
DELYS: A novel microworld-based educational
software for teaching Computer Science subjects

Vassilios Dagdilelis1, Georgios Evangelidis2*, Maya Satratzemi3, Charalabos
Zagouras4

1 Department of Educational and Social Policy, University of Macedonia,
156, Egnatia str., P.O.Box 1591, 54006, Thessaloniki, Greece, dagdil@uom.gr

2Department of Applied Informatics, University of Macedonia,
156, Egnatia str., P.O.Box 1591, 54006, Thessaloniki, Greece, gevan@uom.gr

3Department of Applied Informatics, University of Macedonia,
156, Egnatia str., P.O.Box 1591, 54006, Thessaloniki, Greece, maya@uom.gr

4 Department of Mathematics, University of Patras,
 Campus (Aristotle str.), Greece, zagouras@math.upatras.gr

Abstract

The Greek ministry of education with the support of the European Union has begun

an attempt to incorporate information and communication technology in the normal,

everyday activities of secondary education. Part of this effort is the development of

pilot educational software. Our project proposal was DELYS, an educational software

environment that aids the teaching of computer science in secondary education. It was

one of the approved proposals and, incidentally, the only one funded in the field of

computer science. DELYS consists of four “exploratory microworlds” which deal

with the following subjects: (i) the various components of a computer and how they

operate as a whole, (ii) the booting process in a computer, (iii) the way data is

represented numbers are processed, and (iv) a programming environment. The

material is mainly presented through the use of simulations and animations and it is

accompanied by text and/or video. In this paper, we present the design rationale of the

system and its description. In addition, we present initial evaluation results of DELYS

with data collected from students and teachers. It must be stated that these first results

of DELYS are most encouraging.
* Corresponding author

1

mailto:zagouras@math.upatras.gr
mailto:maya@uom.gr
mailto:gevan@uom.gr
mailto:dagdil@uom.gr

Keywords:

Applications in subject areas, interactive learning environment,

multimedia/hypermedia systems, programming and programming languages,

secondary education

1. Introduction

In the past few years, extensive efforts have been made at an international level to

incorporate information and communications technology (ICT) in education. This is

attributed both to the technological advancement of computing systems (better GUIs,

development of computer networks, increased computational power, etc.) and the

latest findings from extensive research and studies conducted regarding the use of

computing systems in the learning process.

Recently, Greece has attempted to incorporate ICT into secondary education with the

aim of creating a critical mass of school communities that will embody ICT in their

everyday educational activities. The findings and experience gained from this initial

phase will enable conclusions to be drawn up as to how ICT can be fully incorporated

into all Greek secondary schools. In the next phase primary schools are to join the

program. In the pilot phase 300 schools were enlisted in the program and 1000 more

are to follow suit.

The project to incorporate ICT into schools is titled Odysseia1 and is co-funded by the

European Union. It includes many actions, one of which, called Nafsica2, aims in the

development of pilot educational software to support the teaching process of the

various subjects of secondary education. Within this context we developed an

1 Computer Technology Institute. Project Odysseia: http://odysseia.cti.gr/English/ODYSSEIANEW/about.html
2 Computer Technology Institute. Project Nafsica: http://odysseia.cti.gr/English/ODYSSEIANEW/

e22_naysika/e22_naysika.htm

2

http://odysseia.cti.gr/English/ODYSSEIANEW/%20e22_naysika/e22_naysika.htm
http://odysseia.cti.gr/English/ODYSSEIANEW/%20e22_naysika/e22_naysika.htm
http://odysseia.cti.gr/English/ODYSSEIANEW/about.html

environment for the introduction of computer science, called DELYS3. DELYS is a

collection of complementary microworlds, each one concentrating on a specific issue

of computer science. DELYS uses extensive animation techniques and has a high

degree of interactivity with the user.

Our basic motivation for creating an educational environment to support the teaching

of computer science was the fact that students have difficulty in understanding basic

theoretical and practical principles about both the hardware and the software of a

computing system.

The hardware refers to the operation of a machine, which the teacher is called on to

present in the form of static shapes (drawn) on the blackboard and verbal descriptions.

This is a source of problems for the students, since many times they are expected to

follow the functioning of a machine or the execution of an algorithm through verbal

descriptions and simplified diagrams. Added to this, is the students’ lack of

understanding of the various functions of a computer since it is a machine they are not

familiar with.

Even though many students come into contact with computers outside of schools they

usually have only an empirical or procedural knowledge of their functioning. This

procedural knowledge allows them to use a computer, however, students are ignorant

of the basic principles of its operation.

Yet another problem related to the teaching of concepts that have to do with the

hardware of a computer is that it is impossible to perform an experiment that actually

demonstrates the operation of a computer. Lastly, it must be mentioned that the

various chapters in schoolbooks that refer to computer hardware, usually, lack suitable

exercises and experiments because of their very nature.

3 University of Macedonia. Project DELYS: http://macedonia.uom.gr/~delys

3

http://macedonia.uom.gr/~delys

Another major problem area is the teaching of computer software since:

 it constitutes a specialized environment for solving problems, and

 the solutions required are of a general nature, which high school students are

unaccustomed to finding, since they are usually taught to apply given formulas

rather than find general solutions.

In the following sections we first describe the general principles that led to the design

of DELYS (Sections 2 and 3). Then, we present its functional and didactic features

(Section 4) followed by an evaluation of the software (Section 5) and in the final

section of the paper we present the conclusions.

2. Software development framework defined by project ODYSSEIA

DELYS was implemented in the context of project Odysseia which defines very strict

guidelines concerning the characteristics of the software to be implemented. These

characteristics refer as much to technical and user interface features as to didactic and

pedagogical principles of the software projects to be developed. We briefly present

the design principles our software had to adhere to:

Incorporation of the software in school activities: The software should be

appropriate for usage in the general educational content as well as in the

everyday school activities. It should not be regarded as yet another pilot project

to be used in special only situations.

Pedagogical and Didactic principles: The software should encourage teachers and

students to become more actively involved in the educational process than they

are at present. Modern pedagogical and didactic theories (Piaget, 1974;

Brousseau, 1984 ; Balacheff, 1988; Balacheff, 1991) suggest that students

cannot learn in isolation; they learn through interaction with their environment, a

4

process that leads to a reconstruction of their knowledge. The teacher, the

classmates, and the computer are all parts of this learning environment. The

software should not be a simple e-book or tutorial but it should favor the active

participation of students. The software should be designed in such a way as to be

used within the framework of educational scenarios. These scenarios should be

based on the exploratory characteristics of the activities undertaken by students.

Wherever possible, the software should have an interdisciplinary nature and

combine didactic goals from various subjects in a complementary way.

Supportive educational material: In the school environment the learning process

takes place within a framework of didactic situations especially designed by the

teacher, where new knowledge (propositions, concepts, methods) arises from

solving new problems. Consequently, the software should not been designed for

self-learning – although this is not prohibited – rather it should be designed for

use within a teaching framework. Therefore the software should be accompanied

by a teacher’s book that does not describe the functioning characteristics of the

software but didactic situations that the software can be used in.

Collaboration with other applications: The software should allow for copying and

pasting to and from commonly used applications (text and image editors, word-

processors, spreadsheets, etc.). It should also exploit the use of networking

technologies encouraging a CMC type of collaborative learning among students.

3. Design rational of DELYS

As has already been stated, computer science is a difficult subject to teach. For this

reason, we decided to design and implement a special environment, called DELYS,

which can become a supplementary aid to the teacher of computer science in

5

secondary and tertiary education. Ιt is not intended to become the sole means for

teaching. With DELYS we tried to create an environment which would support

teaching in the best possible way, in other words we designed software which would

not only be based exclusively on the state-of-the-art technology, but also on strong

didactic analysis. DELYS is an educational environment which has been created

taking into consideration the well-known learning difficulties of students.

Μore precisely, DELYS can:

 Promote collaboration among the students.

 Act as a source of information.

 Act as a virtual laboratory where students can experiment and discover

knowledge by themselves, without harming expensive hardware equipment;

and.

 Be used as a tool for teaching concepts and operations that are inherently

difficult and time-consuming to teach – especially to novice students – using

traditional means of teaching (blackboard and verbal descriptions).

Based on the above mentioned didactical principles we designed DELYS as a

framework of interactive microworlds. Εach microworld was designed and

implemented having in mind certain peculiarities that characterize courses of the

computer science curriculum and each microworld allows students to explore, seek

out information, and eventually solve problems related to the understanding of the

way modern computing systems operate. In addition to the high degree of

interactivity, the designed microworlds offer two important features: adaptation to the

knowledge level of the user and use of animations.

6

Our microworlds are adaptable to the knowledge level of the student. For example, in

the programming microworld, students can choose among a novice level with the

programming language X (a Pascal-like language) or move on to an advanced level

that includes an assembly language and, for example, observe the contents of the

machine registers during the execution of an X program. Thus, the design of our

software allows for the teaching of programming principles at various levels of

sophistication and complexity depending on the level of students’ knowledge.

The implemented microworlds make extensive use of animation techniques, which, in

recent years, have been used extensively in educational software (Stasko, Domingue,

Brown & Price, 1997). It is true that various studies on the value of animation in the

learning process report mixed results; some consider it a positive feature while others

a negative one. Despite that, Park & Hopkins (1993) propose certain usages of

animated graphics that can contribute to the understanding of a subject and therefore

support the learning process. DELYS has incorporated animations mainly as

illustrators, i.e., as dynamic visualizations used as an effective aid to represent the

structural and functional relations among components in a domain knowledge and as

device models for forming mental images, representing system structures and

functions that are not directly observable (Park & Hopkins, 1993). As an example,

usual programming environments do not offer the option of visualizing the execution

of a program. As a result, the process of execution remains hidden and students tend

to believe that executing a program has to do with data input and data output. This

“black box” approach (du Boulay, O'Shea & Monk, 1989) conceals the semantics of

the programming language.

7

4. Functional Characteristics of the System

We have already mentioned that we base the design of the microworlds on a

pedagogical analysis of the comprehension difficulties experienced by students. Each

microworld helps students overcome specific difficulties. The implemented

microworlds (see Figure 1) are the following:

 "Components of a computer". Students can explore the various components of

a modern computer.

 "Booting a computer". This microworld presents the boot process of a

computing system using interactive animation.

 "Representing Data & Processing Numbers". This microworld includes

various components covering binary representation of integers, addition of

binary numbers, ASCII character representation, data storage to and retrieval

from the hard disk, and basic logic circuits.

 "The Programming Environment". The didactic objective here is to offer

students an elementary programming environment for a simple Pascal-like

language and clarify the phases of compilation and program execution that

usually constitute a "black box" in professional programming environments.

In addition to the above-mentioned microworlds, DELYS implements a virtual

laboratory and a virtual classroom.

 “Virtual Laboratory”. Students can assemble a virtual computer from scratch,

find out how peripheral devices and internal components of a computer are

attached and/or connected, and use a Virtual Scale to better understand the

decimal and binary number representation systems.

8

 “Virtual Classroom”. This environment is accessible from all other

microworlds and can help students test their knowledge by answering various

questions. The system can provide the correct answers. Another use of this

environment is for administering tests consisting of built-in questions or

additional questions provided by teachers. For this purpose, we provide a tool

that teachers can use to prepare and administer the tests of the Virtual

Classroom over the classroom Intranet.

Figure 1. The Main Menu of DELYS

The educational material included in DELYS consists of simulations and animations

(Stasko, Domingue, Brown & Price, 1997) and is accompanied by text and/or video.

DELYS offers the student multiple representations for a given study subject using

simultaneously text, figures, simulations, experimental setups, and video. As regards

simulations, the student can control the parameters and execute the simulations step-

by-step. Using different input parameters the student can explore the possibility of

obtaining different outputs. Our software makes heavy use of visualization techniques

in order to explain the various functions/procedures of a computing system or the

various algorithms (or programs) and help students comprehend concepts or functions

9

that are very difficult to comprehend by observing a computer or by using other

traditional teaching means.

4.1 The interface

The interface used is uniform across all the implemented microworlds (Alessi &

Trollip, 2001). The main environment uses a full-screen menu to guide students to the

4 microworlds (Figure 1). A frame menu located at the bottom of the screen is

common to all microworlds and offers access to a series of common additional

functions that enhance the usability of the system:

 Selective navigation in all environments: Students can navigate the system

according to their needs (return to the previous environment, exit the system,

connect to the WWW or the class intranet, etc.).

 Dictionary of terms: A useful add-on that is accessible at all times.

 Notes: Students can keep electronic notes during the various didactic activities

and use them at a future time, for example, while preparing a project.

 Copy/Paste: certain objects from the software, like text and figures, can be

copied and pasted to other applications, for example, a word-processor.

 Printing: Students can print text or figures.

 Network connection: Students can connect to a network (the local intranet or

the internet) in order to send or receive messages, participate in electronic

discussions, and collaborate with other students.

 Help: A versatile context-sensitive help system is provided.

Figure 2 shows a help-screen where the movement of the mouse cursor over each

numbered area displays the corresponding help message.

10

Figure 2. Help system

The graphical user interface was designed according to the state-of-the-art

requirements for GUI design (Alessi & Trollip, 2001; Shneiderman, 1998).

Information is presented in a compact and consistent manner: specific actions produce

specific outcomes. User-friendliness was not used as an end in itself but was used in

order to maximize its didactic effectiveness.

 Depending on the needs of each environment, the most appropriate interface is

used in order for the various didactic goals to be achieved. The various visible

and active icons function depending on the operations executed in each

specific working environment. In this way, students do not have to memorize

their functionality and can use them to accelerate the execution of certain

system functions.

 Where deemed appropriate, the text is accompanied by verbal narration (Clark

& Paivio, 1991). In some cases distinctive sounds are used to emphasize the

responses of the system.

 Where also deemed necessary, animation is used to better explain a naturally

dynamic concept, i.e., something that evolves in space and time.

11

 In all environments students do not remain passive, but actively participate in

all the proposed activities by interacting through DELYS.

 Τhe software is accompanied by a set of manuals for the teacher and the

student that include teaching scenarios for the best possible utilization of the

pedagogical capacity of the software.

DELYS has been implemented on the Microsoft Windows platform using

Macromedia Director and the compiler construction tools LEX and YACC (Aho,

Sethi, & Ullman, 1988).

4.2 Description of the Microworlds

4.2.1 Microworld 1: The Components of a computer

This microworld presents the hardware of a personal computer. It is a graphical

interactive navigation of the basic internal and external components (or peripherals) of

a computer. Students can explore the technical characteristics of each component, the

way it is connected or attached to the system, and its role in the functioning of the

system. This is done by having students use drag and drop techniques to internally

connect (or externally attach) various components in a virtual computer (see Figure

3).

12

Figure 3. Assembling a computer

Students become acquainted with the operation of a computer and its basic

components. Although many of the students may be familiar with computers, i.e., they

may own a personal computer, they do not necessarily have a solid understanding of

the way a computer and its various components relate and operate as a whole. As is

often the case, their approach is empirical, i.e., they have mastered a series of practical

workarounds (some theoremes-in-action (Vergnaud, 1981) that allow them to cope

with certain problems they may encounter when using a computer and has a

procedural character: students often can complete specific tasks but have a false idea

of the whole function of the system.

It is important to mention that DELYS can easily be customized so that it replaces

certain components of a computer with newer, more modern ones, in order to always

expose students to the most current computer technology in use.

4.2.2 Microworld 2: Booting a computer

This microworld explains the boot process. This is accomplished by presenting the

specific components involved, explaining the role of each component in the boot

13

process, and displaying appropriate messages in a virtual computer screen in order to

associate what is seen with what is actually happening inside a computer. Students are

presented with a graphical representation of the computer internals (i.e., motherboard

with power source, CPU, DIP switches, bus, ROM BIOS, RAM, graphics card, other

cards with their own BIOS, keyboard, and secondary storage). We use animation

(Park & Hopkins 1993; Stasko et al, 1997) to describe the interaction between the

various components involved in the phases of the boot process. In this microworld we

have included verbal narration in order for students to be able to follow all the details

of the boot process. Students can replay each phase or navigate through the sequence

of phases that comprise the boot process (see Figure 4).

Figure 4. The Boot Process

The goal of this microworld is not to offer detailed technical information about the

boot process itself, but to help students comprehend the principles of how a computer

operates and in this way gain control of the system behavior (messages that appear on

the screen, beeping sounds, etc). In addition, students may be able to identify the basic

types of malfunctioning and/or failures that can occur when a computer is turned on.

14

4.2.3 Microworld 3: Representing data and processing numbers

The transformation of character strings to ASCII code strings and numbers to a series

of binary digits and vice versa, and the performance of operations on numbers are

typical examples of processes including both a technical and a mathematical

dimension. We tried to split the above processes into their component parts and create

models that simulate the theoretical aspects involved. In particular, in this microworld

a suite of activities helps students to:

 Understand the way characters are encoded in ASCII code and experiment by

moving back and forth arbitrary characters and their binary representations.

 Understand an algorithm by which numbers represented on a decimal basis are

transformed by the computer into their binary representation. There are three

modes of execution: (a) watch mode, where students observe the software

perform and explain each step of the algorithm, (b) step-by-step mode, where

the algorithm is executed at the students' pace, and (c) direct manipulation

mode, where students are free to transform any number into its binary

representation by setting on and off its bits and asking for a hint when they

find it difficult to proceed. For that purpose we have implemented a

backtracking algorithm. Students are not forced to follow the correct

algorithm; at any time they can undo the wrong decisions and, by using the

provided hints, solve the problem (see Figure 5).

15

Figure 5. Transforming a decimal number to its binary representation

 Understand the operation of addition of two binary numbers. Again, students

can choose any of the above-mentioned modes. In the direct manipulation

mode students add the binary digits one by one taking into consideration the

carried over digit. The software tests the correctness of each step by allowing

students to proceed.

 Understand how the computer hardware implements the addition of binary

digits. First, students see how the AND, OR, and NOT logical circuits work,

and then, see how these circuits can be used to implement a half-adder and a

full-adder. In all cases students can experiment by choosing the input digits.

4.2.4 Microworld 4 - The programming environment: X-Compiler

We have implemented a programming environment, called X-Compiler, where

students can write programs in a simple Pascal-like language (see Figure 6). The

language supports the assignment, if ... then, while ... do, read, write and compound

statements. Identifier variables and numbers are integers and all arithmetic

expressions evaluate to integers.

16

The programming environment consists of five windows: (a) source code, (b)

assembly code, (c) program output, (d) program variables watch, and (e) registers and

compiler generated temporary variables watch. We provide two modes of operation:

(i) novice user mode, where only windows (a) and (c) are active, and (ii) advanced

user mode, where all windows are active. Students can activate any window they

want.

Figure 6. The Programming Environment (advanced user mode)

The assembly language used is a pseudo-assembly that runs on a virtual machine with

two registers and includes the basic LOAD, STORE, COMPARE, JUMP, ADD, etc.,

instructions needed to implement the source language. Students must write and

compile a program. If there are errors the software reports them and suggests possible

solutions. Once there is a compiled program, students can either execute it or step

through source or assembly code statement by statement, watching the association

between source and assembly statements and the intermediate values of program

variables, machine registers, and temporary variables (if any).

The didactic objective of X-Compiler is to offer students an elementary programming

environment with simple high level and pseudo-assembly languages and clarify the

17

phases of compilation and program execution that usually constitute a "black box" in

professional programming environments (du Boulay et al, 1989). Brusilovski,

Calabrese, Hvorecky, Kouchnirenko & Miller (1997) point to three factors related to

the programming environments most often used in teaching programming and which

cause significant difficulties to novice students:

 General-purpose languages come with integrated programming environments

that are too complex and sophisticated for the novice programmer. Thus,

learning the fundamentals of programming and comprehending the basic

syntax of a programming language is a hard task and a time consuming

process.

 Programming environments are intended for professional programmers.

Syntax editors, compilers, and debuggers cause bewilderment to a student

programmer.

 Programming environments do not usually offer the option of visualizing the

execution of a program. As a result, the process of execution remains hidden

and students tend to believe that executing a program has to do with data input

and data output. This “black box” approach (du Boulay et al, 1989) conceals

the semantics of the programming language.

X-Compiler offers interesting didactic features. Users get detailed feedback on the

errors encountered during compilation, and are always aware of everything that

happens to the internals of the mental machine during program execution (by seeing

the correspondence between source and assembly code, the intermediate values of the

machine registers, the system generated temporary variables, their own variables, and

the contents of the output window). Moreover, users can alter the produced assembly

code and then execute it.

18

We provide teachers and students with the appropriate manuals that contain a series of

educational activities on the use of X-Compiler. We have designed the included

activities based on the findings of the research community and our teaching

experience on the difficulties encountered by students that are novice programmers.

For example, the following case of “cognitive transfer” could be a potential source of

difficulty for novice programmers trying to solve problems in a traditional

programming environment. Some students may believe that the following code

computes the area of a rectangle:

area := base * height;

read(base);

read(height);

write(area);

They will be surprised to realize that area is not computed correctly. In the X-

Compiler programming environment they can see why the above program is not

correct by observing the intermediate values of their variables.

Now, consider the code fragment below that swaps the values of variables A and B.

ΤΕΜΡ:=Α

Α:=Β;

Β:=ΤΕΜΡ;

The teacher can observe that one can get the same effect without using the extra

variable TEMP, as shown in the following code:

Α:=Α+Β;

Β:=Α-Β;

Α:=Α-Β;

19

Students can examine the intermediate values of the variables and understand why

this solution is correct. The teacher could then show that this solution is slower

(because it uses more assembly instructions than the previous solution) and also it

does not always work correctly (when we have integer addition underflow or

overflow).

These two examples demonstrate the didactic capabilities of our programming

environment. Students can not only examine whether their programs produce the

correct output, but also discover quickly and easily the syntactic and semantic errors

they make.

Special attention was paid with the help system accompanying the programming

environment. Apart the difficulties novice programmers encounter, mentioned above,

the international research literature reports additional problems related to the

comprehensibility of the error messages produced during the detection of run-time

errors (Freund & Roberts, 1996).

For the programming environment X, two types of help systems exist:

 regular help files for the programming environment (Figure 7), and

 an editor sensitive to user double-clicks, i.e., users can double-click keywords,

operators or delimiters to obtain detailed information about them (Figure 8).

During compilation, syntactic errors in the source code trigger a pop-up window that

contains two drop-down lists, one for the detected errors and one for the warnings

issued by the compiler. Users can choose the list element they desire to get an

explanation of the type of the error or warning. At the same time the appropriate line

of the source code is highlighted (Figure 9).

20

Figure 7. The help system of X-Compiler

Figure 8. On-line help for X statements

Figure 9. Error detection and advice to the programmer

4.2.5 Virtual Classroom and Virtual Laboratory

In addition to the above-mentioned microworlds, we allow students to test the

acquired knowledge by taking tests composed of true/false, multiple choice, fill-in the

blank, and matching type questions. Students must answer each question and then can

check for the correct answer. Using the provided administration tool, teachers can add

more questions and prepare and administer exams through the classroom intranet

21

using DELYS. The software automatically grades the answers and keeps statistical

data for each student.

We also provide a virtual laboratory where students can build a full computer system

from scratch. The computer initially consists of a case and a motherboard. Students

can add various components and try to power-on the system. This is achievable only

when all required components have been connected.

Finally, an extra virtual laboratory activity has been implemented to help students

understand the relationship between the decimal and binary number representation

systems. We use a pair of scales and the idea is to drag and drop decimal and binary

weights respectively on each tray so that the scales balance (see Figure 10). The set of

weights on the left tray corresponds to the decimal system, i.e. the system most

commonly used and the one on the right corresponds to the binary system, i.e. the

system used on computers.

Figure 10. The Virtual Scale

22

We use multiple representations (weights and digits) for the decimal and binary

numbers. Students can alter either representation and the software automatically

updates the other one4.

An attempt to generalize the properties of numbering systems is hindered by the

familiarity students have with the decimal numbering system. The purpose of the

scales is to familiarize students with the binary system via an alternative

representation approach and also to explore some basic properties of numbering

systems. This didactic goal can be achieved by using a variety of activities, which

involve the placing and removal of weights and are accompanied by questions like the

ones below:

 Is it always possible to balance a given decimal weight with weights from the

right set of weights? In other words, for every integer weight expressed in

decimal weights does there exist an equivalent binary weight representation?

Is this representation unique? What about the other way around? In other

words, are the two representation systems equivalent, i.e. is it possible to

uniquely represent an integer in both systems?

 Would you be able to determine the required weights for a numbering system

with a base of 3 or 5? Would we be able to devise any system we wish by

choosing as a base an integer greater than 2?

The main aim of the above mentioned activities is to make students realize the fact

that there exist certain invariable properties in numbering systems and to guide them

in discovering and mastering them.

The teacher can propose, as an alternative, the use of notation as a language for

describing and understanding numbering systems. As an example, the teacher requests
4 The interested reader can visit http://macedonia.uom.gr/~delys and experiment with a web-based
version of this component.

23

one student to leave the classroom for a while and asks the rest of the class to

unanimously place a certain weight on the right tray, e.g., (10111)2 =(23)10 units.

Next, the teacher proposes that one of the students writes on the blackboard the

shortest possible message, so that, when the student who is removed from the

classroom returns, immediately understands which weight has been placed on the

scales. Naturally, the shortest message is to write the binary representation of 23.

Should no student consider this, the teacher can of course propose this message.

Then, the first student is asked back into the classroom and the teacher asks him/her to

guess which weight has been placed on the scales by examining the message on the

blackboard. The student will of course give the correct answer. The teacher will,

however, insists that something is “still not quite right” and requests a second student

(one who believes that has understood the basic principles) to leave the classroom.

Then, the teacher asks the rest of the class to place 111 units on the left tray. The

student that re-enters the classroom and most probably presumes that the new

message indicates that there are 7 units on the right tray. This confusion stems from

the fact that notation 111 can represent two different numbers, and thus, students

realize the importance of the proper notation: (111)2 or (111) 10.

5. Evaluation of DELYS

DELYS was tested and evaluated in a number of high schools during the second

semester of the academic year 1999-2000. The participating schoolteachers used the

software to teach the subjects “Exploring the components of a computer”,

“Assembling a computer”, “The Virtual Scale” and “Programming environment”. On

average, students spent 6 hours using the software.

24

Students were from the fourth year of a technical high school that follow the computer

programmer course and also students of a general high school who attend a class on

computer science literacy for 3 hours a week.

In the beginning, a short demonstration introduced the software environment to the

participating students. Then, the students were given various activities to help them

explore the microworlds included in DELYS. Finally, the students worked on the

decimal and binary number representation systems using the Virtual Scales and the

programming environment, and were also given activities similar to the ones

described in the previous section to practice on.

The students were presented with a series of open questions and problems (Brousseau,

1984) that urged them to use the software microworlds in order to formulate guesses,

verify or reformulate them, improve their solutions, and prove the correctness of their

assumptions.

The students were eager to use the software and willing to answer a questionnaire at

the end of the class. They explored by themselves all the included microworlds - even

students who were usually not interested in attending class.

The answers to the questionnaires reveal that more than half of the students used

multimedia software for the first time. Almost all the students used educational

software for the first time and perhaps this is the reason why their answers to all the

questions show that they are willing to use educational software and that they actually

wish that educational software takes its place in the educational curriculum.

It must be mentioned that the students used beta versions of the software and their

input greatly improved the final version of the software. In summary, we claim that

the evaluation of DELYS helped all the parties involved (students, teachers and the

developing team).

25

Table 1 and Figure 11 show the evaluation questionnaire and the corresponding answers of

the students. (N=50).

QUESTION %
yes

%
no

% no
answer

1 Is this the first time you have worked with multimedia
software?

56 44 0

2 Is this the first time that you were taught a course using
educational software?

84 16 0

3 Do you believe your learning experience was improved by
using this software?

84 16 0

4 Do you think that the software helped you understand difficult
concepts?

86 14 0

5 Did the complementary use of the software in the teaching
process make the course more interesting to attend than
before?

88 12 0

6 Would you like to have your teachers use educational software
in addition to the blackboard approach?

94 6 0

7 Do you think that DELYS is a quality software? 86 10 4

8 Would you like to use DELYS at home while studying? 74 26 0

9 Would you like to see similar software accompanying your
textbooks?

90 10 0

Table 1. Evaluation questionnaire and student answers

Figure 11. Evaluation of the multimedia content

26

DELYS was also tested on a group of High school teachers who were attending a six

month training program5. These teachers in turn used DELYS at various schools.

Their observations verify our findings: students were pleased to use DELYS and

found it easier in certain situations to understand basic concepts related to the

operation of computer systems.

Finally, we should report that the Hellenic Pedagogical Institute6, a state organization

acting under the supervision of the Greek Ministry of education, evaluated our

software before using it in 300 schools for the academic year 2001-02. The

Pedagogical Institute judged that our software offers important teaching aid for

computer science related courses in the secondary education curriculum.

6. Synthesis and Conclusions

As already stated, the implementation of DELYS was based on a set of theoretical

principles which guided its design. A basic working hypothesis was the fact that

students already possess certain ideas and beliefs. Subsequently, both the educational

environment created and the activities proposed are not based on the rejection of the

students’ erroneous behaviours and/or beliefs, but rather on the intrinsic

inconsistencies that these behaviours and/or misconceptions will unavoidably lead to.

For example, in the activity with the decimal/binary scales, if the student chooses the

wrong weights then the software does not intervene. Instead, it lets the student reach

an inevitable dead-end. Similarly, in the activity with the decimal and binary number

representations, the built-in algorithm deals with the erroneous input and provides

students with appropriate indication each time. There are many other proposed

activities, such as the “area computation problem” in programming, which aim at

5 Computer Technology Institute. Project E42- Post-graduate instructor training:
http://odysseia.cti.gr/English/ODYSSEIANEW/e42/e42.htm

6 Hellenic Pedagogical Institute: http://www.pi-schools.gr/

27

http://www.pi-schools.gr/
http://odysseia.cti.gr/English/ODYSSEIANEW/e42/e42.htm

provoking inconsistencies among the possible student beliefs and the programming

reality. Despite this fact, the realization of inconsistencies is not considered sufficient

to reverse students’ erroneous conceptions and make them adopt correct ones. The

teacher should use these inconsistencies appropriately in such a way that students

accept the new knowledge.

We consider the collaboration among students very important. That is why the design

of our software favours collaboration in small teams (e.g., students sharing a

computer), in larger groups (e.g., an entire traditional or virtual class). The realization

of the proposed activities reinforces the collaboration among students by allowing

them to share their individual reasoning with the rest of the team or class. Thus, on the

one hand the networking capabilities of the software enable students to communicate

with each other, and on the other, the proposed activities are based on the

participation and collaboration of the entire class.

Our software focuses on the concepts involved in a computing system and not only on

the hardware. The aim is to help students master those concepts and use them as tools

in the problem solving process. On the other hand, teachers can control and fine-tune

the parameters of the didactic scenarios by choosing an appropriate activity for each

situation. In addition, our software emphasises on the inter-scientific nature of the

involved concepts.

The proposed activities are geared towards introducing students to the very nature of

the scientific process. The students are involved in problem solving procedures that

require: (a) the quest for information, (b) the processing of data, (c) the construction

of mental tools, and (d) the formulation, testing and verification of theories and

hypotheses in order to solve the proposed problems. For example, in the numbering

systems related activities, the students go from the exercise with the scales, to the

28

conversion of algorithms from/to the decimal to/from the binary systems. They also

generalize with the octal and hexadecimal systems; they explore the properties of the

numbering systems; they perform arithmetic operations on binary representations of

numbers; and they generalize the properties of arithmetic operations to any other

numbering systems. All these activities are realized through a series of open questions

and problems where students are asked to explore a “mathematical phenomenon”,

formulate conjectures, verify them, support and possibly amend their conceptions, test

and rectify their solutions, and possibly prove the correctness of their proposals.

Contrary to the customary approach, we do not consider the use of the software itself

as a prerequisite condition for the successful teaching of computer related courses. We

believe that educational software becomes meaningful and useful only when it

functions as a tool in a teaching situation. Contrary to the traditional ex-cathaedra

teaching model the whole class participates actively in finding the solution to a given

problem.

In this context, the educational software works as a source of organized information

that facilitates the solution of a given problem and not merely provides

“encyclopaedic” information. Educational software can also be used as a virtual

laboratory where students can run experiments that they organize and guide

themselves in their attempts to solve a problem. That is why the activities we propose

have an experimental nature and correspond to open problems that need investigation.

Interaction among students in the proposed activities is a sine qua non, if a course is

to be successful: students should be independent but not isolated. In this way, the

acquisition of knowledge will have a social character and the diffusion of new

knowledge will be an important component of each didactic situation. The proposed

29

educational software also functions as a teaching aid, which supports the teaching of

certain educational material that cannot be elaborated using conventional methods.

Since DELYS is a pilot software, it obviously does not fully cover all computer

science subjects taught in secondary education. However, many interesting extensions

from both, a didactic as well as research perspective, will be added to DELYS such as

the incorporation of mechanisms that automatically record students’ actions.

References

Aho, A.V., Sethi, R. & Ullman, J.D. (1988). Compilers: principles, techniques, tools.

Addison-Wesley.

Alessi S., & Trollip S. (2001). Multimedia for Learning Methods and Development.

(3rd ed.). Allyn and Bacon.

Balacheff N. (1988). Une étude des processus de preuve en mathématiques, chez des

élèves de Collège, Thèse d'Etat, Grenoble, France

Balacheff N. (1991). Treatment of refutations: aspects of the complexity of a

constructivist approach of mathematics learning. In: Von Glasersfeld E. (ed.)

Radical constructivism in Mathematics Education (pp.89-110). Dordrecht :

Kluwer Academic Publisher.

Brousseau G. (1997). Theory of Didactical Situations in Mathematics, Didactique des

mathématiques, 1970-1990, Kluwer.

Brusilovski, P., Calabrese, E., Hvorecky, J., Kouchnirenko A. & Miller P. (1997).

Mini-languages: a way to learn programming principles. Education and

Information Technologies, 2(1), 65-83.

30

Clark J., & Paivio A. (1991). Dual coding theory and education. Educational

Psychology Review, 3, 149-210.

du Boulay, B., O'Shea, T. & Monk, J., (1989). The Black Box inside the Glass Box:

Presenting Computing Concepts to Novices. In E. Soloway & J. Sprohrer,

Studying the Novice Programmer. Lawrence Erlbaum Associates, Hillsdale.

Freund, S. N. & Roberts, E. S. (1996). THETIS: An ANSI C programming

environment designed for introductory use. Proceedings of the SIGSCE ’96,

300-304.

Mayer R. (1997). Multimedia learning: Are we asking the right questions?

Educational Psychologist, 32(1), 1-19.

Park O., & Hopkins R. (1993). Instructional conditions for using dynamic visual

displays: a review. Instructional Science, 22, 1-24.

Piaget J. (1974). Recherches sur la contradiction, Vol.2: les relations entre

affirmations et négations, Paris, PUF.

Shneiderman, B. (1998). Designing the User Interface. Addisson Wesley.

Stasko J., Domingue J., Brown M., & Price B. (Eds) (1997). Software Visualization:

Programming as a Multimedia Experience. MIT Press.

Vergnaud G. (1981). Quelques orientations théoriques et méthodologiques des

recherches francaises en didactique des mathématiques. Actes du V Colloque du

groupe Psychology of Mathematics Education, Grenoble, France.

31

	Abstract
	1. Introduction
	2. Software development framework defined by project ODYSSEIA
	3. Design rational of DELYS
	4. Functional Characteristics of the System
	4.1 The interface
	4.2 Description of the Microworlds
	4.2.1 Microworld 1: The Components of a computer
	4.2.2 Microworld 2: Booting a computer
	4.2.3 Microworld 3: Representing data and processing numbers
	4.2.4 Microworld 4 - The programming environment: X-Compiler
	4.2.5 Virtual Classroom and Virtual Laboratory

	5. Evaluation of DELYS
	6. Synthesis and Conclusions
	References

