
What They Really Do? Attempting (once again)
to model novice programmers’ behavior

Vassilios Dagdilelis
Dept. of Educational and Social
Policy University of Macedonia

Maya Satratzemi
Dept. of Applied Informatics

University of Macedonia

Georgios Evangelidis
Dept. of Applied Informatics

University of Macedonia
156 Egnatia Str., Thessaloniki,Greece 156 Egnatia Str., Thessaloniki,Greece 156 Egnatia Str., Thessaloniki,Greece

+30-310-891336
dagdil@uom.gr

+30-310-891897
maya@uom.gr

+30-310-891844
gevan@uom.gr

Categories and Subject Descriptors: K.3.2
[Computers and Education]: Computer science
education.
General Terms: Algorithms.
Keywords: student strategies; development and
validation of programs; compiler generated error
messages.
In the last two decades, a large amount of research has been con-
ducted in an effort to form a model of student behavior when they
try to solve algorithmic or programming problems. The construc-
tion of the model is based on the analysis of many types of data,
such as for example: (a) the characteristics of the programming
languages the students work with, (b) the strategies of the
solution that the students follow, and (c) the characteristics of the
proposed problem. However, we must observe that modeling is
often not based on long-term observations of actual teaching and
the pro- posed problems are usually quite simple.
In this paper we attempt to examine a variety of aspects of
students’ behavior when they learn to program. More specifically,
we study: the strategies students use in order to develop and
validate a pro- gram; the possible role of students’ errors in the
development of their programs; and the methods students use to
deal with these errors. The study was carried out on 90 second-
semester CS stu- dents who worked in pairs during the 2-hour lab
session. They were given a brief description of the Binary Search
algorithm and were asked to implement it using AnimPascal. In
this study we present the results we obtained from the analysis of
the successive versions of students’ programs. Based on these
results we propose teaching methods to help students overcome
the difficulties they face when they learn programming.
The majority of the programs were developed using two methods:
a) mental execution of the algorithm; and b) initial development
of a skeleton program corresponding to the algorithm and
extension of it to a complete program through trial and error
attempts (elimina- tion of syntax errors by using code correction
or by bypassing the erroneous code and the corresponding
erroneous results). Empirical data enable a clear distinction to be
made between students into quickers and slowers: in the first
category are placed those students who react quickly to the
erroneous results of their attempts and locally correct the error
(adhesive plaster method) seeking simply to attain a correct result,
whereas, in the second category a time period devoted to
investigation elapses between message and reaction. In many
cases the initial formulation includes the preliminary sections of
the program. In other cases the initial skeleton of the code is not
complete and in fact is not possible to “pass” through the
compiler. The students’ strategy in this situation is to correct
the program

locally in order to retest it. The difference between this and the
previous case is due to the fact that students do not appear to
follow some general plan but simply proceed step by step.
The strategies of identifying a prototype structure and its corre-
sponding processing or that of tailoring were observed in very
few cases. We assume that the identification of prototypes
requires a deep knowledge and understanding of the prototypes,
which our students did not possess. For the same reason, they did
not use tailoring methods, since their use requires that the
programmer knows how to solve sub-problems. Our results
indicate that we should systematically train our students so they
become capable of identifying prototypes and of using
standardized problem solving methods.
Regardless of the methodology applied, the development and
vali- dation of the student programs was affected in a great degree
by the syntactic errors they made and the comprehension of the
compiler generated error messages. The understanding of the
messages ap- pears to be related to the degree of mastering the
students have on the language they use. The understanding of the
messages also depends on the actual message itself since system-
generated mes- sages are often typically correct but hard for a
novice programmer to understand. In the majority of the cases,
messages for fatal errors result in the local correction of the code,
in an attempt to eliminate the error message. The quickers try to
make the error message dis- appear, whereas the slowers attempt
to make sense of the meaning of the error messages and to react
accordingly. The low degree of mastering of the programming
language used, often forces the stu- dents to devise programming
tricks in order to bypass the problem created by a syntax error. In
many cases, the students were led to logical errors because of
their inability to correctly interpret the compiler messages and
correct the syntactic errors they had made. The most significant
errors, however, arise from the loop testing conditions. As the
successive versions of student programs reveal, the final
determination of the correct Boolean expression was achieved
only after a series of trial and error attempts of all the possible
cases.
Considering the above results, we plan to direct our attempt to the
following two axes: a) improve the messages generated by the
AnimPascal compiler; b) propose exercises to students that
contain syntax errors they will have to correct. This type of
exercises will include control and repetition structures, nested if
statements and compound Boolean expressions. We believe that
these exercises will familiarize students with the corresponding
error messages. We make such a proposal because during our
programming course we gave emphasis to problems that could
help students acquire prob- lem-solving skills rather than
problems that could systematically familiarize them with
erroneous code.

	Vassilios Dagdilelis
	Maya Satratzemi
	dagdil@uom.gr
	maya@uom.gr
	gevan@uom.gr

