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Abstract. The inverted file is a popular and efficient method for in-
dexing text databases and is being used widely in information retrieval
applications. As a result, the research literature is rich in models (global
and local) that describe and compress inverted file indexes. Global mod-
els compress the entire inverted file index using the same method and
can be distinguished in parameterized and non-parameterized ones. The
latter utilize fixed codes and are applicable to dynamic collections of
documents. Local models are always parameterized in the sense that the
method they use makes assumptions about the distribution of each and
every word in the document collection of the text database. In the present
study, we examine some of the most significant integer compression codes
and propose g-binary, a new non-parameterized coding scheme that com-
bines the Golomb codes and the binary representation of integers. The
proposed new coding scheme does not introduce any extra computational
overhead when compared to the existing non-parameterized codes. With
regard to storage utilization efficiency, experimental runs conducted on
a number of TREC text database collections reveal an improvement of
about 6% over the existing non-parameterized codes. This is an improve-
ment that can make a difference for very large text database collections.

1 Introduction

Among the numerous schemes that have been developed for indexing text data-
bases the most popular is the inverted file [4], [12], [11]. The success of the
inverted file is closely related to the great advances in the field of integer com-
pression codes [7], [3], [6], [8], [1], [9]. There exist several such codes that allow
the average pointer (an integer value) inside an inverted file to be stored in less
than 1 byte [11], thus producing very compact indexes. Compressed indexes are
also fast, because the required number of disk accesses is small and the decom-
pression CPU cost is low [10].

In the present paper we consider a number of compression codes and focus
mainly on the Golomb code [8], [6], [12], [9] and the binary representation of in-
tegers. There exist two major categories of compression models for inverted files:
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the global and the local models. Global models are further divided into parame-
terized and non-parameterized. The former involve some parameter that reflects
the distribution of the integers inside the inverted files. Non-parameterized mod-
els produce fixed codes and are useful when dynamic collections of documents
are stored. On the other hand, local models are always parameterized.

In Section 2 we examine several codes that have been developed for com-
pressing integers inside the inverted files and the models they are based on. In
Section 3 we introduce a new non-parameterized code, g-binary, that comprises
a combination of the Golomb code and the binary representation of integers.
The performance of the new code against some TREC text database collections
is tested in Section 4. In Section 5, we perform an analysis on the length of
the codes for all integers obtained by the coding schemes we examine in this
paper. We show that g-binary is always equal or better in compression efficiency
than the popular non-parameterized codes for certain integer intervals. Finally,
in Section 6 we present our conclusions.

2 Codes for Compressing Inverted Files

In the inverted file index, each one of the N (say) text database documents is
represented by a positive integer d € [1,..., N]. For each distinct word ¢, an
inverted list is created that stores all the document numbers d containing t.
Inverted lists are stored in a single file, known as the inverted file [4].

The integer numbers are stored in the inverted file in a way suitable for
allowing compression by means of run length encoding [6]: instead of storing
the absolute numbers d of the documents containing a word, inverted lists store
their differences. For example, instead of storing the d list {2, 9,10, 15, 16,20},
for word t, one could store the corresponding d-gap list {2,7,1,5,1,4}. This
results in storing smaller (in value) and more frequently occurring integers, in
general. The initial list may easily be reconstructed from the d-gap list.

In the subsections that follow, a number of popular compression codes are
considered that utilize run length encoding to implement compression. The codes
are based on models that take into consideration the probability distribution of
d-gap sizes. In this respect, small bit codes are assigned to frequent d-gap sizes
and larger bit codes to rare ones. Depending on whether they involve or not the
storage of some kind of parameter, the models and their codes are categorized
as being parameterized or non-parameterized, respectively.

2.1 Non-parameterized codes

Unary code. In the unary coding scheme each positive integer x is represented
by z-1 ones followed by a zero. For example, number 5 is stored as 11110. This
means that the bit length of integer x in unary is len,(z) = . A list of the
unary codes for the first ten positive integers is shown in Table 1.

The unary code is equivalent to assigning a probability of 277 to gaps of
length z [11].
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Table 1. Examples of codes for integers

Golomb g-binary
X unary v code § code b=2 b=3 b=4 b=2 b=3
10 0 0 00 00 000 00 00
2 10 100 1000 01 010 001 010 0100
3 110 101 1001 100 011 010 011 0101
4 1110 11000 10100 101 100 011 10000 01100
5 11110 11001 10101 1100 1010 1000 10001 01101
6 111110 11010 10110 1101 1011 1001 10010 01110
7 1111110 11011 10111 11100 1100 1010 10011 O0O1111
8 11111110 1110000 11000000 11101 11010 1011 101000 100000
9 111111110 1110001 11000001 111100 11011 11000 101001 100001
10 1111111110 1110010 11000010 111101 11100 11001 101010 100010

Elias codes. Two popular non-parameterized codes for compressing integers,
that result in significant savings, are the « and § codes introduced by Elias in
[3]. In the v coding scheme each positive integer x is encoded as follows:

— store number 1 + |logaz| in unary.
— store the remainder z — 21/°927] in binary using |logax| bits.

It follows that the bit length of integer  in 7 code is len (x) = 2|logax| + 1.
In the § coding scheme each positive integer x is encoded as follows:

— store number 1 + |logsx]| using v code.
— store the remainder z — 219922 in binary using |logsx| bits.

It is shown [11] that the bit length of integer x in § code is lens(z) = |logsx |+
2|log2(1 + |logaz])] + 1.

A list of the v and § codes for the first ten positive integers is shown in
Table 1. The v code is equivalent to assigning a probability of # to gap x,

whereas, the § code assigns a probability of W [11].

2.2 Parameterized codes

Golomb code for the global Bernoulli model. Let us suppose, that we
have an N-document text database that contains n distinct words and f index
pointers (i.e., f distinct “document, word” pairs).

The global Bernoulli model assumes that large text databases are homoge-
neous, i.e. the words are distributed uniformly across the N documents. This, in
turn, implies that the probability of a randomly selected word to appear in any
one randomly selected document is p = f/(N X n). It has been shown that the
d-gaps in this case can be efficiently represented by the Golomb code [6]. Ac-
cording to this code, for a given parameter b, each positive integer x is encoded
as follows:
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— store number ¢ + 1 in unary, where ¢ = [(x — 1)/b].
— store the remainder r = 2 — ¢ x b—1 in binary using either [logsb| or [logab]
bits [11].

It follows that the bit length of integer x in Golomb code is at most len,(z) =
[(x —1)/b] + 1+ [logab].

A list of Golomb codes for the first ten positive integers, for some values of
the parameter b, is shown in Table 1. At the decompression phase, the original
number is computed as z = r + ¢ X b+ 1. For a given value of p, b is calculated

as follows: b = f%ﬁ:ﬁﬂ [5].

Golomb code for the local Bernoulli model. The difference between the
global and the local Bernoulli model is that the latter does not assume uniformity
in the distribution of words across the N-document text database. This in turn
implies that in general a different b parameter is associated to each one list [2].
The value of b for the d-gap list of word ¢ is calculated as in the case of the
global Bernoulli model, except that now p = f;/N, where f; is the number of
documents in the text database containing ¢. This implies that for each distinct
word t in the text database, the value for f; must also be stored alongside with
the inverted list of the word in order to be possible to compute the value of b
at decoding time. The value for f; is stored at the head of each list, using the
~ code [11]. During the inverted list decompression phase, the f; value is decoded
first, then the b parameter is calculated and decompression continues with the
rest of the list.

3 g-binary

In this section we introduce g-binary, a combination of the Golomb code and the
binary representation of an integer. The aim is to produce a non-parameterized
code that reduces the number of bits used to store a d-gap. The main idea behind
the proposed new code is to store an integer using its exact binary representation.
The problem is that the length of the binary representation must also be stored
so that decoding is possible. After experimenting with all the popular codes for
integers and examining the lengths of the bit sequences produced, we came down
to the conclusion that the best code for storing the above lengths is the Golomb
code for certain global values of b.

In g-binary, for a given b value, each positive integer x is encoded as follows:

— store the length m of the binary representation of x using the Golomb code
for the globally selected parameter b.

— store the exact binary representation of x excluding its most significant bit
(which is always 1).

Essentially, the g-binary code of an integer is the concatenation of the Golomb
code that represents the length of the binary representation of the integer and
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the actual binary representation of that integer (without its most significant bit).
Thus, the compression and decompression algorithms share the same complexity
with the other codes (v, § and Golomb).

We use the notations leny and leng, for the lengths of the exact binary and g-
binary representations respectively. The length of the exact binary representation
for any integer « > 0 is leny(x) = |logaz | + 1 bits. For example, the exact binary
representation of integer 9 is 1001 and requires |log29]| + 1 = 4 bits. In g-binary,
we omit the first bit of this representation which is always 1, thus, we are left
with [logex| bits. In order to store m = |logax| + 1 (i.e., the length of the exact
binary representation of x) using the Golomb coding scheme, we need at most
leng(m) = [(m —1)/b] + 1+ [logsb] bits (see Section 2.2). This means that the
total number of bits used by g-binary adds up to at most

lengy(z) = leng(m) +leny(x) —1 = | (m —1)/b] + 1+ [log2(b)] + |log2(x)]| (1)

lengy () = [ [loga(x)]/b] + 1+ [logz(b)] + [loga(x)] (2)

We will use an example to demonstrate the coding and decoding stages for the
g-binary code. Let us suppose that we have to code the following integer list:
12 (1100), 19 (10011), 75 (1001011), 1 (1). We will use Golomb (b = 2) for the
coding of the lengths of the binary representations of the integers.

The exact binary representation for integer 12 is 1100. The length of the
binary representation is 4 and it is encoded using the Golomb code (b=2) as
101 (see Table 1). Eventually, 12 is stored as 101,100 where the first part is
the length of the exact binary representation of 12 and the second part is the
binary representation of 12 itself without its most significant bit. The comma
between the length and the binary representation is not stored; we use it here to
facilitate our presentation. The rest of the numbers are encoded in a similar way
as [19: 1100,0011], [75: 11100,001011] and [1: 00]. In the case of the last number
1, it is only the length of the binary representation that is stored; the decoding
process stage proceeds without any problem, since 1 is the only number that is
represented with just one bit.

During decompression, the Golomb value is decoded first and reveals m, the
length of the binary representation of the integer we try to decode. Next, the m-1
bits of the remaining bit sequence are retrieved. By adding 1 in the beginning of
the m-1 bits we obtain the exact binary representation of the integer in question.
Decompression continues with the rest of the bit sequence.

Several g-binary versions can be obtained by assigning different values to b.
Any single version can be regarded as a non-parameterized code. Table 1 lists
the g-binary codes for the first ten positive integers, when b=2 and b=3. In the
next section, we examine whether some of these versions produce bit sequences
for integers that result in better compression ratios, compared to the existing
non-parameterized codes.
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4 Experimental Results

The fifth volume of the TREC collection comprises the testbed for the storage
utilization efficiency measuring test runs that we present in this section. The
volume contains 475MB of articles from the Los Angeles Times (LAT), pub-
lished during the January 1, 1989 — December 31, 1990 period, plus 470MB
of documents of the Foreign Broadcast Information Service (FBIS) from 1994.
The profiles for the LAT and FBIS collections as well as of their concatenation
(LATFBIS) are shown in Table 2.

Table 2. Testbed collection profiles

Collection | Size (MB) | Distinct words (n) | Total documents (V) | Total pointers (f)
LAT 475 288823 130472 31193292
FBIS 470 247563 131167 34982316
LATFBIS 945 437864 261639 66175608

We implemented and compared the following codes:

— Elias v code for all the gaps in all the lists of the inverted file. This code will
be referred to as “vy-code”.

— Elias § code for all the gaps in all the lists of the inverted file. This code will
be referred to as “d-code”.

— Golomb code for the local Bernoulli model. An inverted list is created for
every word in the collection. Each list also stores the value for f; (document
frequency for term t) using the v code. The f; overhead for each word is
included in the final results. This code will be referred to as “Golomb”.

— The g-binary code for various values of the b parameter (see Section 3). This
code will be referred to as “g-binary”.

Figure 1 illustrates the results obtained for the LAT, FBIS, and LATFBIS
collections. In each graph, the average number of bits per pointer is plotted as a
function of b and this is why the curves for “y-code”, “§-code” and “Golomb” are
horizontal lines. For the “Golomb” code, in particular, it has to be stated that it
is a local, parameterized code involving a number of b values that are calculated
and stored alongside each inverted list inside the inverted file, according to the
model discussed in Section 2. In this respect, the “Golomb” line represents the
average bit size per pointer and it is not affected by the b values of the x-axis.
The latter are used to differentiate the g-binary code versions and for each such
version they are applied globally on the entire inverted list.

A first observation is that the “y-code” line is always above the “d-code”
line. This means that the v code produces larger indexes than the d code, when
applied globally on an entire inverted file. This finding confirms similar results
presented in [8]. Another observation is that the “y-code” compression ratio is
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Fig. 1. Comparison of the «, §, Golomb and g-binary codes using the LAT, FBIS and
LATFBIS collections

equal to the “g-binary” compression ratio when b=1. This is expected because for
b=1, g-binary is identical to v code: they both produce the same bit sequences for
all integers. Another expected result is that the “Golomb” code achieves the best
compression among the existing codes, because it is a local, parameterized code.
Unfortunately, such codes are not suitable for dynamic document collections.

The results demonstrate that the compression efficiency of “g-binary” is max-
imized when b is 2 and 3 and that in general it decreases as b increases beyond
4. More specifically, “g-binary” performs better than the “y-code” and “é-code”
when the value of the b parameter is set to 2 or 3. The gain achieved ranges from
0.3 to 0.4 bits per 7-bit (average) pointer. This is about half the gain achieved
by the popular parameterized Golomb code. It represents a significant gain since
the two “g-binary” code versions are non-parameterized and they can be used
to compress dynamic text database collections. We have run experiments with
many other text database collections and, in all cases, we have obtained results
similar to the ones presented.

5 Analysis

In this section we follow an analytic approach and try to investigate the con-
ditions under which g-binary for b = 2 and 3 achieves better compression than
~ and § code. To achieve this we examine the code lengths we obtain when we
code all integers using these three methods.

For any integer > 0 the length difference between the v and g-binary codes
is at least:

leny(x) — lengy(z) = |loga(z)] — [ [loga(x)]/b] — [log2(b)] 3)

For any integer « > 0 the length difference between the § and g-binary codes
is at least:
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lens(z) — lengy(x) = 2[loga(1 + [logax])| — |[logz(x)]/b] — [log2(b)]  (4)

We can substitute [loga(z)]| + 1, that is equal to the number of bits used
for the binary representation of number z, with y. The above equations are
respectively transformed into

leny(y) —lengy(y) =y —1— [(y — 1)/b] — [log2(D)] (5)
and

lens(y) — lengs(y) = 2[logay| — [(y — 1)/b] — [log2(b)] (6)

Apparently, the latter equations are functions of y, i.e., the number of bits
that are used for the binary representation of the integers. Figures 2 and 3 are
the graphical representation for equations 5 and 6 respectively.

Hlen_y(y) - len_gb(y) [b=2] Y vs. g-binary
Olen_y(y) - len_gb(y) [0=3]

: il
il

- ] 10 ~ @ =
- - - - ~

length of integer in bits

bit difference

- o n ~ - ] 0 ~ @ -
E] N o~ N ™

Fig. 2. Comparing v code and g-binary

The results demonstrate (see Figure 2) that the g-binary code for b = 2 has
equal or better compression efficiency than the v code for all integers except
1. Also, the g-binary code for b = 3 has equal or better compression efficiency
than the v code for all integers except 1, 2 and 3. That explains the improved
performance of g-binary when compared to v code.

The results demonstrate (see Figure 3) that the g-binary code for b = 2
has equal or better compression efficiency than the ¢ code for all integers in
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[2...212 — 1] or [2...4095]. Also, the g-binary code for b = 3 has equal or
better compression efficiency than the § code for all integers in [2...22! — 1] or
[2...2097151]. This is an important observation for g-binary, because large gaps
inside the inverted lists only occur in the case of rare terms. This means that
large integers are not very frequent and that the majority of the integers stored
are relatively small. Moreover, very small d-gap values (1 or 2) only occur in
the case of very frequent terms. The latter may appear in stop-word lists, i.e.,
lists of words such as “the”, “a”, “of”, etc., that are usually not indexed. In our
experiments we did not take into consideration such lists, because we did not
want to favor our method in any way. In other words, we indexed all words.

6 Conclusion

In the present study we consider the problem of integer number encoding in the
context of index compression for dynamic document collections. The relevant
research literature suggests that the v and ¢ codes comprise the preferred choice
for index compression.

We introduce g-binary, a new group of codes, involving a tunable parameter
b that determines the Golomb code version used to store the length of the binary
representation of an integer. A g-binary code consists of the length of the binary
representation of an integer stored using Golomb code and the exact binary
representation of the integer itself (without its most significant bit that is always
1). Experimental runs of the proposed group of codes conducted against two
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TREC collections reveal that by setting b = 2 and 3 we obtain two global non-
parameterized codes that improve the size of the encoded index file by nearly 6%
when compared to the size obtained by § codes. Moreover, by construction the
g-binary code does not introduce any extra CPU overhead during the encoding
and decoding phases when compared to the v and d codes.
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