Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

PN

@ L ear ning Technology W -
e publication of < LT >

Task Force
|EEE Computer Society b
L earning Technology Task Force (LTTF)
http:/Ittf.ieee.org/learn tech/
Volume 3 Issue 3 ISSN 1438-0625 July 2001
Editorid board Subscription Author guiddines

Advertising in the newdetter

Contents

w From the editor ..

International Conference on Advanced Learning_Technologies (ICALT 2000), August 6-8,
2001, Madison, Wisconsin, USA

Supporting and Increasing University Faculty Use of Computers as Teeching Tools "Geek Week!"
(Abbie Brown)

w Project-Based Learning Just Became Easy: An Introduction to WebQuests (Adam Garry)

Employing Case Based Reasoning in Asynchronous distance education (Avgoustos. A.
Tsanakos, Kogtantinos. G. Margaritis)

Magic or Redism? Trandorming learning styles into design features in net-based education (Carl
Eneroth)

w ActiveMath, a Web-Based Learning Environment (Paul Libbrecht, Erica Mdis and Carsten Ullrich)
w Chat Serviceswith aVoice (Hira Sathu, Ranjana Shukla and Zhong Tang)

Tdemachus A system for submission and assessment of students programs (Maya Satratzemi,
Vasslios Dagdildis and Georgios Evangdidis)

w= A Patern Language for Architectures of Intelligent Tutors (Vladan Devedzic)

Webbus, Tailormade Transport on the World Wide Web: An Educationd Webgame (Joop van Schie
and Mark Oostendorp)

w \Web-based Adaptive Testing (T. M. Sri Krishna)

w Context-bound evauations of coursaware in higher education (Peter Hosie)

w= Students Building Communities—Funding Schools (Avis Marie Haynes)

w \/isudizing Thinking with Digital Imagery (Brian K Smith)

w StesALIVE! to Launch New Sailing Adventure for Classroom Study (Cindy Callins)

w Technology Based Training in Ancient Egypt (Jan Seabrook and Nick Rushby)

w= Digitd Environments Monitoring Changesto Teaching (Robert Fox)

__ Educationa Software for Computer Engineering: A Case Siudy of an Interactive BDD Tool (Rolf

1o 8



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

Uit a broader spectrum of students and the community at large. The research group expects that the additior
of voice and image components will improve the overdl communication process between the students as
compared to the plan text chat. The metrics for this would be the student and the Staff feedback
questionnaires.

Bibliography

Shukla, R., Sathu, H. and Tang, Z. “Giving Voice to Discusson Boards® NACCQ 2001.
SpeaksForltsalf. http://mww.spesksforitsalf.com/spesksforitself

Digdo. http:/Amww.digao.com/

ReadPlease. http://mww.znet.com/

Bell Labs Text-to-gpeech. http://mwww.bell-labs.com/proj ects/tts/voices.html/

Microsoft. http://mww.microsoft.com/download

Hira Sathu
hsathu@unitec.ac.nz

Ranjana Shukla
rshukla@unitec.ac.nz

Zhong Tang
Ztang@unitec.ac.nz

UNITEC Inditute of Technology
Private Bag 92-025
Auckland, New Zedland

Back to contents

Telemachus: A system for submission and assessment of students programs

Abstract

The software tool caled Tdemachus has been developed to test and grade students programs. Students
submit their programs via WWW and then the software compiles, tests and grades them and aso generates
datistical results. The am of Tedemachus is not only to grade the students' programs but more importantly to
provide religble performance data that could give a reasonable gauge of sudent knowledge and in this way
contribute to teaching programming skills.

i 0o 3]



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

1. Introduction

Inan introductory programming course students write programs inorder to develop programming skills. The
task of making the solutions students produce in ther programming assgnments is laborious and
error-prone. Thus, a number of researchers have been investigating the posshbility of integrating technology
into Computer Science examinations. Among others, Mason and Woit [7, 8] report ther experiments from
orHine programming examinations, Preston and Shackelford [9] describe a prototype for an on-line
asessment software tool; Jackson and Usher [4] developed ASSYST a system for grading student
programming exercises, Tinoco et dl [11] develop QUIZIT a system for online evduations in WWW-based
courseware; Joy and Luck developed BOSS [5] a system for submisson and assessment of students
programming assgnments.

Most of these systems interested us, but were ingppropriate to be used inour courses for two man reasons.
such a system must match exactly the requirements of the specific course on which it isintended for use and
furthermore, the system must ensure compatibility with the University databases so that eectronic marksheets
can be integrated into the broader process of assessment adminidration. Thus we decided to develop a
system cdled Tdemachus handling not only submisson, program testing and marking students assgnments
but dso providing relidble performance data that could give a reasonable gauge of student knowledge

Our system consists of two components: the first and the Smplest one provides the means by which a sudent
submits a program eectronicaly for grading; the second component, which is used by the tutor, directs the
assessment process. 1n the subsequent sections of the paper, we present the capabilities of our system and
we show how technology can help the teaching process. We will show that this eectronic marker does not
only help in the process of teting and grading programs but can also give data for further didactic research.
For example, usng students performance data we can detect their misconceptions and further we can
pinpoint any particular notion that students may not have grasped fully.

2. Motivation

Inthe Department of Applied Informatics every year about 130 students are required to attend the CS1 and
CS2 courses. These compulsory courses are offered during the firsd and the second semester and are
comprised of a two-hour lecture and a two-hour laboratory session per week. In the |aboratory session
students solve some programming exercises with the indruction of a tutor. They are given a number of
programming exercises as homework, whose solutions they have to submit in the next laboratory sesson.
Almog dl the exercises are amdl or medium sized programming problems and the average number of the
programming assgnments is 35-40 per course.

Up until now (i.e. before Telemachus), the following rudimentary examination procedure occurred. Since in
our department there was only one assistant (like in most Universties of our country, assstants are araity) it
was impossible to check manudly dl the students' programs. Thus, what happened was that at the end of the
semester the tutor dong with the assgtant had to examine ordly every sudent on a smdl number of programs
(@bout 5indl) asit was humanly impossible to check the entire ligings (over 5000).

Obvioudy, this Stuation could not satisy elther our students or us and it was the weak point of both courses.
We admit that accurate and meeningful assessment is vitdly important for many reasons. Firdt, it provides
meaningful feedback to students and ingructors, qudity assessment informs students of their mistakes and
successes and informs ingructors of student knowledge. Second, it establishes confidence in the
measurement of student performance; without accurate assessment, nether students nor ingtructors have a

3o



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

reasonable gauge of sudent knowledge. Third, it provides instructors and adminigtrators witt the ability to
perform qudity control; collecting religble performance data enables examination of the ingtructiond process
for courses. FAndly, accurate assessment makes new educationa research opportunities possible; customized
courses, better use of class time, and student performance trend andyss are a few examples of possibilities
[9, 3.

Thus, we decided to develop Tdemachus, a system that tests and grades students programs and aso
provides rdiable performance data that will hdp us to detect potentid Students misconceptions.

3. Descriptionof the system

Tdemachus consgts of two man components. the one that students see and by which they submit programs
eectronicaly and access the results via WWW,; and the second one that a tutor views and by which he/she
cantest and mark programs and obtain statistical results.

Students submit programs or access ther results via WWW. Teemachus, in order to permit students access
to these operations, asks for thar norma login name and password and then it permits access only to those
who are students of the Department and have to attend CS1 and CS2 courses.

The second component, that of the tutor view, is composed of 6 man modules (see figure 3): Exercises,
Students, Options, Reports, Marker, New Semester.

3.1 The Module “ Exercises’

We can seg, in figure 1, the form that handles the exercises database. We have added until now 200
programming exercises into the database. We have categorized theminto different topics (worksheets): basic
satements, operaions and types, sdection structures, repetition structures, arrays, drings, records, files
pointers etc. Every year we choose a number of 35-40 exercises, among those included in the database, that
are different from those of the previous year.

At the top of the form of figure 1, we see the buttons, which alow the tutor to add/ delete/ edit or find an
exercise. In the section below on the Ieft, we see the worksheet’s number that the exercise refers to and the
total number of exercisesin this particular topic. On the right, the tutor givesthe data concerning an exercise,
such as. the exercise code (worksheet No, exercise No, Question No); the total number of data sets (input,
output data sets); if the exercise isincluded in the marking process. Inthe midde of the form, the tutor writes
the exercise. At the bottom of the form, the tutor gives some extra settings concerning the data sets.

3.2 The Module “ Sudents’

The system handles students database with aform amilar to that of figure 1. The tutor can add/ ddlete/ find a
Sudent and can edit some dements.

3.3 The Module “ Options”

240 <)



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

Using the formr of figure 2, the tutor sets the options that refer to the eectronic marker. This formr is divided
into 3 sections: the left top section contains information about the exercises that will be marked. In the top
right section the tutor can choose the compiler that will be used for compiling the program and by mouse
dicking the button “Compile Now” Telemachus starts the compilation process. The results of the compilation
process are recorded. The bottom section contains information about students.

e s

R

Eoralwdnos
B kemardies CATekomatratlil 3
ook T Lwbaancw Chalas % Ty # OO
2 B el Tiasus Peat C 4\ Tekewahvalgs
5 L) Foban Thaados LA Talomatr'# 01 5
] AT T Phiges {mgh PYPSPYER - o] "g

_Wﬂmulmu,mmiu- !'J t

Figure 1. Flgure 2.

3.4 The Module “ New Semester”

The form titled “New Semester” shown in figure 3, initidizes sudents database every new semester or for
each different course. Running this module, the tutor can add dl students to the database by gving the tota
number of students who attend the particular course and the year of thar enrdllment in the Department
(student’s IDs in the University’s database are formed in this way). This module also creates new students
directories and deletes students' directories of the previous year.

| XClose previous Semester / Delations b
:wamm. W%wnmmﬁ-mnﬂh AP

i 'm*mmhuuwmma‘nmﬁ um.ugamu ;

Figure 3.

BA B



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

3.5 The Module “ Marker”

The button “Marker”, in figure 3, runs the module that checks the programs correctness. The executable
code of a student’ s program (which was previoudy generated by module “Options’) is run againg the sets of
test data. In the next step the module determines whether the program’s output is correct or not and marks
the program. The checking approach is to match the student’s output produced by every set of the test data
with the one produced previoudy by the system.

3.6 The Module “ Reports’

Button “Reports’ (figure 3) produces 3 different types of dectronic reports. i) An extended report for every
student, where he/she can see the following information: which programs were not successfully compiled; for
every set of test data which program produced a correct or an incorrect output. ii) A report for dl students
withther grades. iii) A dtatistica report where the tutor can see for every exercise and every set of test data
the rate of programs that were correct or had errors or were unsuccessfully compiled or did not gave an
output due to an infinite loop.

“Hlg’ menu (figure 3, man form) handles the produced reports (open, print a report etc).

4. Test Data Adequacy & Students’ Conceptions

As we have aready mentioned in the introduction, not only does Tdemachus hdp the tutor in grading
students performance but aso in providing useful data concerning students conceptions.

As it is known, many errors in students programs [1, 2, 10] have an dement of chance and are thus
unpredictable. There are some errors, however, which are more sysematic and more persstent and since
they are due to students' misconceptions can be predicted. Students produce programs that are correct for
most of the cases but when these programs are tested for some data sets they beget incorrect results snce
students do not take into consideration dl the cases. Tdemachus vdidates students programs, running them
againg a number of predefined data sets rather than againgt random data sets so as to detect logicd errors.
We chose adequate data sets in such a way that a program with logicd errors will produce an incorrect
output or it will have anincorrect performance (infinite loop). Therefore, some data sets will cause students
programs to give incorrect outputs wheress other data sets will cause correct outputs. Of course, the
combination of incorrect and correct outputs does not guarantee the detection of a misconception; there are
other types of errors that might be associated with the same combination of correct and incorrect outputs.
Nevertheless, the combinations of the chosen data sets give vduable ingght into students conceptions.
Following, we give two examplesin order to show the above.

4.1 Example 1
The firg example is a series of programs which deal withthe binary search [6]. We present 3 programs. The

fird is correct and the other two are incorrect. Table 1a gives the data sets and Table 1b summarizes the
results.

AL



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

No Elements

Searching dement

1234 1

1234

1234

1234

QB WIN|F

G W[IN

1234

Table 1a.Data sets

| Programs

| Results

sart:=1; fin=n; found:=fdse;
while ((not found) and (start <= fin)) do begin

I:= (dart+fin) div 2 ;

if matrix[/]=dement then found:=true

dse

if matrix[l]<dement then start:=I+1 esefin:=l-1

end,
if found then writdn(l) ese writdn('not found);

It gives correct output for dl
data sets

gart:=1; fin=n; found:=fdse;
while ((not found) and (start <= fin)) do begin

I:= (Sart+fin) div 2 ;

if matrix[/]=element then found:=true

dse

if matrix[l]<dement then start:=l ese fin=l

end,
if found then writdn(l) else writeln('not found);

Infinity loop for data set No 4
and 5

sart:=1; fin:=n; found:=fdse
while ((not found) and (start <= fin)) do begin

I:= ((dart+fin) div 2);

if matrix[I]=element then found:=true else
if matrix[l]<dement then start:=l dse fin=;
if fin-start=1 then

if matrix[start]=element then
begin I:=gtart; found:=true end
el se begin |:=fin; found:=true end

end;
if found then writdn(l) ese writeln('not found');

Incorrect answer for data set
No 5

Table 1b. The programs and their performance

HABH




Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

The second program gives, according to our observations, the most common error sudents make, while the
third program shows the most usua modification that they make to the second program when students redize
that it isincorrect.

4.2 Example2

The second example shows a more trivid but equaly frequent error in Sudents programs. The proposed
problem was to write a program which erases from a dring any leading and traling blank characters.
Ohbvioudy the use of the appropriate repetition structure gives correct output and vice versa. Teble 2
summarizes the results given when the applied code is the following:

ReadIn(st);
repeat delete(st,1,1); until copy(st,1,1)<>#32;
repeat delete(st,length(st),1); until copy(s,length(st),1)<>#32;

Symbols used: S =any string without any leading and tralling blank characters, B= a gring of blank characters

Reaults

Given

Sring

S Error: erases the fird and the last character of S even though are not blank
characters

AS Error: Correctly erases the leading blanks B but dso the last character of S
even though it is not blank

SA Error: Incorrectly erases the first character of S even though it is not blank
but correctly erases the tralling blank characters B

ASA Correct

Table 2.

5. Conclusons

Tdemachus is very ample to use. Students use thar norma emall login names and passwords to log into the
system, submit their programs eectronicaly and access their report. Submitting programs dectronicaly helps
students save time, otherwise they would have to print thar programs, which is a time consuming task. In
addition in recalving a report on thar submitted programs it gives them feedback on their mistakes and
SUCCESSES.

The hep that Telemachus offers to the tutor is likewise invauable. Besides the fact that the system savesthe
tutor from the laborious task of checking and marking students programs manudly, it aso gives information
that a human might have completely missed: it spots errors that could be difficult to pinpoint from the visud
examination of ligings. Furthermore, students' performance scores give the tutor the possibility to evauate the
success of a course. Fndly, collecting reliable performance data over a long period of time the hypothesis
concerning students’ errors will empiricaly be confirmed.

HdA &L



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

6. Acknowledgments
The "Operational Program for Education and Vocationa Training' of the Second Community Support

Framework, EC, finanddly supports this work. We acknowledge the sgnificant hep given by Theodore
Folias and Maria Myari during the development process.

References

[1] Hoc J. M. Andyds of beginners problem-solving strategies in programming, in Psychology of Computer
Use, Green T.R.G., Payne S.J., vanden Veer G.C. [eds], Academic Press, (1983), 143-158.

[2] Hoc J., Green T., Samurcay R., Gilmore D., Psychology of Programming, Academic Press, (1990).

[3] Hopkins K., Educationd and Psychologicd measurement and Evduation, Allyn & Bacon, Boston,
(1998), 2-25.

[4] Jackson D., Usher M., Grading Student Programs using ASSY ST, In Proceedings of SIGCE’' 97, ACM,
335- 339.

[5] Joy M., Luck M., Effective Electronic Marking for On-line Assessment, In Proceedings of ITiCSE' 98,
ACM, 134-138.

[6] Lesuisse R. Some Lessons Drawn from the History of the Binary Search Algorithm, The Computer
Journd, Val. 26, n° 2, (1983), 154-163.

[7] Mason D., Wait D., Integrating Technology into Computer Science Examinations, In Proceedings of
SIGCE'98, ACM, 140-144.

[8] Mason D., Wait D., Providing Mark-up and Feedback to Students with Online Marking, In Proceedings
of SIGCE' 99, ACM, 3-6.

[9] Preston J.,, Shackdford R., Improving On-line Assessment: an Investigation of Exiding Marking
Methodologies, In Proceedings of ITICSE' 99 (Crakow Poland), ACM , New York, July 1999, 29-32.

[10] Soloway E., Spohrer J., Studying the Novice Programmer, Lawrence Erlbaum Associates, 1989.

[11] Tinoco L., Fox E., Banette D, Online Evauation in WWW-based Courseware, In Proceedings of
SIGCE’ 97, ACM, 194-198

7o



Leamning Technology newdetter, Vd. 3 Issue 3, July 2001

Maya Satratzemi

Dept. of Applied Informatics
University of Macedonia

156 Egnatia Str., P.O.Box 1591
54006 Thessadoniki

Greece

may a_@uom.gr

Vassilios Dagdildlis
Department of Educationd and Socid Policy
Universty of Macedonia

dagdil @uom.gr

Georgios Evangdlidis
Dept. of Applied Informetics
Univergty of Macedonia

ga/m@uom.gr

Back to contents

A Pattern Language for Architecturesof Intelligent Tutors

Abstract. This paper introduces PLAIT, a specific pattern language for architectures of intdligent tutors. A
pattern language is a structured collection of interrelated patterns in a gpecific domain. PLAIT is based onthe
idea of udng patterns in the architectures of intdligent tutors, as wdl as on a number of patterns that have
been discovered in the exiging architectures of intdligent tutoring systems.

1. Introduction

In software enginearing, patterns are attempts to describe successful solutions to common software problems
[6]. Software patterns reflect common conceptua structures of these solutions, and can be applied over and
over again when andyzing, designing, and producing gpplications in a particular context. Each pattern has a
context inwhichit applies. When severa related patterns are woven together, they form a pattern language.
Pattern languages cover particular domains and disciplines, such as concurrency, digribution, organizationd
dedgn, busness and dectronic commerce, human inteface desgn ad may more

There are aso paterns in intdligent tutoring systems (ITSs). Such patterns are, however, modly impliatly
present in ITSs. Petterns exist in architectures of 1TSs, in the way learners learn from such systems, and inthe
way I TSs convey doman knowledge to the learners. This paper describes explicitly some patterns that exist
iNnITS architectures. The patterns described are dl interrdated, and together represent the core of PLAIT, a
Pattern Language for Architectures of Intdligent Tutors.

BALH



