
Teaching OOP with BlueJ: A Case Study

Stelios Xinogalos(*), Maya Sartatzemi(*), Vassilios Dagdilelis(**), Georgios Evangelidis(*)

(*)Department of Applied Informatics, (**)Department of Educational and Social Policy
University of Macedonia, Thessaloniki, Greece

{stelios, maya, dagdil, gevan}@uom.gr

Abstract

In this paper we present our findings on teaching
OOP with BlueJ in the context of a one-semester
programming course. We organize our findings, i.e.,
the difficulties, the errors, and the misconceptions that
students encounter, in two categories: (a) difficulties
attributed to the special characteristics of OOP,
and, (b) difficulties that may be attributed to the
features of the programming environment.

1. Introduction

The last 15 years the object-oriented programming
paradigm is taught in many university departments,
either in the context of an introductory programming
course or as a subsequent programming course. This
development resulted as an attempt to make use of the

In order to deal with the difficulties mentioned
above, various efforts have been made that resulted in
a) special programming environments [6], such as
BlueJ, DrJava, jGRASP, b) mini programming
languages [6], such as Karel++, that were
supplemented by the development of programming
microworlds (objectKarel, JKarel), and c) books or
generally guidelines or series of lessons on how OOP
can be taught effectively. A special effort is that of the
creators of BlueJ, who, in parallel to the environment
they developed, tried to review some basic guidelines
for teaching OOP in their paper “Guidelines for
Teaching Object Orientation with Java” [3]. In
addition, their book "Objects First with Java: A
practical introduction using BlueJ" [1], attempts to
teach OOP according to the eight guidelines mentioned
in [3]. The environment of BlueJ, clearly constitutes an
environment that makes it easier for novices to learn

advantages of OOP, which lie in the fact that it
supports the programming concepts instructors were

OOP.
This paper1 attempts to study to what degree the

struggling to teach for so many years, such as
structured programming, modularization and program
design, as well as techniques for solving problems,
such as program development in groups and code
reusability. Even though the university community, as
well as the industry adopted with exceptional optimism
OOP as a very good tool for teaching novices the
programming methodologies, it finally appears that
teaching OOP is particularly difficult, as shown in
relative studies. The main difficulties result from:

(a) The lack of programming environments
appropriately designed for teaching OOP in general,
and for novice programmers more specifically.

(b) The transition from the procedural
programming paradigm to the OOP paradigm.

(c) The teaching philosophy that is based on the
approach followed for teaching procedural
programming. This means that concepts of OOP, such
as classes, objects, inheritance, and so on, are taught
after the basic elements of a programming language,
the control structures and functions.

teaching proposal of Kölling & Barnes is effective,
that is teaching OOP with the help of BlueJ and the
lessons proposed in their book.

2. Description of the lessons and the main
findings of the study

We present the results we obtained from teaching
OOP in the context of a one-semester programming
course at the department of Management of
Technology at the University of Macedonia. The
teaching of the course, as we have already mentioned,
was based on the series of lessons suggested by
Kölling and Barnes at their book "Objects First with
Java: A practical introduction using BlueJ" [1] and the
programming environment used was BlueJ.

1This research is being funded by the Greek Ministry of Education
and the European Union as part of the project "Pythagoras ǿǿ-
Funding of research groups in the University of Macedonia"

At this university department OOP is taught in the
3rd semester. Students had been taught the main
concepts of programming in the 2nd semester with C as
a programming language, and in the final exams a high
failure rate was recorded. The course of the 3rd

semester consisted of a weekly two-hour theory
session, where the instructor presented the
corresponding concepts with the use of slides, and a
weekly two-hour laboratory session, where students
usually solved in cooperation with the instructor or by
themselves some assignments. Eleven theory lessons
and eleven laboratory lessons were given.
Approximately 45 students attended the lessons.

The lessons that we planned with BlueJ, which
were based on the didactic path suggested by the book,
seem to be effective as a whole. More specifically, the
answers given at the questionnaires and the solutions at
the suggested problems (solved either in the lab or at
home), show that, in general, students comprehend
basic concepts of OOP. However, we consider some of
the problems students meet in the process of problem
solving as important, and so we present them in the
following paragraphs.

2.1 Difficulties attributed to the special
characteristics of OOP

As most of the studies about the teaching of OOP
show, students confuse some of the language’s
elements. Furthermore, they face difficulties in using
other elements of the language for implementing
solutions to given problems. Next, we present the
difficulties recorded in our study:
■ Some students, as Holland et al. [2] state, confuse
classes with objects. Furthermore, we observed, in a
much smaller scale, confusion between classes and
methods. Similarities in the identifiers of entities, that
otherwise have concrete roles (such as
NumberofNotes, NoteNumbers for example), seem to
play an important role in this confusion.
■ Although students seem to comprehend the concept
of object collections, they find it difficult to use
flexible size collections for grouping objects (such as
ArrayList), and even fixed size collections (such as
arrays). These difficulties refer to using object
collections for implementing solutions in general, and
not to errors about the boundaries of an array [5] or
using for the first element of an array/collection the
index 1 instead of 0 [4].
■ Although most of the students seem to comprehend
a situation where multilevel inheritance is used, a
significant number of them find it difficult to
comprehend the way multiple inheritance is

implemented in Java. For example, they believe that a
concrete class can extend more than one concrete
classes that are not related to each other.
■ Some students believe that abstract classes, and not
interfaces, can contain only abstract methods. A
greater number of students believe that both abstract
classes and interfaces can contain only abstract
methods.
■ A significant number of students misinterpret the
information supplied from class diagrams. For
example, students interpret a ‘uses relation’ depicted in
a class diagram as a situation where ‘the class that is
shown to use another class is the only class that has
access to its methods’.
■ Weakness in describing the function/role of classes,
methods and fields. Greater difficulty was observed in
describing the role of a class field that stored a
reference to an object of another class, and specifically
the class ArrayList, which belongs to the Standard
Class Library of Java. Although we expected that the
environment of BlueJ would make it easier for students
to comprehend what is stored in each field through the
visualization provided (inspect feature), it seems that
when a field of a class stores a reference to an object of
another class and not a value of a primitive type, even
the graphical representation does not easily lead to an
accurate mental model of the object.
■ Wrong use of method calls and dot notation was
observed. Specifically, in a class where both internal
and external method calls should be used, some
students used in both cases an external method call:
<object>.<method name>.

2.2 Difficulties that may be attributed to the
features of the environment

BlueJ is an environment that is developed
exclusively for helping students that are taught OOP.
However, the use of BlueJ, even in combination with
the activities suggested by its creators, is not fully
freed of problems that arise, maybe in an indirect way,
from the use of the environment itself.

A category of difficulties seems to have its roots in
the importance given by the authors to the graphical
representations of the structure of a project and its
elements (classes, methods, objects), in relation to the
code, and also to the extended use of visualization for
editing various projects – which students were asked to
extend, refactor or even explain. The fact that these
features exist and constitute a main element of the
didactic rationale of the creators of BlueJ, benefits
greatly the development of lessons that use
systematically these features. However, in many cases

we observed that students faced difficulties in
extracting information from the code of a program – in
contrast they easily extracted information from the
diagrams created by BlueJ. Also, in assignments where
students had to develop new code, we observed higher
rates of wrong answers (or no answers at all), which
may be partly attributed to the lack of balance between
the diagrammatic representations and the textual code.

The creators of BlueJ pay much attention to the
comprehension of the object-oriented technique to
designing applications, and so the environment allows
even the compilation and execution of pieces of a
project, without the need of a main method. Also,
through its interface, it allows the construction of
objects by just clicking – the corresponding
declarations of objects are created automatically and
“silently” from the system itself. Even though this
technique saves plenty of time, it benefits the
development of misconceptions about the way the
language functions.

The creators of BlueJ pay much attention in taking
advantage of existing information for solving specific
problems. For example, for many of the instructor’s
questions the full answers exist in parts of the existing
code. This didactic technique saves time too, but at the
same time it creates a tendency to click-oriented
answers, which means that it reinforces the tendency
of many students to select a piece of code without
thinking if this is the most appropriate. Many times
they include together with the correct answer irrelevant
pieces of code – which are just wrongly selected with
the mouse. So, the answer to a question is more a
product of automation that is based on a quick search
of the appropriate part from the available sources
(code), rather than a product of thinking on the content
of the question.

In some cases we also observed that students copied
pieces of code from other projects, just because there
were some similarities in the corresponding methods.
Of course, this tendency does not result from the
features of the BlueJ environment itself. It seems to be
a consequence of a teaching style that is based heavily
on a very helpful interface and the obscure, for the
user, development of code by the system itself.

3. Conclusions

The BlueJ environment has some features that
respond to the basic principles for an introductory
teaching of OOP – as its creators describe them. Also,
the lessons of the book are organized in a way that
responds to these principles. What we must point out is
that student performance for the problems they were

assigned was satisfactory, but specific kinds of
activities are benefited from these kinds of problems,
in contrast with others. We believe that the problems
we presented in Section 2 and which we attribute to the
BlueJ environment and the series of proposed lessons
can be decreased, if not extinguished, by taking into
account the following:
■ Use of the test class and consequently of the main
method much earlier, so as to give the opportunity to
students to declare and then construct objects by
writing code and not only through the indirect use of
icons.
■ Improvement of the editor of BlueJ by adding
features, such as auto-completion and bracket
matching in order to reduce syntax errors.
■ Development of small scale projects, not
necessarily related to the projects of the book, so as to
balance the tendency to click-oriented answers, which
reinforces the tendency of many students to select a
piece of code, without thinking if this is the most
appropriate one.
■ More time and emphasis must be given on
practicing with internal and external method calls from
a class. In order to do this, two supplementary
activities can be used. First, the BlueJ environment can
help since, through the direct method calls, it can
display the statement that contains a call to a method.
Furthermore, this activity (direct manipulation of
objects for method calling) must be combined with the
opposite activity, which means that students must
explicitly write the relevant code without making use
of the visualization features of BlueJ, so as to give
them the opportunity to think and act consciously,
beyond their mechanical click-oriented type of
behavior.

4. References

[1] Barnes, D. & Kölling, M., Objects First with Java: A
practical introduction using BlueJ, Prentice Hall, 2004.
[2] Holland, S. Griffiths, R. & Woodman, M., “Avoiding
object misconceptions”, ACM SIGCSE Bulletin, Vol. 29, No.
1, 1997, pp. 131-134.
[3] Kölling, M. & Rosenberg, J., “Guidelines for Teaching
Object Orientation with Java”, ACM SIGCSE Bulletin, Vol.
33 Issue 3, 2001, pp.33-36.
[4] Taylor K., Common Java Coding Errors, http://java.
about.com/cs/beginningjava/a/comm_errs.htm, 2005.
[5] Topor, R. W., CIT1104 Programming II: Common (Java)
programming errors, http://www.
cit.gu.edu.au/~rwt/p2.02.1/errors.html, 2002.
[6] Xinogalos S., Satratzemi M., "An Integrated Programming
Environment for Teaching the Object-Oriented Programming
Paradigm", LNCS, 2510, 2002, 544-551.

	Abstract
	1. Introduction
	2. Description of the lessons and the main findings of the study
	2.1 Difficulties attributed to the special characteristics of OOP
	2.2 Difficulties that may be attributed to the features of the environment

	3. Conclusions
	4. References

