
 Learning Technology
publication of

IEEE Computer Society
Learning Technology Task Force (LTTF)

http://lttf.ieee.org/learn_tech/

Volume 3 Issue 3

Editorial board

ISSN 1438-0625

Subscription

Advertising in the newsletter

July 2001

Author guidelines

Contents

From the editor ..

International Conference on Advanced Learning Technologies (ICALT 2000), August 6-8,
2001, Madison, Wisconsin, USA

Supporting and Increasing University Faculty Use of Computers as Teaching Tools: "Geek Week!"
(Abbie Brown)

Project-Based Learning Just Became Easy: An Introduction to WebQuests (Adam Garry)

Employing Case Based Reasoning in Asynchronous distance education (Avgoustos. A.
Tsinakos, Kostantinos. G. Margaritis)

Magic or Realism? Transforming learning styles into design features in net-based education (Carl
Eneroth)

ActiveMath, a Web-Based Learning Environment (Paul Libbrecht, Erica Melis and Carsten Ullrich)

Chat Services with a Voice (Hira Sathu, Ranjana Shukla and Zhong Tang)

Telemachus: A system for submission and assessment of students programs (Maya Satratzemi,
Vassilios Dagdilelis and Georgios Evangelidis)

A Pattern Language for Architectures of Intelligent Tutors (Vladan Devedzic)

Webbus, Tailormade Transport on the World Wide Web: An Educational Webgame (Joop van Schie
and Mark Oostendorp)

Web-based Adaptive Testing (T. M. Sri Krishna)

Context-bound evaluations of courseware in higher education (Peter Hosie)

Students Building Communities—Funding Schools (Avis Marie Haynes)

Visualizing Thinking with Digital Imagery (Brian K Smith)

sitesALIVE! to Launch New Sailing Adventure for Classroom Study (Cindy Collins)

Technology Based Training in Ancient Egypt (Jan Seabrook and Nick Rushby)

Digital Environments: Monitoring Changes to Teaching (Robert Fox)

Educational Software for Computer Engineering: A Case Study of an Interactive BDD Tool (Rolf

1 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

suit a broader spectrum of students and the community at large. The research group expects that the addition
of voice and image components will improve the overall communication process between the students as
compared to the plain text chat. The metrics for this would be the student and the staff feedback
questionnaires.

Bibliography

Shukla, R., Sathu, H. and Tang, Z. “Giving Voice to Discussion Boards” NACCQ 2001.
SpeaksForItself. http://www.speaksforitself.com/speaksforitself
Digalo. http://www.digalo.com/
ReadPlease. http://www.znet.com/
Bell Labs Text-to-speech. http://www.bell-labs.com/projects/tts/voices.html/
Microsoft. http://www.microsoft.com/download

Hira Sathu
hsathu@unitec.ac.nz

Ranjana Shukla
rshukla@unitec.ac.nz

Zhong Tang
Ztang@unitec.ac.nz

UNITEC Institute of Technology
Private Bag 92-025
Auckland, New Zealand

Back to contents

Telemachus: A system for submission and assessment of students programs

Abstract

The software tool called Telemachus has been developed to test and grade students’ programs. Students
submit their programs via WWW and then the software compiles, tests and grades them and also generates
statistical results. The aim of Telemachus is not only to grade the students' programs but more importantly to
provide reliable performance data that could give a reasonable gauge of student knowledge and in this way
contribute to teaching programming skills.

30 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

1. Introduction

In an introductory programming course students write programs in order to develop programming skills. The
task of marking the solutions students produce in their programming assignments is laborious and
error-prone. Thus, a number of researchers have been investigating the possibility of integrating technology
into Computer Science examinations. Among others, Mason and Woit [7, 8] report their experiments from
on-line programming examinations; Preston and Shackelford [9] describe a prototype for an on-line
assessment software tool; Jackson and Usher [4] developed ASSYST a system for grading student
programming exercises; Tinoco et all [11] develop QUIZIT a system for online evaluations in WWW-based
courseware; Joy and Luck developed BOSS [5] a system for submission and assessment of students
programming assignments.

Most of these systems interested us, but were inappropriate to be used in our courses for two main reasons:
such a system must match exactly the requirements of the specific course on which it is intended for use and
furthermore, the system must ensure compatibility with the University databases so that electronic marksheets
can be integrated into the broader process of assessment administration. Thus we decided to develop a
system called Telemachus handling not only submission, program testing and marking students' assignments
but also providing reliable performance data that could give a reasonable gauge of student knowledge

Our system consists of two components: the first and the simplest one provides the means by which a student
submits a program electronically for grading; the second component, which is used by the tutor, directs the
assessment process. In the subsequent sections of the paper, we present the capabilities of our system and
we show how technology can help the teaching process. We will show that this electronic marker does not
only help in the process of testing and grading programs but can also give data for further didactic research.
For example, using students’ performance data we can detect their misconceptions and further we can
pinpoint any particular notion that students may not have grasped fully.

2. Motivation

In the Department of Applied Informatics every year about 130 students are required to attend the CS1 and
CS2 courses. These compulsory courses are offered during the first and the second semester and are
comprised of a two-hour lecture and a two-hour laboratory session per week. In the laboratory session
students solve some programming exercises with the instruction of a tutor. They are given a number of
programming exercises as homework, whose solutions they have to submit in the next laboratory session.
Almost all the exercises are small or medium sized programming problems and the average number of the
programming assignments is 35-40 per course.

Up until now (i.e. before Telemachus), the following rudimentary examination procedure occurred. Since in
our department there was only one assistant (like in most Universities of our country, assistants are a rarity) it
was impossible to check manually all the students’ programs. Thus, what happened was that at the end of the
semester the tutor along with the assistant had to examine orally every student on a small number of programs
(about 5 in all) as it was humanly impossible to check the entire listings (over 5000).

Obviously, this situation could not satisfy either our students or us and it was the weak point of both courses.
We admit that accurate and meaningful assessment is vitally important for many reasons. First, it provides
meaningful feedback to students and instructors; quality assessment informs students of their mistakes and
successes and informs instructors of student knowledge. Second, it establishes confidence in the
measurement of student performance; without accurate assessment, neither students nor instructors have a

31 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

reasonable gauge of student knowledge. Third, it provides instructors and administrators with the ability to
perform quality control; collecting reliable performance data enables examination of the instructional process
for courses. Finally, accurate assessment makes new educational research opportunities possible; customized
courses, better use of class time, and student performance trend analysis are a few examples of possibilities
[9, 3].

Thus, we decided to develop Telemachus, a system that tests and grades students' programs and also
provides reliable performance data that will help us to detect potential students’ misconceptions.

3. Description of the system

Telemachus consists of two main components: the one that students see and by which they submit programs
electronically and access the results via WWW; and the second one that a tutor views and by which he/she
can test and mark programs and obtain statistical results.

Students submit programs or access their results via WWW. Telemachus, in order to permit students’ access
to these operations, asks for their normal login name and password and then it permits access only to those
who are students of the Department and have to attend CS1 and CS2 courses.

The second component, that of the tutor view, is composed of 6 main modules (see figure 3): Exercises,
Students, Options, Reports, Marker, New Semester.

3.1 The Module “Exercises”

We can see, in figure 1, the form that handles the exercises’ database. We have added until now 200
programming exercises into the database. We have categorized them into different topics (worksheets): basic
statements, operations and types, selection structures, repetition structures, arrays, strings, records, files,
pointers etc. Every year we choose a number of 35-40 exercises, among those included in the database, that
are different from those of the previous year.

At the top of the form of figure 1, we see the buttons, which allow the tutor to add/ delete/ edit or find an
exercise. In the section below on the left, we see the worksheet’s number that the exercise refers to and the
total number of exercises in this particular topic. On the right, the tutor gives the data concerning an exercise,
such as: the exercise code (worksheet No, exercise No, Question No); the total number of data sets (input,
output data sets); if the exercise is included in the marking process. In the middle of the form, the tutor writes
the exercise. At the bottom of the form, the tutor gives some extra settings concerning the data sets.

3.2 The Module “Students”

The system handles students’ database with a form similar to that of figure 1. The tutor can add/ delete/ find a
student and can edit some elements.

3.3 The Module “Options”

32 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

Using the form of figure 2, the tutor sets the options that refer to the electronic marker. This form is divided
into 3 sections: the left top section contains information about the exercises that will be marked. In the top
right section the tutor can choose the compiler that will be used for compiling the program and by mouse
clicking the button “Compile Now” Telemachus starts the compilation process. The results of the compilation
process are recorded. The bottom section contains information about students.

Figure 1. Figure 2.

3.4 The Module “New Semester”

The form titled “New Semester” shown in figure 3, initializes students’ database every new semester or for
each different course. Running this module, the tutor can add all students to the database by giving the total
number of students who attend the particular course and the year of their enrollment in the Department
(student’s IDs in the University’s database are formed in this way). This module also creates new students’
directories and deletes students’ directories of the previous year.

Figure 3.

33 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

3.5 The Module “Marker”

The button “Marker”, in figure 3, runs the module that checks the programs’ correctness. The executable
code of a student’s program (which was previously generated by module “Options”) is run against the sets of
test data. In the next step the module determines whether the program’s output is correct or not and marks
the program. The checking approach is to match the student’s output produced by every set of the test data
with the one produced previously by the system.

3.6 The Module “Reports”

Button “Reports” (figure 3) produces 3 different types of electronic reports. i) An extended report for every
student, where he/she can see the following information: which programs were not successfully compiled; for
every set of test data which program produced a correct or an incorrect output. ii) A report for all students
with their grades. iii) A statistical report where the tutor can see for every exercise and every set of test data
the rate of programs that were correct or had errors or were unsuccessfully compiled or did not gave an
output due to an infinite loop.

“File” menu (figure 3, main form) handles the produced reports (open, print a report etc).

4. Test Data Adequacy & Students’ Conceptions

As we have already mentioned in the introduction, not only does Telemachus help the tutor in grading
students’ performance but also in providing useful data concerning students conceptions.

As it is known, many errors in students’ programs [1, 2, 10] have an element of chance and are thus
unpredictable. There are some errors, however, which are more systematic and more persistent and since
they are due to students’ misconceptions can be predicted. Students produce programs that are correct for
most of the cases but when these programs are tested for some data sets they beget incorrect results since
students do not take into consideration all the cases. Telemachus validates students’ programs, running them
against a number of predefined data sets rather than against random data sets so as to detect logical errors.
We chose adequate data sets in such a way that a program with logical errors will produce an incorrect
output or it will have an incorrect performance (infinite loop). Therefore, some data sets will cause students’
programs to give incorrect outputs whereas other data sets will cause correct outputs. Of course, the
combination of incorrect and correct outputs does not guarantee the detection of a misconception; there are
other types of errors that might be associated with the same combination of correct and incorrect outputs.
Nevertheless, the combinations of the chosen data sets give valuable insight into students’ conceptions.
Following, we give two examples in order to show the above.

4.1 Example 1

The first example is a series of programs which deal with the binary search [6]. We present 3 programs. The
first is correct and the other two are incorrect. Table 1a gives the data sets and Table 1b summarizes the
results.

34 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

No Elements Searching element
1 1 2 3 4 1
2 1 2 3 4 2
3 1 2 3 4 3
4 1 2 3 4 4
5 1 2 3 4 5

Table 1a.Data sets

Programs Results
start:=1; fin:=n; found:=false;
while ((not found) and (start <= fin)) do begin

l:= (start+fin) div 2 ;
if matrix[l]=element then found:=true
else
if matrix[l]<element then start:=l+1 else fin:=l-1

end;
if found then writeln(l) else writeln('not found');

It gives correct output for all
data sets

start:=1; fin:=n; found:=false;
while ((not found) and (start <= fin)) do begin

l:= (start+fin) div 2 ;
if matrix[l]=element then found:=true
else
if matrix[l]<element then start:=l else fin:=l

end;
if found then writeln(l) else writeln('not found');

Infinity loop for data set No 4
and 5

start:=1; fin:=n; found:=false;
while ((not found) and (start <= fin)) do begin

l:= ((start+fin) div 2);
if matrix[l]=element then found:=true else
if matrix[l]<element then start:=l else fin:=l;
if fin-start=1 then

if matrix[start]=element then
begin l:=start; found:=true end
else begin l:=fin; found:=true end

end;
if found then writeln(l) else writeln('not found');

Incorrect answer for data set
No 5

Table 1b. The programs and their performance

35 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

The second program gives, according to our observations, the most common error students make, while the
third program shows the most usual modification that they make to the second program when students realize
that it is incorrect.

4.2 Example 2

The second example shows a more trivial but equally frequent error in students’ programs. The proposed
problem was to write a program which erases from a string any leading and trailing blank characters.
Obviously the use of the appropriate repetition structure gives correct output and vice versa. Table 2
summarizes the results given when the applied code is the following:

Readln(st);
repeat delete(st,1,1); until copy(st,1,1)<>#32;
repeat delete(st,length(st),1); until copy(st,length(st),1)<>#32;

Symbols used: S =any string without any leading and trailing blank characters, B= a string of blank characters

Given
String

Results

S Error: erases the first and the last character of S even though are not blank
characters

ÂS Error: Correctly erases the leading blanks B but also the last character of S
even though it is not blank

SÂ Error: Incorrectly erases the first character of S even though it is not blank
but correctly erases the trailing blank characters B

ÂSÂ Correct

Table 2.

5. Conclusions

Telemachus is very simple to use. Students use their normal email login names and passwords to log into the
system, submit their programs electronically and access their report. Submitting programs electronically helps
students save time, otherwise they would have to print their programs, which is a time consuming task. In
addition in receiving a report on their submitted programs it gives them feedback on their mistakes and
successes.

The help that Telemachus offers to the tutor is likewise invaluable. Besides the fact that the system saves the
tutor from the laborious task of checking and marking students’ programs manually, it also gives information
that a human might have completely missed: it spots errors that could be difficult to pinpoint from the visual
examination of listings. Furthermore, students’ performance scores give the tutor the possibility to evaluate the
success of a course. Finally, collecting reliable performance data over a long period of time the hypothesis
concerning students’ errors will empirically be confirmed.

36 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

6. Acknowledgments

The "Operational Program for Education and Vocational Training" of the Second Community Support
Framework, EC, financially supports this work. We acknowledge the significant help given by Theodore
Folias and Maria Myari during the development process.

References

[1] Hoc J. M. Analysis of beginners' problem-solving strategies in programming, in Psychology of Computer
Use, Green T.R.G., Payne S.J., van den Veer G.C. [eds], Academic Press, (1983), 143-158.

[2] Hoc J., Green T., Samurcay R., Gilmore D., Psychology of Programming, Academic Press , (1990).

[3] Hopkins K., Educational and Psychological measurement and Evaluation, Allyn & Bacon, Boston,
(1998), 2-25.

[4] Jackson D., Usher M., Grading Student Programs using ASSYST, In Proceedings of SIGCE’97, ACM,
335- 339.

[5] Joy M., Luck M., Effective Electronic Marking for On-line Assessment, In Proceedings of ITiCSE’98,
ACM, 134-138.

[6] Lesuisse R. Some Lessons Drawn from the History of the Binary Search Algorithm, The Computer
Journal, Vol. 26, n° 2, (1983), 154-163.

[7] Mason D., Woit D., Integrating Technology into Computer Science Examinations, In Proceedings of
SIGCE’98, ACM, 140-144.

[8] Mason D., Woit D., Providing Mark-up and Feedback to Students with Online Marking, In Proceedings
of SIGCE’99, ACM, 3-6.

[9] Preston J., Shackelford R., Improving On-line Assessment: an Investigation of Existing Marking
Methodologies, In Proceedings of ITiCSE’99 (Crakow Poland), ACM , New York, July 1999, 29-32.

[10] Soloway E., Spohrer J., Studying the Novice Programmer, Lawrence Erlbaum Associates, 1989.

[11] Tinoco L., Fox E., Barnette D, Online Evaluation in WWW-based Courseware, In Proceedings of
SIGCE’97, ACM, 194-198

37 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

Maya Satratzemi
Dept. of Applied Informatics
University of Macedonia
156 Egnatia Str., P.O.Box 1591
54006 Thessaloniki
Greece
maya@uom.gr

Vassilios Dagdilelis
Department of Educational and Social Policy
University of Macedonia
dagdil@uom.gr

Georgios Evangelidis
Dept. of Applied Informatics
University of Macedonia
gevan@uom.gr

Back to contents

A Pattern Language for Architectures of Intelligent Tutors

Abstract. This paper introduces PLAIT, a specific pattern language for architectures of intelligent tutors. A
pattern language is a structured collection of interrelated patterns in a specific domain. PLAIT is based on the
idea of using patterns in the architectures of intelligent tutors, as well as on a number of patterns that have
been discovered in the existing architectures of intelligent tutoring systems.

1. Introduction

In software engineering, patterns are attempts to describe successful solutions to common software problems
[6]. Software patterns reflect common conceptual structures of these solutions, and can be applied over and
over again when analyzing, designing, and producing applications in a particular context. Each pattern has a
context in which it applies. When several related patterns are woven together, they form a pattern language.
Pattern languages cover particular domains and disciplines, such as concurrency, distribution, organizational
design, business and electronic commerce, human interface design and many more.

There are also patterns in intelligent tutoring systems (ITSs). Such patterns are, however, mostly implicitly
present in ITSs. Patterns exist in architectures of ITSs, in the way learners learn from such systems, and in the
way ITSs convey domain knowledge to the learners. This paper describes explicitly some patterns that exist
in ITS architectures. The patterns described are all interrelated, and together represent the core of PLAIT, a
Pattern Language for Architectures of Intelligent Tutors.

38 of 85

Learning Technology newsletter, Vol. 3 Issue 3, July 2001

