
FHC: an adaptive fast hybrid

method for k-NN classification

STEFANOS OUGIAROGLOU1, GEORGIOS EVANGELIDIS,
Dept. of Applied Informatics, University of Macedonia, Greece.
E-mail: {stoug,gevan}@uom.gr

DIMITRIS A. DERVOS,
Dept. of Informatics, Alexander TEI of Thessaloniki, Greece.
E-mail: dad@it.teithe.gr

Abstract

A popular and easy to implement classifier is k-Nearest Neighbor (k-NN) algorithm. However,
sequentially searching for nearest neighbors in large datasets leads to inefficient classification because

of the high computational cost involved. This paper presents an adaptive hybrid and cluster-based
method for speeding up k-NN classifier. The proposed method reduces the computational cost as
much as possible while maintaining classification accuracy at high levels. The method is based on
the well-known k-means clustering algorithm and consists of two main parts: (i) a preprocessing

algorithm that builds a two-level, cluster-based data structure, and, (ii) a hybrid classifier that
classifies new items by accessing either the first or the second level of the data structure. The proposed
approach was tested on seven real life datasets and the experiential measurements were statistically

validated by the Wilcoxon signed ranks test. The results show that the proposed classification
method can be used either to achieve high accuracy with slightly higher cost or to reduce the cost
at a minimum level with slightly lower accuracy.
Keywords: Nearest Neighbours, Classification, Clustering, Prototypes

1 Introduction

k-Nearest Neighbor (k-NN) classifier is one of the most widely-used classification
methods [7]. k-NN classifier is a lazy classifier, i.e., it does not build any classification
model. When a new unclassified item x must be classified, the classifier searches
the available training data and retrieves the k nearest data items (neighbors) to
x according to a distance metric. Then, x is classified to the most common class
indicated via a majority vote of the nearest neighbors. If more than one classes are
the most common (ties in voting), the major class is determined either randomly or
by choosing the class of the nearest neighbor.
k-NN classifier is effective, easy to implement and has many applications. The

classification cost depends on the size of the training set (TS). Particularly, for each
incoming new item x, the classifier has to compute all distances between x and all
training items. This cost may be very high and even prohibitive for large datasets.
This drawback is an active research field that has attracted the interest of many
researchers over the last decades. Therefore, many algorithms and techniques have
been proposed to speed-up k-NN searching. A possible categorization of the speed-up

1S. Ougiaroglou is supported by a scholarship from the State Scholarships Foundation (I.K.Y.) of Greece

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–16 0000 c⃝ Oxford University Press

2 FHC: an adaptive fast hybrid method for k-NN classification

methods is: (i) multi-dimensional indexing methods, (ii) data reduction techniques
(DRTs), and, (iii) cluster-based methods (CBMs). Contrary to indexes and CBMs,
DRTs have the extra advantage of the reduction of storage requirements.
Indexes [24] are used to reduce the cost of the nearest neighbor searches. Their

performance depends on data dimensionality. Practically, most of them are effective
when datasets have moderate dimensionality (e.g., 2-10). In higher dimensions the
“dimensionality curse” may render the use of indexes irrelevant since their perfor-
mance degrades rapidly and can become even worse than that of a sequential search.
Data Reduction Techniques (DRTs) [27, 12, 30, 4, 19] build a small representative

set of the initial TS that is called Condensing Set (CS). Thus, DRTs reduce both stor-
age requirements and computational cost while attempting to maintain classification
accuracy at high levels. DRTs can be divided into two main algorithm categories:
prototype selection (PS) and prototype abstraction (PA) algorithms. PS algorithms
select representative items (prototypes) from the initial TS, whereas, PA algorithms
generate prototypes by summarizing similar training items.
Cluster-based Methods (CBMs) [15, 31, 28, 16] apply a clustering procedure during

pre-processing in order to assign data items into clusters. In the classification step,
for each incoming new item, CBMs dynamically form an appropriate training subset
of the initial TS, and use it to classify the new item. This subset is called reference
set and consists of the data of one or more clusters.
In [22], we proposed a hybrid schema for fast k-NN classification that combined

the idea of DRTs with that of CBMs. In this paper we extend our work by proposing
an efficient classification approach through the hybrid schema that takes into con-
sideration the distribution of items in the classes. Moreover, we present additional
experiments and results. Our contribution is the development of an adaptive, hy-
brid and cluster-based method for speeding-up k-NN classifier. More specifically, we
develop a fast cluster-based preprocessing algorithm that builds a two level data struc-
ture and efficient classifiers that access either the first or the second level of the data
structure. The first level stores the cluster centroids (representatives) for each class.
The second level stores the set of items belonging to each cluster. Therefore, a DRT
and a CBM are combined in a hybrid schema to achieve the desirable performance.
The rest of this paper is organized as follows. Section 2 briefly presents the related

work. Section 3 considers in detail the proposed classification method. Section 4
presents the experimental study based on seven real life datasets. The results are
validated by the Wilcoxon signed ranks test. The paper concludes in Section 5.

2 Related Work

Condensing Nearest Neighbor (CNN) rule [14] is the earliest and one of the best
known PS algorithms. The idea behind the algorithm is that the non close-border (or
“internal”) training items can be removed without loss of accuracy, since they do not
define the decision boundaries between classes. Thus, CNN-rule reduces the cost of
k-NN classifier as well as the storage requirements by removing the internal training
items. CNN-rule determines the amount of the selected prototypes automatically
based on the level of noise in the data and the number of classes (the more the
classes, the more boundaries exist and, as a consequence, the more the prototypes
selected). CNN-rule performs as follows: Initially, a training item is moved from TS

FHC: an adaptive fast hybrid method for k-NN classification 3

to CS. Then, the algorithm classifies the content of TS using the 1-NN classier on
the content of CS. When an item is wrongly classified it is moved from TS to CS.
The idea is that whenever an item is misclassified, it may be close to the decision
boundaries, and thus, it must be placed in CS. This procedure continues until there
are no moves from TS to CS during a complete pass of TS. This means that all the
contents of TS can be correctly classified by the content of CS. Then, the content of
TS is discarded to release memory. A drawback is that CNN-rule is order-dependent,
i.e., it builds a different CS by examining the same data in a different order.
Although, there are many other PS algorithms that either extend CNN-rule or are

based on the same idea, CNN-rule continues to be the reference PS algorithm and it
is used in many papers for comparison purposes. Some of the these algorithms are
the Reduced NN rule [13], the Selective NN rule [23], the Modified CNN rule [11], the
Generalized CNN rule [6], the Fast CNN [3], and the family of IBL algorithms [1].
IB2 belongs to the popular family of IBL algorithms [1] and it is based on the idea

of CNN-rule. Actually, it is a dynamic one-pass version of it. We characterize IB2 as
dynamic because it is able to use new training items in order to update an already
constructed CS and without requiring the previously discarded TS items. Therefore,
IB2 can be used in dynamic environments where new TS items are gradually available
and it can manage large datasets that cannot fit into the main memory. It works as
follows: Initially an item is moved from TS to CS. Then, each TS item is classified
by applying the 1-NN classifier on the content of CS. If it is correctly classified, it is
moved from TS to CS. Otherwise, it is discarded. Here, there are no multiple passes
over the TS data. Therefore, the algorithm can not ensure that the discarded items
can correctly be classified by the content of the final CS. Moreover, like CNN-rule,
IB2 automatically determines the size of CS and is order-dependent.
A recently proposed PS algorithm is Prototype Selection by Clustering (PSC) [20].

It is based on the concept of cluster homogeneity. PSC considers that homogeneous
clusters (with items that belong to the same class) contain items that lie in the “inter-
nal” area of a class, whereas, non-homogeneous clusters contain close-border items.
The algorithm adopts k-means clustering [18] in order to divide the TS into clusters.
For the homogeneous clusters, it places the nearest item to the cluster centroid into
CS. For the non-homogeneous clusters, PSC places the items that define the deci-
sion boundaries into CS. Although the resulting CS is not data order-dependent, it
depends on the selection of the initial means for the k-means clustering.
Reduction through homogeneous clusters (RHC) [21] is a recently proposed PA

algorithm. Like PSC and RSP3, it is based on the idea of homogeneity. Like IB2 and
PSC, it has as main goal the fast data reduction. RHC continues building clusters by
executing k-means clustering until all of them are homogeneous. More specifically, it
begins by computing a mean item for each class in TS. These means are called class-
centroids. Then, it executes k-means clustering by using the class-centroids as initial
means for the k-means clustering. This clustering procedure is executed on the data
of each non-homogeneous cluster. Whenever, a homogeneous cluster is identified, the
cluster centroid is placed in CS and the items of the particular cluster are discarded.
RHC is non-parametric and independent on the ordering of data in TS.
Chen and Jozwik proposed a well-known PA algorithm [5]. Chen and Jozwik algo-

rithm (CJA) repetitively divides TS into subsets. Initially, it finds the pair of items
that define the dataset diameter (the most distant items in TS). Suppose, A and B.

4 FHC: an adaptive fast hybrid method for k-NN classification

Then, CJA divides the TS into two subsets. One subset stores the items nearest to
A, whereas, the other subset stores the items closer to B. Then, it keeps on dividing
the subset with the larger diameter until a user-predefined number of subsets is built.
In the end, CJA computes a mean item for each subset. The mean item is labelled
by the most common class label in the corresponding subset and is placed in CS.
The family of Reduction by Space Partitioning (RSP) algorithms [25] includes three

variations of CJA. Contrary to CJA, RSP1 does not ignore items in the subsets. It
computes as many prototypes as the different classes in the subset. Consequently,
RSP1 achieves lower reduction rates but higher classification accuracy. CJA and
RSP1 select the subset that will be divided by adopting the criterion of the largest
diameter. They assume that subsets with larger diameters contain more items and by
splitting them first, a higher reduction rate can be achieved. RSP2 adopts the criterion
of overlapping degree [25]. RSP3 continues splitting until all subsets are homogeneous,
i.e., is non-parametric and determines the number of prototypes automatically. CS
generation for CJA and RSP algorithms does not depend on the order of data in TS.
Some PS algorithms aim to increase accuracy rather than reduce cost and storage

requirements. These are called editing algorithms and constitute a subcategory of
PS algorithms. The goal of editing is achieved by removing noisy and close-border
data and leaving smoother decision boundaries. Noisy items mislead many DRTs and
affect their reduction rates. Therefore, when high levels of noise exist in the data, a
successful classification task implies the execution of editing before the execution of
the main data reduction procedure. There exist some hybrid PS approaches, such as
the DROP algorithms [30] and IB3 [1], which integrate an editing mechanism in their
main reduction procedure (see [12] for details).
Edited Nearest Neighbor (ENN) rule [29] is a popular editing algorithm. It works as

follows: for each training item x, if the class of x does not agree with the majority class
of its k nearest neighbors, x is discarded. ENN-rule constitutes an additional costly

preprocessing step. It needs to compute N∗(N−1)
2 distances, i.e., all the distances

among the items in TS. Other well-known and also time-consuming editing algorithms
are multi-edit [9] and all-kNN [26] that are variations of ENN-rule.
A great number of PS and PA algorithms have been proposed. Here, we presented

in detail only the algorithms that we used for comparison purposes in Section 4.3.
PA and PS algorithms are reviewed, categorized and compared to each other in [27]
and [12], respectively. Other relevant reviews can be found in [30, 4, 19]
An effective CBM has been proposed by Hwang and Cho [15]. Hwang and Cho’s

method (HCM) also uses k-means clustering in order to find clusters in TS. Each
cluster is divided into two sets. Items located in a certain distance from the cluster
centroid are placed into the “core set”. The rest are placed into the “peripheral set”.
When a new item must be classified, it is examined whether it lies within the “core
area” of the nearest cluster. In that case, it is classified by retrieving the k-nearest
neighbors from this cluster. Otherwise, its nearest neighbors are retrieved from the
set dynamically formed by the items of the nearest cluster and the “peripheral” items
of adjacent clusters. HCM has been used in our experimental study (see Section 4.3).
The Cluster-based Tree [31] is a CBM that is based on searching in a cluster hi-

erarchy. Karamitopoulos and Evangelidis [16] proposed a CBM for fast time series
classification. Finally, Wang introduced a CBM for fast k-NN classification that
prunes the search space by using the properties of the triangle inequality.

FHC: an adaptive fast hybrid method for k-NN classification 5

3 The Proposed Adaptive Hybrid Method

The proposed method consists of two main parts. The first part is a two level data
structure (TLDS) built by a clustering preprocessing procedure. We call this pro-
cedure TLDS construction algorithm (TLDSCA). The second part is a fast hybrid
classifier (FHC) that accesses TLDS to perform classification. Subsection 3.1 presents
TLDSCA. Subsections 3.2 and 3.3 present two versions of the proposed classifier. In
Subsection 3.4 some general comments about the proposed method are presented.

3.1 Two-level data structure construction algorithm

TLDS is built by a repeated execution of k-means clustering on the TS data of each
class. In particular, for each class k-means builds a number of clusters. TLDS consists
of a list of cluster centroids (i.e., the mean vectors of all clusters for all classes) together
with their corresponding class that we call the first level of TLDS. Each element of
this list points to a list containing the items assigned to the specific cluster centroid.
We refer to the collection of these lists of items as the second level of TLDS. We will
be using the term prototypes for the cluster centroids of the first level of TLDS.
The number of clusters built is determined by the data reduction factor (DRF),

that is a user-predefined parameter. For each class C, the number of clusters NC

is estimated by NC = ⌈ |C|
DRF ⌉, where |C| is the number of items that belong to C.

Therefore, DRF determines the length of TLDS. Figure 1 illustrates a two-dimensional
example: There are two classes, square and circle. The initial TS contains 27 squares
and 31 circles (Figure 1(a)). Thus, if DRF = 10, the classes Square and Circle
will be represented by 3 and 4 prototypes respectively (Figure 1(b)). The result of
TLDSCA will be the TLDS depicted in Figure 1(c). Class square is represented by
the prototypes A–C, whereas class circle is represented by the prototypes D–G.
TLDSCA is easy to implement. Algorithm 1 accepts a TS and a DRF value and

returns a TLDS. Initially, for each class, it estimates the number of clusters that will
be built (lines 3–5). The algorithm continues by calling k-means. Then, the resulting
clusters are added in TLDS (lines 7–11).
TLDSCA is fast because it is based on k-means clustering. Of course, the com-

putational cost depends on how fast the clusters are consolidated. In addition, DRF
also influences the cost. Typically, the higher the DRF value, the fewer and larger
the clusters created, and consequently, the lower the cost involved.

Algorithm 1 TLDSCA
Input: TS,DRF , Output: TLDS

1: TLDS ← empty list of records of the form [class, prototype, list of items]
2: for each class C in TS do
3: SC ← set of items ∈ C

4: NC ← ⌈ |SC|
DRF

⌉
5: NewClusters ← K-MEANS(SC, NC)
6: for each CL ∈ NewClusters do
7: add in TLDS element [C,CLcentroid, CLitems]

8: end for
9: end for

10: return TLDS

6 FHC: an adaptive fast hybrid method for k-NN classification

(a) Initial dataset (b) Clustered dataset

(c) Speed-up data structure

Fig. 1. k-means clustering on items of each class (DRF=10)

We should mention that the idea of creating multiple class representatives via clus-
tering has also been proposed by Datta and Kibler in [8]. Their goal was the repre-
sentation of distant and disjoint groups formed by items of the same class and the
construction of a classifier capable of managing symbolic (nominal) attributes.

3.2 Fast Hybrid Classifier I

The first version of the proposed classifier (FHC-I) works by accessing either the first
or the second level of TLDS. It uses three parameters that let the user define the
desirable trade-off between accuracy and classification cost. The idea behind the al-
gorithm is quite simple (see Algorithm 2). When a new item x arrives and has to
be classified (line 1), FHC-I initially scans the first level of TLDS and retrieves the
pk nearest prototypes to x (line 2). We call this procedure first level search. If the
acceptance criterion introduced by the npratio parameter is met, these prototypes,
through a majority vote, determine the class where x belongs to (line 4–6). Upon fail-
ure, x is classified by searching for the k “real” nearest neighbors within the clusters
dynamically formed by the union of clusters indexed by the pk nearest prototypes
(lines 7–10). This procedure is called second level search. Obviously, the more the
items classified without the need of the second level search, the lower is the computa-
tional cost involved. Possible ties during the majority class voting of either the first
or the second level search are resolved using 1-NN.
FHC-I uses parameter npratio to decide when to switch to a second level search.

FHC: an adaptive fast hybrid method for k-NN classification 7

npratio is a ratio that defines how many nearest prototypes should determine the
majority class (the most common class among the pk nearest prototypes) in order to
classify a new item (see lines 3–5). For example, suppose that the input parameters
are set to be k = 3, pk = 10, and npratio = 0.7. Furthermore, suppose that a new
item x has to be classified and a TLDS with 100 clusters is available. FHC-I, initially,
examines the 10 nearest prototypes from the first level of TLDS. If seven or more
of them belong to the majority class, then x is classified to this class. Otherwise,
FHC-I proceeds to a second level search. The three “real” nearest neighbors are
retrieved from the data subset formed by the union of clusters indexed by the ten
found nearest prototypes, and they determine the class of x. Even in the case of the
second level search, FHC-I avoids searching the rest 90 clusters. We note that if we
define npratio = 0, all incoming items are classified by a first level search.

Algorithm 2 The Fast Hybrd Classifier I
Input: TLDS, pk, npratio, k

1: for each unclassified item x do
2: pkprototypes← Find the pk nearest to x prototypes ∈ {prototypes of TLDS}
3: SMC1 ← set of items ∈ majority class MC1 among pkprototypes

4: if
|SMC1|

pk
≥ npratio then

5: Classify x to MC1

6: else
7: NNs ← Find the k nearest neighbors to x in the set formed by the union of the clusters

indexed by the pkprototypes
8: MC2 ← Find the majority class among NNs
9: Classify x to MC2

10: end if

11: end for

3.3 Fast Hybrid Classifier II

The performance of FHC-I depends on the distribution of TS items in the classes.
If they are uniformly distributed, each class is represented by a similar number of
prototypes in TLDS. Therefore, all unclassified items have the same probability to be
classified by a second level search. In contrast, in cases of non-uniform distributions
and since the value of npratio is the same for all classes, the probability of performing
a second level search depends on which is the majority class of the first level search.
Items belonging to rare classes always lose during the voting of the first level search
and are classified by a second level search.
Fast hybrid classifier II (FHC-II) attempts to better manage unbalanced datasets.

It considers the sizes of the classes and tries to reduce “costly” second level searches.
FHC-II estimates npratio instead of using a pre-specified value for it. This is ac-
complished by using a range of npratio values defined by parameters npratiolow and
npratiohigh. The value of npratio is dynamically adjusted to be between the partic-
ular range and depends on the majority class determined by the first level search.
Algorithmically, FHC-II is similar to FHC-I. However, for each class c, FHC-II

counts how many TS items |c| belong to c (or how many prototypes are created for c)
and notes the corresponding min and max values. For each class c, FHC-II computes
npratio ∈ [npratiolow, npratiohigh] as follows: npratio = norm × (npratiohigh −

8 FHC: an adaptive fast hybrid method for k-NN classification

npratiolow) + npratiolow where norm = |c|−min
max−min . For each new item, the ratio of

majority classMC1 votes during first level search should be greater than the estimated
npratio in order to avoid a second level search (see lines 2–5 in Algorithm 2).
For instance, suppose that a TS contains three classes, A, B and C with 3000, 2000

and 1000 items respectively. Also, suppose that npratiolow = 0.5 and npratiohigh = 1.
If class A is voted to be the majority class during the first level search, then npratio =
1 (because norm = 1). Namely, all np nearest prototypes must vote the majority class
in order to classify the new item without the need of a second level search. Similarly,
if class B is the majority class of the first level search, npratio = 0.75 (because
norm = 0.5. Finally, if class C is the majority class then npratio = 0.5 (because
norm = 0. That is, the value of npratio is adjusted for each class in the range
[npratiolow, npratiohigh] depending on the size of the class, i.e., the smaller the class
the lower the npratio and vice versa.
When correct prediction of “weak” (or rare) classes is critical, FHC-I should be

used instead of FHC-II. FHC-II should be adopted when correct predictions for all
classes have the same significance.

3.4 Discussion

Considering the proposed classifier, it is obvious that a new item that lies in a close-
border area, is classified by a second level search. On the other hand, an item that
lies in the “internal” area of a class, is classified by first level search. Thus, FHC is
neither a CBM nor PA, since it dynamically decides on how to classify a new item.
Classification via a first level search is a PA method. On the other hand, a second level
search is a CBM that uses a dynamically-formed subset of the initial TS. Therefore,
the method is hybrid. Of course, contrary to PS/PA algorithms and like CBMs and
indexing methods, the proposed method does not reduce storage requirements.
Concerning the parameters, pk and npratio (or npratiolow and npratiohigh) should

be determined by taking into account the DRF value that was used for TLDS con-
struction. If accuracy is more critical than cost and a TLDS with few and large
clusters is available, pk and npratio should have high values. If cost is more critical
and a TLDS with many and small clusters is available, low pk and npratio values
are recommended. Considering DRF : low DRF values are recommended for build-
ing accurate classifiers with high cost savings and high DRF values for building fast
classifiers without significant accuracy loss. If our needs are not specified at the time
that TLDSCA is executed, an intermediate DRF value is the most appropriate. In
this case, the trade-off can be afterwards determined by adjusting pk and pkratio.
When FHC performs a second level search, it accesses a subset of the initial TS

formed by the union of the pk clusters. Since each cluster contains items of a specific
class, this subset does not contain items of irrelevant classes (it does not contain
outliers of classes which are not represented by the pk prototypes) and, thus, we
claim that accuracy is not affected as much by these outliers. Taking into account
this property, FHC may be more accurate than the conventional-k-NN classifier (the
one that uses the original TS) without the need of editing. Of course, noise removal
can increase the cluster quality and the overall performance.

FHC: an adaptive fast hybrid method for k-NN classification 9

4 Performance Evaluation

4.1 Experimental Setup

The proposed method was coded in C and was evaluated using seven datasets dis-
tributed by the KEEL repository2 [2] and summarized in Table 1. All datasets were
used without normalization. Euclidean distance was adopted as the distance metric.
We compared the performance of our method to six methods. Three PS and two PA
algorithms, and one CBM. We used the methods presented in detail in Section 2. We
selected the particular methods because: (i) CNN-rule [14], IB2 [1] and RSP3 [25] are
popular and usually used in many papers for comparison purposes, (ii) we consider
TLDSCA to be a fast algorithm, and, hence, we wanted to compare it to IB2 and
RHC [21] that have been proven to be fast algorithms, and, (iii) our method, PSC [20],
HCM [15] and RHC are based on k-means clustering. A comparison between them
was desirable. MGT, LS and TXR datasets are distributed sorted on the class label.
This affects the data order-dependent methods. We randomized these datasets.

Table 1. Dataset description
Dataset Size Attributes Classes

Letter Recognition (LR) 20000 16 26

Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10

Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7

Texture (TXR) 5500 40 11

Phoneme (PH) 5404 5 2

We compare the methods by reporting three average measurements obtained via
five-cross-fold validation for each one: (i) Accuracy (Acc), (ii) Classification Cost
(CC), and, (iii) Preprocessing Cost (PC). Costs were estimated by counting distance
computations. We used the five already constructed five pairs of training/testing sets
distributed by the KEEL repository. Moreover, we wanted to evaluate all methods on
noise-free data. Therefore, we ran all experiments twice, one on the original and one
on the edited TS. For editing purposes, we used ENN-rule [29] by setting k=3 [30].
All methods involve a k parameter during the classification step: The DRTs execute

k-NN classifier on CS. Similarly, when FHC performs a second level search, it retrieves
and examines the k nearest neighbors. HCM applies k-NN classifier on the reference
set. For all methods and datasets, we defined k = 1.
In addition, our method provides three extra parameters: DRF , pk, and npratio.

Several experiments were conducted for the these parameters. The values tested for
each one were: (i) DRF = 2i, i = 1, 2, . . . 8 (for dataset SH, i = 3, 4, . . . 8), (ii)
pk = 2, 5, 7, 10, 12, . . . , 27, 30, and, (iii) for FHC-I, npratio = 0.5, 0.7, 1 (for FHC-
II, see Subsection 3.3). Therefore, we built 8 × 16 × 3 = 384 FHC-I classifiers.
Then, we kept the most accurate FHCs for each reported classification cost (CC).
In real life applications, there is no need to do such extensive tests to determine the
appropriate values of the parameters. Here, our purpose was to fully understand
how each parameter influences classifier construction and performance. In real life

2http://sci2s.ugr.es/keel/datasets.php

10 FHC: an adaptive fast hybrid method for k-NN classification

applications, the parameters should be determined by taking into consideration the
significance of Acc and CC as well as the dataset used.
HCM also uses three parameters: C is the number of clusters, L is the number of

adjacent clusters, D is the distance threshold used to define the core and peripheral
items (see Section 2 or [15]). We set C = ⌊

√
n
2i ⌋, i=1,. . . ,7, where n is the number

of items. Thus, for each dataset, we built 8 classifiers. The first classifier (for i=1) is
based on the rule of thumb that defines C = ⌊

√
n
2 ⌋ [17]. We decided to build classifiers

that use small C values based on the observation that Hwang and Cho defined C=10
for a TS with 60919 items. Also, we set L = ⌊

√
C⌋ as Hwang and Cho did in their

experiments. Moreover, following the approach of Hwang and Cho, we considered as
peripheral items, those whose distance from the cluster centroid was greater than the
double average distance among the items of each cluster (i.e., D=2).
Another issue that needs attention is the number of clusters that PSC uses. In [20],

since the main goal of the authors was the fast data reduction, they run experiments by
constructing r×j, j = 2, 4, · · · , 10, clusters, where r is the number of classes. Although
we are also interested in low PC, our main goal is to achieve high Acc at a low CC.
So, we decided to test PSC with higher j values. We conducted several experiments
with varying j = 2i, i = 1, 2, . . . 9 (for the noisy MG dataset, i = 1, 2, . . . , 11).
Since only a first level search can be used to classify new items, we included its

performance in the comparisons. We call this method first level search classifier
(FLSC). It carries out the whole task when npratio = 0. Similarly to FHC-I, we kept
only the most accurate FLSC, PSC and HCM classifiers for each reported cost.

4.2 Pre-processing performance

Table 2 presents PC measurements in millions of distance computations. Each cell
has two PC values. The first value (or.) corresponds to PC estimated on the original
(non-edited) data whereas the second value on the edited data. The first table row
shows the PC needed for the execution of the editing procedure of ENN-rule. Of
course, PC measurements on edited data do not include the cost of editing.
RSP3 is the most time-consuming method, since it must retrieve the pair of the

farthest points in each subset. CNN-rule is faster than RSP3. IB2 and RHC seem to
be the fastest approaches. PC measurements of all other methods depend on the pa-
rameter used and the size and distribution of the data in the multidimensional space.
Considering the measurements of TLDSCA, we can conclude that its PC performance
is satisfactory. We note that we have adopted the full cluster-consolidation as well
as the random initialization of the means. Thus, TLDSCA could become even faster
had we used more efficient consolidation and initialization criteria.
In most data mining tasks, preprocessing is executed only once. Hence, these

measurements may not be so significant in real-life applications. However, PC is a
comparison criterion and its measurements should be evaluated taking into account
the performance that the corresponding classifiers achieve in terms of Acc and CC.

4.3 Classification performance

Each classifier was executed twice, once on original and once on edited data. Thus,
the diagrams presented in figure 2, include the performance of each method twice.

FHC: an adaptive fast hybrid method for k-NN classification 11

Table 2. PC in millions of distance computations
Method LR MGT PD LS SH TXR PH

ENN or. 127.99 115.76 38.65 13.25 1076.46 9.68 9.35

CNN
or. 163.03 281.49 11.75 17.99 45.30 5.65 13.45
ed. 112.20 68.61 9.25 6.49 26.02 3.90 5.57

IB2
or. 23.37 34.61 1.78 2.22 8.26 0.84 1.96
ed. 18.35 8.48 1.51 0.99 6.35 0.72 0.86

RSP3
or. 326.52 511.67 86.66 37.70 17410.12 27.63 20.31
ed. 300.51 318.82 85.16 30.64 15652.75 27.04 15.67

RHC
or. 41.84 4.08 2.88 1.69 16.83 3.63 0.66
ed. 31.05 2.83 2.83 1.73 22.41 3.00 0.47

PSC i=1
or. 66.32 23.95 6.52 2.96 127.20 3.15 1.08
ed. 55.13 11.44 6.73 2.86 107.47 3.35 0.68

PSC i=2
or. 110.06 17.21 15.93 5.85 54.07 7.90 0.94
ed. 94.76 10.15 17.57 4.83 52.46 10.33 1.04

PSC i=3
or. 165.32 27.09 35.23 10.11 222.77 14.49 2.79
ed. 138.41 12.42 32.33 9.97 189.71 11.10 2.18

PSC i=4
or. 221.07 77.15 63.33 18.42 296.88 21.07 4.80
ed. 203.85 35.95 51.16 15.57 273.98 20.35 4.28

PSC i=5
or. 348.81 102.54 88.93 30.85 780.87 23.85 10.67
ed. 303.11 75.18 88.32 24.46 689.34 25.39 9.26

PSC i=6
or. 431.32 157.47 123.82 42.31 1259.12 35.93 17.51
ed. 422.79 115.30 114.03 35.96 1699.70 34.88 10.62

PSC i=7
or. 553.78 223.81 155.33 52.19 2548.15 43.37 30.78
ed. 529.74 197.41 154.28 52.49 2516.00 42.83 20.23

PSC i=8
or. 830.67 349.12 225.12 63.26 3855.90 52.04 32.76
ed. 713.12 234.09 205.71 54.65 3171.32 51.39 31.44

PSC i=9
or. 851.97 395.81 324.17 85.09 4479.18 38.72 54.01
ed. 814.97 266.48 321.97 70.72 5673.10 37.77 47.16

HCM i=1
or. 88.88 111.22 28.80 12.52 744.82 8.10 9.87
ed. 74.60 58.85 26.88 9.13 867.40 7.92 5.58

HCM i=2
or. 88.12 131.45 17.57 9.84 490.57 5.58 5.15
ed. 80.87 49.53 17.53 7.81 557.07 5.40 4.15

HCM i=3
or. 63.66 73.69 11.27 6.34 399.23 4.80 3.70
ed. 55.31 33.39 12.06 6.32 366.82 3.46 2.65

HCM i=4
or. 47.53 52.88 7.61 3.75 334.99 4.27 1.55
ed. 30.23 27.84 7.12 3.32 254.83 4.58 1.78

HCM i=5
or. 26.35 27.69 5.97 3.39 105.13 3.41 1.33
ed. 31.45 18.16 5.21 3.06 146.12 2.68 1.03

HCM i=6
or. 18.98 19.51 3.32 2.12 100.66 1.67 0.70
ed. 25.96 12.65 2.99 1.37 106.02 1.82 0.77

HCM i=7
or. 10.89 7.50 1.70 0.94 34.78 0.52 0.74
ed. 9.93 5.16 1.81 0.67 37.18 0.54 0.48

TLDSCA i=1
or. 19.62 404.23 18.38 10.56 - 3.50 34.69
ed. 18.48 258.18 17.78 8.26 3.34 26.27

TLDSCA i=2
or. 15.79 291.78 14.29 9.18 - 2.74 24.65
ed. 14.63 221.87 13.78 7.67 2.60 23.51

TLDSCA i=3
or. 11.58 252.06 10.60 6.87 3898.83 1.99 17.50
ed. 10.13 177.57 10.78 5.92 4267.59 1.98 18.00

TLDSCA i=4
or. 7.74 192.26 7.28 4.45 2879.39 1.32 12.36
ed. 7.01 145.16 7.21 4.51 3027.05 1.38 9.75

TLDSCA i=5
or. 4.80 159.82 4.54 3.75 1983.80 0.94 7.92
ed. 4.25 92.64 5.06 3.07 2115.25 0.99 6.47

TLDSCA i=6
or. 2.69 105.35 2.95 1.82 1537.64 0.58 7.00
ed. 2.37 64.63 3.29 1.79 1585.51 0.58 4.29

TLDSCA i=7
or. 1.23 54.04 1.68 1.15 855.87 0.28 3.27
ed. 1.15 46.55 1.60 0.95 847.11 0.29 2.95

TLDSCA i=8
or. 0.60 34.55 0.69 0.47 551.25 0.08 1.21
ed. 0.58 21.79 0.61 0.42 535.73 0.08 1.55

For each classifier, the diagrams report CC measurements on the x-axis (in terms of
millions or thousands distance computations) and the corresponding Acc values on
the y-axis. The closer to the “upper-left” corner of the diagram a classifier’s point lies,
the higher is the performance achieved. Since we want to clearly indicate classifiers of
high performance, the diagrams present only a subset of performance points (points of
some classifiers are omitted because they are out of the diagram range). In addition,
we do not show the parameter values used to built the corresponding classifiers3.
Table 3 shows Acc and CC results for the conventional 1-NN classifiers, i.e., clas-

sifiers that use original (1-NN (or)) or edited data (1-NN (ed)). Although editing is
used to improve accuracy, ENN achieves that only in the case of MGT. This happens

3Tables with complete parameter values and performance measurements are available on url:

http://users.uom.gr/~stoug/IGPL_experiments.zip

12 FHC: an adaptive fast hybrid method for k-NN classification

because MGT contains high levels of noise. Although, LS and PH also contain some
noisy items, ENN does not improve accuracy. The rest datasets are almost noise-free.

Table 3. Conventional 1-NN: Acc and CC measurements
Method LR MGT PD LS SH TXR PH

1-NN (or)
Acc. 95.83 78.14 99.35 90.60 99.82 99.02 90.10
CC. 64.00 57.88 19.34 6.63 538.24 4.84 4.67

1-NN (ed)
Acc. 94.98 80.44 99.30 90.29 99.79 98.64 88.14
CC. 61.23 46.26 19.21 6.02 537.24 4.78 4.14

Almost in all cases, FHC-I achieves high performance (see figure 2). In the cases
of LR, MGT, PD, LS and PH, it is more accurate than 1-NN. This happens because
when FHC-I performs a second level search, it accesses a TS subset that does not
contain items of irrelevant classes. With the exception of SH, FHC-I achieves better
performance than all DRTs. For SH, FHC-I can achieve higher Acc than all DRTs,
but at a higher CC. Although FHC-I is more accurate than HCM in all datasets, in
the cases of LR and SH the latter may be preferable when very fast classifiers are
required. Of course, FHC-I performs better than FLSC. However, the latter achieves
noteworthy performance that is comparable to the other speed-up methods.
All diagrams of figure 2 show that when the speed-up methods are executed over

edited data, they are faster than when they are executed over original data. Never-
theless, in some cases, either the CC gains are not very high or Acc is significantly
reduced. In the case of the noisy MGT dataset, editing is necessary for all methods.
A final comment about the preprocessing and classification results is that the pro-

posed method can perform comparable to or better than the other methods. The user
can adapt the method to the application requirements by appropriately adjusting its
parameters. We conclude that the proposed method can be adjusted to achieve high
Acc with gains in CC or to reduce CC at a minimum level with slightly lower Acc.

4.4 Statistical test of significance

Our experimental study is complemented with the results of a non-parametric statis-
tical test. We ran the Wilcoxon signed ranks test [10] in order to validate the results
presented in the previous subsections. The Wilcoxon test compares the speed-up
methods in pairs taking into account their performance on each dataset. The test
was run considering that the three comparison criteria (Acc,CC,PC) have the same
significance. We ran the test on the results estimated on original and edited data .
Consequently, it was run on 42 measurements (7 datasets × 3 criteria × 2 forms of
each dataset). Of course, we could not include tests for all variations of parametric
classifiers (FHC-I, FLSC, PSC, HCM). For each method, we selected a good repre-
sentative variation for each dataset. Our criterion for choosing these representatives
was relatively high Acc and low CC. PC measurements were also taken into account.
The performance of the “good” FHC-I and FLSC representatives were compared to

each competitor. Note that FHC-I and FLSC imply the execution of TLDSCA during
preprocessing. Table 4 presents the results of the test. Columns “w/l/t” list the
number of wins/losses/ties for each pair. Column “Wilc.” lists the significance level.
When that measure is lower than 0.05 (values in bold in table 4), we can claim that

FHC: an adaptive fast hybrid method for k-NN classification 13

(a) LR (b) MGT

(c) PD (d) LS

(e) SH (f) TXR

(g) PH

Fig. 2. Classification performance (Accuracy and Classification cost)

14 FHC: an adaptive fast hybrid method for k-NN classification

the difference between the two methods is statistically significant. As we expected,
the test confirms that FHC-I performs better than its competitors. In all cases the
significance value is lower than 0.05. The performance of FLSC is statistically better
than that of RSP3 and PSC. In contrast, it is statistically worse than HCM.

Table 4. Wilcoxon signed ranks test
Methods w/l/t Wilc. Methods w/l/t Wilc.

FHC-I vs CNN 35/7/0 0.000 FLSC vs CNN 28/14/0 0.103

FHC-I vs IB2 25/17/0 0.013 FLSC vs IB2 19/23/0 0.657

FHC-I vs PSC 42/0/0 0.000 FLSC vs PSC 39/3/0 0.000

FHC-I vs RSP3 40/2/0 0.000 FLSC vs RSP3 28/14/0 0.006

FHCI vs RHC 28/14/0 0.011 FLSC vs RHC 21/21/0 0.750

FHC-I vs HCM 30/12/0 0.029 FLSC vs HCM 12/29/1 0.003

4.5 FHC-II performance

Four of the eight datasets are unbalanced. LS includes six items with 626, 703, 707,
1358, 1508, 1533 items respectively. MGT has two classes with 12332 and 6688 items.
Similarly, SH has seven classes with 45589, 8903, 3267, 171, 49, 13, 10 items and PH
has two classes with 3818 and 1586 items. FHC-I does not manage fairly the items
of all classes. FHC-II efficiently manage these datasets by reducing the probability of
second level searches for the “weak” classes. This leads to even faster classifiers.
We ran FHC-II twelve times for each dataset using the following settings: (i) pk =

15, 30, (ii) DRF = 16, 32 and (iii) (npratiolow, npratiohigh) values: (0.7 − 1), (0.5 −
1), (0.3 − 0.7). These methods were compared to four FHC-I methods built by the
same pk and DRF values and npratio = 1. Figure 3 presents the results. Each FHC-
II method is noted with the following sequence: DRF, pk, npratiolow, npratiohigh in
the figure’s legend. Similarly, FHC-I is noted with DRF, pk, npratio.
In the case of the noisy MGT, FHC-II improve both Acc and CC measurements.

In the case of the LS dataset, all FHC-II classifiers built using the (0.3−0.7) range of
npratio values as well as the one that uses settings DRF = 16, pk = 15, npratiolow =
0.5, npratiohigh = 1 are ineffective. They reduce costs, but they also reduce accuracy.
All other FHC-II classifiers execute faster than the FHC-I classifiers without loss on
accuracy. In the cases of SH and PH, FHC-I may be preferable to FHC-II. The later
executes slightly faster than FHC-I. However this speed-up affects the accuracy.

5 Conclusions

We proposed an adaptive hybrid method for fast k-NN classification. The method
involves the construction of a two level data structure and classifiers that make predic-
tions using either the first or the second level of this structure. Actually, the method
combines the idea of DRTs with that of CBMs in a hybrid schema. The method lets
the user determine the trade-off between accuracy and cost. Thus, it can be used ei-
ther to improve accuracy at a lower cost, or to reduce cost at a minimum level without
sacrificing accuracy. Experiments showed that cost improvements may be achieved,
with the accuracy remaining high and comparable to that of the conventional k-NN.

FHC: an adaptive fast hybrid method for k-NN classification 15

(a) MGT (b) LS

(c) SH (d) PH

Fig. 3. FHC-I vs FHC-II

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Mach. Learn.,

6(1):37–66, Jan. 1991.

[2] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. Garćıa. Keel data-mining soft-

ware tool: Data set repository, integration of algorithms and experimental analysis framework.
Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.

[3] F. Angiulli. Fast condensed nearest neighbor rule. In Proceedings of the 22nd international
conference on Machine learning, ICML ’05, pages 25–32, New York, NY, USA, 2005. ACM.

[4] H. Brighton and C. Mellish. Advances in instance selection for instance-based learning algo-
rithms. Data Min. Knowl. Discov., 6(2):153–172, Apr. 2002.

[5] C. H. Chen and A. Jóźwik. A sample set condensation algorithm for the class sensitive artificial
neural network. Pattern Recogn. Lett., 17:819–823, July 1996.

[6] C.-H. Chou, B.-H. Kuo, and F. Chang. The generalized condensed nearest neighbor rule as a data
reduction method. In Proceedings of the 18th International Conference on Pattern Recognition

- Volume 02, ICPR ’06, pages 556–559, Washington, DC, USA, 2006. IEEE Computer Society.

[7] B. V. Dasarathy. Nearest neighbor (NN) norms : NN pattern classification techniques. IEEE
Computer Society Press, 1991.

[8] P. Datta and D. F. Kibler. Learning symbolic prototypes. In Proceedings of the Fourteenth
International Conference on Machine Learning, ICML ’97, pages 75–82, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[9] P. A. deVijVer and J. Kittler. On the edited nearest neighbor rule. In Proceedings of the Fifth
International Conference on Pattern Recognition. The Institute of Electrical and Electronics

Engineers, 1980.

16 FHC: an adaptive fast hybrid method for k-NN classification

[10] J. Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.,
7:1–30, Dec. 2006.

[11] V. S. Devi and M. N. Murty. An incremental prototype set building technique. Pattern Recog-
nition, 35(2):505–513, 2002.

[12] S. Garcia, J. Derrac, J. Cano, and F. Herrera. Prototype selection for nearest neighbor classifica-

tion: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell., 34(3):417–435,
Mar. 2012.

[13] G. W. Gates. The reduced nearest neighbor rule. ieee transactions on information theory. IEEE
Transactions on Information Theory, 18(3):431–433, 1972.

[14] P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information Theory,
14(3):515–516, 1968.

[15] S. Hwang and S. Cho. Clustering-based reference set reduction for k-nearest neighbor. In 4th
international symposium on Neural Networks: Part II–Advances in Neural Networks, ISNN ’07,

pages 880–888. Springer, 2007.

[16] L. Karamitopoulos and G. Evangelidis. Cluster-based similarity search in time series. In Pro-
ceedings of the Fourth Balkan Conference in Informatics, BCI ’09, pages 113–118, Washington,
DC, USA, 2009. IEEE Computer Society.

[17] K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, 1979.

[18] J. McQueen. Some methods for classification and analysis of multivariate observations. In
Proc. of 5th Berkeley Symp. on Math. Statistics and Probability, pages 281– 298, Berkeley, CA
: University of California Press, 1967.

[19] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Mart́ınez-Trinidad, and J. Kittler. A review of

instance selection methods. Artif. Intell. Rev., 34(2):133–143, Aug. 2010.

[20] J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and J. F. M. Trinidad. A new fast prototype selection

method based on clustering. Pattern Anal. Appl., 13(2):131–141, 2010.

[21] S. Ougiaroglou and G. Evangelidis. Efficient dataset size reduction by finding homogeneous
clusters. In Proceedings of the Fifth Balkan Conference in Informatics, BCI ’12, pages 168–173,
New York, NY, USA, 2012. ACM.

[22] S. Ougiaroglou, G. Evangelidis, and D. A. Dervos. An adaptive hybrid and cluster-based model
for speeding up the k-nn classifier. In Proceedings of the 7th international conference on Hybrid

Artificial Intelligent Systems - Volume Part II, HAIS’12, pages 163–175, Berlin, Heidelberg,
2012. Springer-Verlag.

[23] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour. An algorithm for a selective nearest neighbor
decision rule. IEEE Trans. on Inf. Theory, 21(6):665–669, 1975.

[24] H. Samet. Foundations of multidimensional and metric data structures. The Morgan Kaufmann
series in computer graphics. Elsevier/Morgan Kaufmann, 2006.

[25] J. S. Sánchez. High training set size reduction by space partitioning and prototype abstraction.
Pattern Recognition, 37(7):1561–1564, 2004.

[26] I. Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, 6:448–452, 1976.

[27] I. Triguero, J. Derrac, and S. G. andFrancisco Herrera. A taxonomy and experimental study on

prototype generation for nearest neighbor classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 42(1):86–100, 2012.

[28] X. Wang. A fast exact k-nearest neighbors algorithm for high dimensional search using k-
means clustering and triangle inequality. In The 2011 International Joint Conference on Neural
Networks (IJCNN), pages 1293 –1299, August 2011.

[29] D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE trans.
on systems, man, and cybernetics, 2(3):408–421, July 1972.

[30] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-based learning algorithms.

Machine Learning, 38(3):257–286, 2000.

[31] B. Zhang and S. N. Srihari. Fast k-nearest neighbor classification using cluster-based trees.

IEEE Trans. Pattern Anal. Mach. Intell., 26(4):525–528, 2004.

