern Anal. Appl.,
13(2):131–141, 2010.

[16] S. Ougiaroglou, G. Evangelidis, and D. A. Dervos. An
adaptive hybrid and cluster-based model for speeding
up the k-nn classifier. In Proceedings of 7th
International Conference on Hybrid Artificial
Intelligence Systems, HAIS 2012, volume 7209 of
LNCS, pages 163–175, Salamanca, Spain, 2012.
Springer.

[17] H. Samet. Foundations of multidimensional and

metric data structures. The Morgan Kaufmann series in
computer graphics. Elsevier/Morgan Kaufmann, 2006.

[18] J. S. Sánchez. High training set size reduction by
space partitioning and prototype abstraction. Pattern
Recognition, 37(7):1561–1564, 2004.

[19] G. Toussaint. Proximity graphs for nearest neighbor
decision rules: Recent progress. In 34th Symposium on
the INTERFACE, pages 17–20, 2002.

[20] I. Triguero, J. Derrac, S. Garćıa, and F. Herrera. A
taxonomy and experimental study on prototype
generation for nearest neighbor classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 42(1):86–100, 2012.

[21] X. Wang. A fast exact k-nearest neighbors algorithm
for high dimensional search using k-means clustering
and triangle inequality. In The 2011 International Joint
Conference on Neural Networks (IJCNN), pages
1293–1299, August 2011.

[22] D. L. Wilson. Asymptotic properties of nearest
neighbor rules using edited data. IEEE trans. on
systems, man, and cybernetics, 2(3):408–421, July 1972.

[23] D. R. Wilson and T. R. Martinez. Reduction
techniques for instance-based learning algorithms.
Machine Learning, 38(3):257–286, 2000.

[24] B. Zhang and S. N. Srihari. Fast k-nearest neighbor
classification using cluster-based trees. IEEE Trans.
Pattern Anal. Mach. Intell., 26(4):525–528, 2004.


