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1 Introduction

There is leverage to be gained by bringing spatial data within the purview of general purpose database systems.
A spatial access method embedded in a general purpose DBMS would have several advantages [Lom91]:

1. Spatial data could be integrated with other data. Spatial objects are likely to have attributes other than the
location of their bounding boxes. These other attributes can be queried using traditional methods.

2. Multiple users (some making updates) would be supported by concurrency algorithms already in place.

3. In case of a system failure, the restart process would be able to recover the database to a consistent state.

4. Robust system utilities for loading data, analyzing performance, producing reports and so forth could be
applied.

To this end, we have been modifying the hB-tree (or holey Brick tree) [LS90], an efficient multi-attribute
search structure, for use with the concurrency and recovery systems available in general purpose DBMSs. This
will make it more likely that vendors of DBMSs will be able to provide support for spatial data.

In section 2, we review the hB-tree. In section 3, we show why structures which cluster points in space
as the hB-tree does will also be efficient for clustering k-dimensional spatial objects when their bounding box
coordinates are entered as points in 2k-dimensional space. We give here performance results which demonstrate
that the hB-tree is especially well suited for such spatial data, since the space used for the index is not sensitive
to the number of dimensions. In section 4, we indicate how the concurrency and recovery algorithm of [LS92]
can be applied to a modified hB-tree.

2 The hB-tree

The hB-tree is a multi-attribute index structure. Its inter node search and growth processes are precisely analo-
gous to the corresponding processes in B-trees. Its nodes represent bricks (i.e., multi-dimensional rectangles),
or “holey” bricks, that is, bricks from which smaller bricks have been removed.

It consists of index and data nodes. Index nodes are responsible for multi-dimensional subspaces. They
contain a kd-tree [Ben79] which is used to organize information about lower levels of the hB-tree and extracted
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index-level regions. Data nodes contain the actual data, which are points in multi-dimensional space. Since the
space a data node describes may be holey, data nodes may contain kd-trees, as well, that enable the data nodes
to describe their own “inner” boundaries and the extracted data-level regions.

A kd-tree is a binary tree that is capable of describing a region (possibly holey) of the multi-dimensional
space of attributes. The leaf nodes of a kd-tree may: (a) refer to other hB-tree nodes of the next lower level, (b)
be markers, called external markers, indicating that a subtree is missing (this happens when a node is split and
part of the attribute space it was describing is now described by another sibling node), or (c) refer to a collection
of data records that are kept in a record list (in data nodes, only).

Figure 1 contains an example hB-tree. We have
a two-dimensional attribute space. The root of the
hB-tree is the index node I, that describes the whole
space. Its kd-tree describes the next level of the hB-
tree, which consists of two data nodes. All records
with attributes x ∈ (x0,+∞) and y ∈ (y0,+∞) are
located in data node B, and the rest of the records are
located in data node A.

A’s kd-tree shows that A, which initially was re-
sponsible for the whole attribute space, was split and
part of its records moved to node B (that is what the
external marker denotes).
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Figure 1: An example hB-tree.

2.1 Searching

Searching for point data using the hB-tree is straightforward. We start the search at the hB-tree root. The root is
searched by traversing its kd-tree. Every kd-tree node has information which includes an attribute and its value.
By comparing this value to the value of the corresponding attribute of the search point, we can decide on which
of the two children of the kd-tree node we should visit next.

This process will lead us to lower levels of the hB-tree, and eventually to a data node. That data node contains
the part of the attribute space where the search point belongs. Finally, the points of the node are searched with
the help of the kd-tree of the node.

2.2 Node Splitting and Index Term Posting

The idea behind node splitting is the same as in B-trees. When a node becomes full it has to be split. Its kd-tree
is used to find a subtree whose size is between one and two thirds of the contents of the node. A new hB-tree
node is allocated and the extracted contents are moved to it. An external marker is included in the original node
indicating that part of its contents have been extracted.

The kd-tree nodes in the path from the kd-tree root of the node to the extracted subtree which describe the
extracted region and have not been posted during another splitting are posted to the parent hB-tree node. Posting
of index terms may trigger additional node splits at higher levels.

3 Using the hB-tree for Spatial Objects

The hB-tree can be used for spatial objects as can any other multiattribute point index. The spatial objects are
represented in the index by the coordinates of their bounding boxes.

We show first that any multiattribute index (such as the hB-tree) which clusters data points which are nearby
in space, will, using boundary coordinates, cluster together records of nearby spatial objects. Since the number
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of coordinates used to describe a bounding box is twice the number of dimensions of the space, indexes whose
size does not depend on the number of coordinates of the data points will be superior. We show that the hB-tree
disk space utilization is insensitive to the dimension of the space.

3.1 Mapping Spatial Objects to Points

Say we are using 2k coordinates to describe a brick in k-dimensional space. If two points in the 2k-dimensional
space have similar values in all coordinates, (a) the objects are similar in size, (b) if the objects are small, they
are close in space, and (c) if the objects are large, they will overlap. Thus, any method which clusters nearby
points will group records of large objects together in pages with other overlapping large objects. It will also
group small objects together with nearby small objects in pages.

This clustering is efficient for typical spatial queries. Large objects are likely to be the answer to many
queries. Having them clustered in disk pages will increase the locality of reference. Having the small objects
clustered together will decrease the number of pages which must be accessed for a particular query [Lom91].

To illustrate these points, we look at one-dimensional spatial objects,
which are line segments with a begin value and an end value. We map
these objects to points in two-dimensional space using the x-coordinate
for the begin value of the line segment and the y-coordinate for the end
value. Since the begin value is always less than or equal to the end value,
all points will lie on or above the line x = y. Points representing small
line segments will be near the diagonal line x = y and points representing
large line segments will be far from the line x = y (figure 2).

Common spatial queries such as inclusion or intersection are repre-
sented by rectangular bricks in the transformed (2k-dimensional) space.
For example, as illustrated in figure 2, all line segments containing the
point “6” would be in the area where the begin value x is less than or
equal to 6 and where the end value y is greater than or equal to 6.

y
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6

Figure 2: Mapping of line seg-
ments to points. Points close to
the line x = y will represent
small line segments.

3.2 Performance of the hB-tree in High Dimensions

The main objection to using multiattribute point-based methods for spatial objects is that the number of di-
mensions needed to represent the objects doubles, making the index too large. But the hB-tree is especially
insensitive to increases in dimension.

A kd-tree node always stores the value of exactly one attribute. Thus, the size of a kd-tree node (and,
consequently, the size of the kd-trees that reside in the hB-tree nodes) does not depend on the number of indexing
attributes.

But, in addition to a kd-tree, every hB-tree node stores its own boundaries (i.e., low and high values for all
attributes that describe the space the node is responsible for). These are 2k attribute values for a k-dimensional
hB-tree. An increase on the number of dimensions does increase the space required to store a node’s boundaries.
The additional amount of space required as the dimensions increase becomes a non-factor for large enough page
sizes. Figure 3 illustrates this fact. With a page size of 2K bytes and larger, there is almost no effect on the size
of the hB-tree and the node space utilization as the dimensions increase. (Page sizes larger than 2K bytes are not
shown.)

This is in contrast, for example, with the R-tree [Gut84], where index entries are bounding coordinates of
objects plus a pointer. Thus, in the R-Tree (and its variants) the size of the index is proportional to the dimension
of the space. The grid file [NHS84] is even worse since it is a multidimensional array. Thus doubling the number
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Figure 3: Index and data hB-tree node space utilization and size of the hB-tree in terms of height and Mbytes
under different page sizes and dimensions. For page sizes greater than 2K bytes the hB-tree is insensitive to the
number of dimensions. In all cases the same 150,000 24-byte records were inserted.

of dimensions squares the size of the index. In the worst case it is an O(nk) size index, where n is the number of
points and k is the dimension of the space. Z-ordering, [OM84] on the other hand, like the hB-tree is insensitive
to dimension.

4 Dealing with Concurrency and Recovery

New access methods which are advantageous for spatial data cannot be integrated into general purpose DBMSs
unless they use the existing concurrency and recovery methods provided by the systems. The hB-tree has been
properly modified so that the efficient algorithm for concurrency and recovery of [LS92] is applicable on it.

The most important modification is the replacement of external markers by actual pointers to the extracted
nodes. The hB-tree becomes a subcase of the Π-tree [LS92], an abstract tree-structure which is a generalization
of the Blink-tree [LY81]. We call the modified hB-tree an hBΠ-tree. Now, we can be lazy about posting index
terms that describe a node split. In other words, two instances of the hBΠ-tree can be structurally different,
because some index term postings have not been performed, but semantically equivalent.

4.1 Splitting and Posting

As with simple B-trees, when an insertion causes an hBΠ-tree node to overflow, that node is split, with part of
the contents going to a new sibling node, and a new index term is posted to the parent. In the hBΠ-tree the node
splitting phase and the index posting phase are performed by separate atomic actions, as following:

Node splitting phase: An updater detects an hBΠ-tree node that is full and cannot accommodate the update.
This node, called the container node, is split and part of its contents are moved to a newly created node,
called the extracted node. The node splitting phase concludes by storing a side pointer in the container
node that points to the extracted node (figure 4b).

Index posting phase: An index term that describes the space that was extracted from the container is posted to
a parent of the container. Since an hBΠ-tree node may have many parents, the index posting phase may
consist of several separate index posting atomic actions. An index posting atomic action always posts to
a single parent (figure 4c).
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An index posting atomic action can be scheduled after: (a) a node splitting phase is over, in which case
it involves the parent of the container node that lies in the current search path, or (b) a side pointer traversal,
which is an indication that either the posting action that was scheduled after the splitting was not performed for
some reason, or the container node is a multiparent node and the current search path is through a parent other
than the one involved in the node splitting phase.
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(a) Before splitting (b) After the node splitting phase (c) After the index term posting phase

Figure 4: In the node splitting phase, node C1 is split, part of its contents move to the new node C3 and a side
pointer to C3 is included in C1. In the index term posting phase an index term that describes the space of C3 is
posted to its parent P.

In case an index posting atomic action can not take place for any reason, the hBΠ-tree is left in a consistent
state. Searchers can always traverse or visit the extracted node by going through its container node and following
the side pointer. System failure is not the only thing that prevents posting actions from completing. Depending
on the algorithm used for performing the posting of index terms, a posting action may be dropped because the
algorithm decides that it is not a good idea to perform the posting at that particular moment for performance
reasons. Being too lazy in posting index terms may degrade the performance of the hBΠ-tree. An algorithm
has to balance the tradeoff between an efficient and simple scheme for posting index terms and more expensive
traversals of the hBΠ-tree due to a large number of side pointer traversals.

In the hBΠ-tree we have found that if we post more information (extra kd-tree nodes) than is actually needed,
or if we restrict index node splits to certain places on their kd-tree, our algorithms become simpler. Such
simplification could have negative consequences on performance since worst case guarantees of index term size
and index node space utilization no longer hold as in the hB-tree. However, our preliminary experiments show
that even with simple algorithms the performance is very good [ELS93].

5 Conclusions

The hB-tree is especially well-suited for spatial data. It clusters points using median attributes. It is insensitive
to increases in dimension. Like any other point-clustering method, it can be expanded for use with bounding
boxes of spatial objects. The resulting clustering will be effective for typical spatial queries such as nearest-
neighbor and intersection searching. In addition, we are applying an efficient concurrency and recovery method
to a modified hB-tree (called the hBΠ-tree) making possible its integration into a general purpose DBMS. This
will enable users of spatial data to take advantage of the extensive and robust capabilities of these systems.
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