
1

ACHIEVING OPTIMAL AVERAGE DATA NODE STORAGE

UTILIZATION IN K-DIMENSIONAL POINT DATA INDEXES

EVANGELOS OUTSIOS

Department of Applied Informatics, University of Macedonia

156 Egnatia Str., Thessaloniki, 54006, Greece

GEORGIOS EVANGELIDIS

Department of Applied Informatics, University of Macedonia

156 Egnatia Str., Thessaloniki, 54006, Greece

Indexing of k-dimensional point data is becoming again a hot research topic because of

the need to efficiently index and retrieve high dimensional vectors (points) in data mining
applications. The most common query on such vectors is kNN searching, which is a

variation of range searching. Most multidimensional indexes for point data follow the

paradigm of the ubiquitous B+tree and store data entries at the leaf level of the index
(data nodes). Since this level naturally occupies the majority of nodes in a

multidimensional index tree, it is crucial that an index structure achieves the best possible

average storage utilization regardless of data distribution and order of data insertion. An
additional conflicting goal is the minimization of the index term that is posted at the

levels above when data nodes are split. In this paper we revisit data node splitting

techniques for point access methods like the KDB-tree, hB-tree, and, in general, any
index that stores point data at its leaf level nodes and splits them so that no overlapping

subspaces are created at the leaf level. We experiment with various splitting techniques

that produce the minimum index term for posting but differ in the shape of the resulting
nodes and the average storage utilization. We also test our splitting techniques using

uniform and skewed data distributions. The comparison is on the average data node

storage utilization and the efficiency of range query searches.

1. Introduction

Lately, there is an increased interest in access methods for multidimensional

points or vectors (point access methods - PAMs). This is explained by the fact

that data mining applications need to manipulate and analyze vast quantities of

multi-dimensional vectors, especially when dealing with time-series data. The

well-known problem of the “curse of dimensionality”, states that above 8 to 16

dimensions and depending on the dataset at hand, exhaustive search of the

dataset is faster than using a PAM for the purpose of range or k-NN queries [1].

Moreover, vectors in data mining applications can have hundreds of

dimensions that can be correlated and, thus, it is necessary to reduce their

dimensionality in order to reduce the volume of data without losing much

 2

information. Researchers in the data mining field use various dimensionality

reduction techniques and usually reduce the dimensionality of vectors down to 6

to 20 dimensions. Thus, PAMs that index the multidimensional space without

creating overlapping subspaces and work well in low to medium dimensions are

an attractive choice for indexing such large point datasets.

In this paper, we assume that our data records are multi-dimensional points

and that the index of choice is a PAM, e.g., the hB-tree [3,4] or the KDB-tree

[5], etc., that stores points in the leaf nodes and splits them in non-overlapping

regions. We choose to split data nodes using hyper-planes, i.e., a single attribute,

since this approach requires the smallest index term to describe the split. Only

the splitting attribute and its value are required to be posted at the index level

above (the parent of the overfull node) to describe the split. We experiment with

various splitting techniques and report on their performance in terms of the

average data node storage utilization and the efficiency of range query searches.

In Section 2, we discuss the problem of data node splitting and how it can

affect the performance of an index structure. In Section 3, we present three

splitting techniques, and, in Section 4, we describe the experiments we

conducted on the performance of the splitting techniques. We conclude the

paper in Section 5.

2. Data node splitting

Data nodes contain the records (multidimensional points) of the database. In a

way analogous to the B+tree [2], when a data node becomes overfull because of

insertions of new points, it has to be split. After the split we end up with two

data nodes, the initial one occupying the same disk page and a new one

occupying a new disk page. This process is repeated continuously, every time a

data node is overfull.

In Figure 1, we demonstrate a simple example where two splits took place

and we got three data nodes occupying three disk pages (we assume 7 points per

data node). We started with an initial data node d1, which became overfull and

was split to two data nodes d1 and d2. Next, d2 became overfull and was split to

d2 and d3. However, we can observe that the total number of points residing in

the three data nodes is 10 and can easily fit to two data nodes only. We could

have avoided the second split and end up with only two data nodes to store our

points, had we planned the first split more carefully.

In Figure 2, we see that because we performed the first split in a different

manner, the second split did not happen and the same number of points as in the

case of Figure 1 was accommodated in two data nodes.

 3

Thus, data node splitting, although it seems to be an easy and trivial

process, is a very important issue and requires careful planning. By avoiding

unnecessary splits, we:

Figure 1: Ineffective data node splitting

 reduce the total number of data nodes and hence the disk pages needed,

 increase data node storage utilization,

 reduce the height of the tree, since less splits means less information posted

above,

 make exact match query faster, since the tree height is smaller,

 make range queries more effective, since the points searched are

accommodated to fewer nodes and less disk pages are accessed.

 4

Figure 2: Effective data node splitting

2.1. Splitting criteria

Let’s discuss the criteria by which we decide to split a data node. To better

follow the discussion and visualize the problem we examine the 2-dimensional

case.

When we have an overfull data node the aim is to carry out the split in a

way that minimizes the cost of future queries. One approach is to split the space

of the data node in half along the longest edge and to ignore the distribution of

the points in the node [1]. The two resulting data nodes will refer to the same

amount of space and will have regular shapes, i.e., edges of similar lengths. This

means that they will have the same probability of receiving new insertions of

points or of being visited by subsequent range queries. The problem is that by

following this approach we may end up having nodes with low or zero storage

utilization.

 5

A variation of the above approach is to split the space in half using the

attribute that achieves the best point split, i.e., the one closer to a 1/2-1/2 split.

Again, it may be the case that neither x nor y lead to a good point split.

An alternative approach is to concentrate on the distribution of points. With

this approach we always try to achieve an even point split without guaranteeing

an even space split. For example, in Figure 3 we could choose the median of

attribute x to evenly split the points of the data node.

We can improve the above approach by choosing the median of the attribute

that achieves the best space split, or better relax the condition that data nodes are

split at the median of the chosen attribute. For example, in Figure 4, if we move

the value of the splitting attribute x to the right we can achieve an even point and

space split at the same time.

In the following sections, we describe three splitting techniques and show

the results from the experiments we carried out. We emphasize on the

advantages or disadvantages of each technique applied to random (uniformly

distributed) data and highly skewed data.

Figure 3: Splitting using the median

Figure 4: Splitting points and space evenly

3. Presentation of tested data node splitting techniques

3.1. Round robin attribute for even point split

This is the simplest technique. We perform an even point split on the first data

node using the first attribute. When either of the two data nodes that resulted

from the first split becomes overfull, it is split using the next attribute in turn,

and so on.

For uniformly distributed in space points, this splitting process achieves

good storage utilization since nodes are always split at a 1/2-1/2 ratio. It also

achieves good space partitioning since data nodes are always split along the

 6

longest edge. The performance could be very poor for skewed data. Another

drawback of the technique is that every data node must store the bookkeeping

information of the attribute that should be used for the following split.

Figure 5 demonstrates a scenario where this technique has very poor

performance. We assume that a node can hold only 4 points, and the insertion of

the fifth point causes a split. In the end, we have inserted 10 points, we have

made 4 splits and we have 5 data nodes most of which have very low storage

utilization. The problem here was that when in a data node most of the points

had the same x attribute value we were forced to split using x instead of y that

could achieve a better point split. When having such non-uniform point

distributions the higher the dimensionality the worst the problem gets, i.e., we

may end up with data nodes with very low storage utilization.

Figure 5: Round-robin splitting with poor performance

3.2. Best attribute for even point split and best possible space split

This technique is both point and space oriented and favors even point splits. We

choose as the splitting attribute the one that achieves the best point split, i.e.,

closest to a 1/2-1/2 ratio. If more than one attribute qualifies, we pick the one

that achieves the best space split, i.e., closest to a 1/2-1/2 ratio. Again, if more

than one attribute qualifies, we choose the one that splits along the longest edge.

This technique guarantees high storage utilization and good space partitioning. It

 7

works well for random data but for non-uniform data there is no guarantee that

the space partitioning will be even. In Figure 6, we see a scenario where

attribute y will be chosen to perform the split of node d1.

Figure 6: Data node where attribute y splits evenly both points and space

In Figure 7, we see a scenario where x should be chosen as the splitting

attribute. Here, both x and y achieve the best point and space splits, but x splits

along the longest edge 1.

Figure 7: Both x and y achieve even point and space split, but x splits the longest edge

3.3. Best attribute for even space split and a minimum 1/3-2/3 point split

This method is also both space and point oriented, but favors even space splits.

We choose an attribute that achieves an even space split and a point split of at

least 1/3-2/3. As shown in [4], such a splitting ratio guarantees very good

storage utilization. We order the attributes according to the length of the edge

they split and we choose the best one. If no such attribute exists, we choose the

attribute that can achieve a 1/3-2/3 point split by compromising the evenness of

the space split. For example, in Figure 8 we see a scenario where y should be

chosen as the splitting attribute.

 8

Figure 8: y compromises space split evenness to achieve a 1/3-2/3 point split

4. Experiments

We tested the three splitting techniques using uniform and highly skewed

computer generated 2d points. We varied the size of the data node to hold 25, 50

and 100 points and the size of the dataset to be 10K, 100K and 1M points. We

use the notation t1, t2, and t3 for the three techniques, i.e., round-robin best

point split, best point split, and best space split, respectively.

In Table 1, we observe that t1 and t2 have almost identical performance

regarding data node storage utilization when using uniform data. Utilization is

about 70% regardless of dataset and node sizes. On the other hand, t3 gets worse

as the dataset and node sizes increase. This is explained by the fact that t3 favors

even space partitioning over even point partitioning. In Table 2, where the data

is skewed, we observe similar behavior for t1 and t2, but now t3 has

significantly improved performance – almost comparable to the one of t1 and t2

for large dataset and node sizes.

Table 1: Uniform data: data node storage utilization for various dataset

and page sizes

 25 50 100

 10K 100K 1M 10K 100K 1M 10K 100K 1M

t1 69,81 70,08 70,16 70,67 69,78 69,82 70,92 68,49 69,57

t2 70,05 70,18 70,29 72,20 69,93 69,78 73,53 68,63 69,41

t3 72,86 69,35 66,45 74,63 70,00 63,76 78,13 69,93 61,63

Table 2: Skewed data: data node utilization for various dataset and page

sizes

 25 50 100

 10K 100K 1M 10K 100K 1M 10K 100K 1M

t1 69,69 70,05 70,13 71,17 69,91 69,75 68,03 69,20 69,75

t2 70,42 70,68 70,31 70,67 69,88 69,80 70,42 69,44 69,48

t3 66,78 67,81 68,11 67,34 67,02 67,89 62,50 65,49 67,59

 9

Next we conducted some range query experiments. We chose 100 random

queries with 1% space selectivity and we report the percent of the data pages

visited to answer these queries. For uniform data one expects about 1% for the

pages to be visited. All three techniques approach this number for large datasets

(or large trees). Since t3 favors even space partitioning, it slightly outperforms

the other two point partitioning techniques regardless of dataset and node sizes

(see Table 3). Finally, for skewed data, t2 that favors even point partitioning and

at the same time tries to achieve good space partitioning, clearly outperforms the

other two techniques regardless of dataset and node sizes (see Table 4).

Table 3: Uniform data: range query performance for various

dataset and page sizes

 25 50 100

 10K 100K 1M 10K 100K 1M 10K 100K 1M

t1 1,95 1,32 1,10 2,37 1,38 1,12 2,96 1,50 1,15

t2 1,91 1,26 1,10 2,38 1,37 1,12 2,99 1,49 1,14

t3 1,83 1,22 1,07 2,21 1,34 1,10 3,00 1,48 1,13

Table 4: Skewed data: range query performance for various

dataset and page sizes

 25 50 100

 10K 100K 1M 10K 100K 1M 10K 100K 1M

t1 1,94 1,33 1,19 2,34 1,38 1,11 3,08 1,52 1,15

t2 1,63 1,18 1,07 2,00 1,25 1,07 2,62 1,36 1,11

t3 1,87 1,54 1,31 2,11 1,61 1,40 2,68 1,77 1,52

5. Conclusions

We presented three data node splitting techniques for point access methods that

split space in non-overlapping regions. The techniques differ in the way they

split overfull data nodes. They choose the splitting attribute and its value in

order to achieve simultaneously even point and space splits. Since this is

impossible to achieve unless data is uniformly distributed in space, we are

interested in the performance of the various techniques when data is highly

skewed. Our experiments showed that a technique that favors even point splits

and tries to achieve good space splits is best when data is uniform. On the other

hand, a technique that favors even space splits and tries to achieve acceptable

point splittings, clearly outperforms all other techniques at the price of slightly

reduced data node storage utilization.

 10

We plan to further improve our data node splitting techniques and test

their performance in higher dimensions and with non-uniform data from real

world scientific applications.

References

1. Berchtold, S., Böhm, C., and Kriegel, H.P. (1998). The Pyramid-Technique:

Towards Breaking the Curse of Dimensionality. In Proc SIGMOD, pp. 142-

153.

2. Comer, D. (1979). The Ubiquitous B-Tree. ACM Comput. Surv. (CSUR),

11(2), pp. 121-137.

3. Evangelidis, G., Lomet, D.B., and Salzberg, B. (1997). The hBπ-Tree: A

Multi-Attribute Index Supporting Concurrency, Recovery and Node

Consolidation. VLDB J., 6(1), pp. 1-25.

4. Lomet, D.B. and Salzberg, B. (1990). The hB-Tree: A Multiattribute

Indexing Method with Good Guaranteed Performance. ACM Trans.

Database Syst. (TODS), 15(4), pp. 625-658.

5. Robinson, J.T. (1981). The K-D-B-Tree: A Search Structure For Large

Multidimensional Dynamic Indexes. In Proc SIGMOD, pp. 10-18.

http://dl.acm.org/citation.cfm?id=276318
http://dl.acm.org/citation.cfm?id=276318
http://dl.acm.org/citation.cfm?id=276318
http://dl.acm.org/citation.cfm?id=356776
http://dl.acm.org/citation.cfm?id=356776
http://citeseerx.ist.psu.edu/search?q=Evangelidis&submit=Search&sort=cite&t=auth
http://citeseerx.ist.psu.edu/search?q=Evangelidis&submit=Search&sort=cite&t=auth
http://citeseerx.ist.psu.edu/search?q=Evangelidis&submit=Search&sort=cite&t=auth
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=99949
http://dl.acm.org/citation.cfm?id=582321
http://dl.acm.org/citation.cfm?id=582321

