DEVELOPING AND DEPLOYING DYNAMIC APPLICATIONS
An Architectural Prototype

Georgios Voulalas, Georgios Evangelidis
Department of Applied Informatics, University of ééadonia, 156 Egnatia St., Thessaloniki, Greece
voulalas@uom.gr, gevan@uom.gr

Keywords: Model-driven Development, Dynamic Apptioas, Reflection, Runtime Compilation, Java Platfo

Abstract: In our previous research we have predemfeamework for the development and deploymenteii-based
applications. This paper elaborates on the corgpoaents (functional and data) that implement theege,
reusable functionality. Code segments of the cormapt:n are presented, along with a short sample
application. In addition, we introduce some chaniied are mainly driven by usability and performanc
improvements, and are in adherence with the praciples of the framework’s operation. Those change
enable us to extend the applicability of the framewto other families of applications, apart fronelw
based business applications.

1 INTRODUCTION Consistency between the final application and the
modelled specificationsis ensured.
In (Voulalas & Evangelidis, 2007 and Voulalas & The framework supports the operation of

Evangelidis, 2008) we introduced an extension of different applications and application versions
the Model Driven Architecture (Kleppe, Warmer & Within asingle installation. Thus, we can anytime
Bast, 2003) that additionally to coping with the '€fer to a previous version of an application and
problems of productivity, documentation, €xamine old data in its real context by retrieving
maintenance, portability and interoperability, atns ~ corresponding data instancesithout the need of
manage efficiently the continuously evolving maintaining multipleinstallations. -
requirements (Miller & Mukerji, 2001) of web- _ Durlng_our researcmgrformanceand usability
based business applications and to ensure/SUes motivated us to differentiate the way some of

consistency between the produced code and the the goals are achieved. In particular, instead of
preceding design models. utilizing exclusively generic components for the
The framework is structured on the basis of a Provision of the functional behaviour of an

universal database schema (meta-model). application, we decided to use a mix of generic

Development is supported by modelling tools that Modules — and application-specific ~ modules.

elicit functional specifications from users and Application-specific modul_es will be re_trieved_from
transform them into formal definitions, and by data the database and compiled at run-time (Biesack,
structures that are utilized for the storage of the 2007) in order for the application to bgnamically
definitions. Deployment is supported yeneric created. This change improves the performance of

components that are dynamically configured at the generated application since the extensive
run-time according to the functional specifications Ulilization —of reflection ~ requires increased
provided during development, and by application- computational resources (Sun Microsystems, 2008).

independent data structures (part of the meta-rpodel Additionally, the developer has more means to
that hold all application-specific data. No code implement sophisticated mechanisms that could not
(SQL, Java, C++, JSP, etc.) is generated. We carP€ incorporated into a pre-built generic component.

deal with business logic changes at deployment Last but not least, this shift enables us to easily
time without recompiling and redeploying the extend the applicability of the framework to other

application, since changes are translated in @milies of applications, apart from web-based
business applications.

modifications to the underlying data instances.

This paper aims to present an application property. For each method creatéviethod and
scenario (Section 2) that will indicate the way the link it to the propelClass.
developer interacts with the development = Identify the parameters that should be passed in
environment, and verify the feasibility of the order for an operation to be invoked, e.g. size,
proposed solution though an architectural prototype construction year. For each parameter create an
(Sections 3 and 4). The last section concludes the Argument and link to the prope¥l ethod.
paper and identifies our future steps. In the final prototype those steps could be
supported by a forms-based wizard.
The system stores the information provided by
2 APPLICATION SCENARIO the user in the predefined database structures (see
Figure 1, Region A). Note that no new structures ar
created and no existing structures are modified.
Suppose that we have to develop a real E"Statel’portaInteraction with the database is limited to data

through which agents will be able to post property .)
ads gnd potenti%ll buyers / renters ?o seF;rcr;I %rlnsertlon. Then, the system generates code sksleton
for each Class. In Java SE the code skeletons

properties. Three types of properties ads are. -
identified: residencies, business properties, andmCluOle attributes, setters and getters for each

. ttribute, default constructor, signatures for the
development land. A property can be available for & ’ . - .
sale orprent or for both 2a|2 an)é rent methods and static declarations that link the Class

In order to verify the feasibility of our proposal, the database records created in the previous step.

we have developed two versions of the portal. In Now, it is the users tum to implement the

both versions, Java Platform™ Standard Edition 6 is .methOdS' The cading process is strictly resiridied

the underlying platform. The first version was |mp_lementing tl_1e_ methods _that have been already
developed as a typical application with its own d.ef'ned' or dgfu_ung new private method;_that are
database schema (residing in MySQL) and visible only W|Fh|n Fhe scope of Fhe specific class
functional components that were developed from T_he code that IS written IS stored in the dataltase
scratch through an Integrated Development Flglure 1|’ R(;glofr_l ’/'} column boﬂy of the_ Metgé)ds
Environment (IntelliJ IDEA). For the development tak _e). n the final prototype, the user instedd o
of the second version, we followed the steps that a writing code, he will provide functional

described below. No database schema was createdPeCifications in an upper level (€.g. with the abe
since that version utilizes the generic databaseé designer) that will be transformed to code. Both

schema that is presented in Section 3 (and Whichfunctional specifications and gen_erated cod_e_\{ﬂll b

also resides in our MySQL Server). Application- stored in the_database, along with the de_ﬁnmbn o]

specific code was written through IntelliJ IDEA. Classes, Attributes, _Methods, etc. _ConS|stency

= |dentify the business entities that participatéhie between the fun_ct|onal specifications anpl the
domain model, e.g. Property, Residency, Businessgenerated c_o_de V\.”” be ensured by preventing the
Property, Development Land and Realtor. Create ayser from writing directly to the database.
new Class for each one. Look-up structures should ~ Until now, we have covered the implementation
be also modelled a€lasses (e.g. Transaction of the Application tier. The Database tier is gémer
Type: sale or rent). for all applications. The user does not write SQL

= |dentify the properties of each business entity, e. code. Instead, he uses generic methods that
size of Property, construction year of Residency_ materialize and dematerialize the ObjeCtS. For the
Create a newAttribute for each property and User Interface, we propose that the developer ghoul
associate it with the propeéZlass. Properties that be able to freely and creatively implement it.
refer to otherClasses should be also modelled as
Attributes.

= |[dentify many-to-many relationships between 3 DATABASE MODEL
Classes, e.g. Property — Transaction Type and
create a nevssociation for each one.

= Model properties that are carried by the
Associations, e.g. sale cost. Create a new Attribute
for each property and associate it with the proper
Association.

= |dentify the operations that are implemented by
each class, e.g. insert operation that createsva ne

In Figure 1, we present the database model upon

which the development and deployment platform is

built. The model is abstractly divided into twafsa

» The first part (Region A) holds the functional
specifications of the modelled application. It
includes the following entities: Classes, Attritgjte

Methods, Arguments, Associations and Imported = The second part (Region B) holds the application

Classes.
operation of multiples applications within a single
installation.

classes

The Applications table enables the data

that are generated during application
execution and includes the following entities:
Objects, AssocitionInstances and AttributeValues.

methods
methodID: INTEGER(11)

§ applicationID: INTEGER(11) < § classID: INTEGER(11) < name: VARCHAR(75)
% name: VARCHAR(75) Q < returnType: VARCHAR(7S)
% body: TEXT @ body: TEXT
TR = & package: VARCHAR(150) % classID: INTEGER(11) (FK)
@ classID: INTEGER(11) (FK) <% applicationID: INTEGER(11) (FK) 0
importedClassID: INTEGER(11)
g attributes 0 - arguments s
- ¥ argumentID: INTEGER(11)
associations] ? attrbutelD: INTEGER(11) % name: VARCHAR(75)
¥ associtionID: INTEGER(11) @ name: VARCHAR(75) @ type: VARCHAR(75)
@ detaiCizssID: INTEGER(11) (FK) P @ 2 :k‘f;e: VARCHAR(7S) & _order: SMALLINT(3)
& masterCiassiD: INTEGER(11) (FK) ame: VARCHAR(75) % methodID: INTEGER(11) (FK)
& classID: INTEGER(11) (FK)
4 associationID: INTEGER(11) (FK)
<
Region B & O = attributevalues =

associationinstances - # objectID: INTEGER(11}
¥ associationInstancelD: INTEGER(11)
4@ detailObjectID: INTEGER(11) (FK)

% masterObjectID: INTEGER(11) (FK)

% associationID: INTEGER(11) (FK)

AN
v

1A%

& classID: INTEGER(11) (FK)

attributeValuelD: INTEGER(11)

@ intValue: INTEGER(11)

% doubleValue: DOUBLE

@ stringValue: TEXT

& dateValue: DATE

@ timevalue: TIME

& timestampValue: TIMESTAMP

@ associationInstancelD: INTEGER(11) (FK)
& objectiD: INTEGER(11) (FK)

@ attributeID: INTEGER(11) (FK)

Figure 1: The Database Model.

4 ARCHITECTURAL
PROTOTYPE

In order to verify the feasibility of the framework
we have implemented a method that posts a new
property ad. The method is implemented by the
Property class and has the following signature:

public int insert(Integer realtoriD, ...,
Hashtable transactionTypes);

In the following sub-sections we present
segments of code derived from the two versions of
the real estate portal. For space saving and
simplicity reasons, we omit error handling and
code details that are not important for the reader.

4.1 Invoking a method from the User
Interface

In the first version of the real estate portal the
insert method is invoked as follows:

Property p = new Property();

/I tt is a hash table with supported
/I transaction types (sale, rent)
p.insert(new Integer(2), ..., tt);

In this second version, method invocation includes:

= Specifying the method that is to be executed
by providing its name, the name of the class
it implements it and the package of the class.

= Creating ararray of objects that includes the
arguments that will be used.

= |nvoking the execute method of the _Method
class (generic class)

String cls = "Property";

String pckg = "application.entities";
String mthd = = "insert";

Object[] args = {new Integer(2), ..., tt};
_Method.execute(cls, pckg, mthd, args);

4.2 Executing the Method

The signature of the execute method that controls
the execution of a method is the following:

public static void execute (String
className, String packageName, String
methodName, Object[] arguments)

Using the first two arguments the class is
identified and retrieved from the database. As a
second step, the classes that are imported by the
class are fetched (Region A of the database model,
table ImportedClasses). Then, the method and its
arguments (name and type for each one) are
retrieved. The next step is to compile all involved
classes. Finally, the method is invoked:

/I load the class that implements the

/I method that should be invoked

File classesMap = new File("c:/classes");

URL[] urls = new URL]]

{classesMap.toURI().toURL()};

URLClassLoader ucl;

ucl = new URLClassLoader(urls);

Class _class;

_class = ucl.loadClass(pckg + "."+ cls);

/I create an array of Class objects that

/I identify the method's formal parameter

I types (based on the types retrieved

/I from the db)

Class[] paramTypes;

paramTypes = new Class[argms.size()];

for (inti=0;i<argms.size(); i++) {

arg = (_Argument)argms.elementAt(i);

paramTypes][i] = Class.forName

(arg.getType());

} 11 end of for statement

Il invoke the method

_class.getDeclaredMethod(mthd, paramTypes)
.invoke (_class.newlnstance(), argms);

4.3 Insidethe Method

The code of the method that inserts a new
property ad is mainly the same for both versions of
the real estate portal. Differences are found & th
interaction with the database. In the second
version, for each Class two private methods are
automatically generated. Those methods cover the
materialization and the dematerialization of the
objects using the database structures that betong t
Region B of the Database Model.

5 CONCLUSIONS & FURTHER
RESEARCH

Our approach enables the dynamic configuration of
every aspect of the application in the business-
logic tier, in contrast to other efforts (e.g. Bint

Jimenez, & Fuentes, 2005) that are restricted to
common services (e.g. authentication, message
filtering). Additionally, having a single database

meta-model that supports the operation of all
applications and their versions, we are able to

dynamically handle any change in the database

tier. Similar efforts (e.g. Dmitriev, 2001) enable

only simple changes such as field renaming.
Future research efforts will focus on:

» Implementing a policy that deals with active
classes (i.e. classes that are used by active
threads) that need to be dynamically recompiled
in order to reflect changes.

» Implementing a forms-based wizard that will
support the first steps of the application scenario
presented in Section 2.

= Extending Region A of the Database Model in
order to hold functional specifications that can be
forward-engineered to code and develop a code
generation tool.

= Applying data versioning techniques in the
Database Model in order to be able to
dynamically (i.e. on runtime) recall past data and
previous versions of the applications.

REFERENCES

Biesack, D., 2007Create dynamic applications with
javax.tools http://www.ibm.com/developerworks/
java/library/j-jcomp/index.html

Dmitriev, M., 2001. Towards Flexible and Safe
Technology for Runtime Evolution of Java
Language Applications. In Workshop on

Engineering Complex ObjectOriented Systems for
Evolution, October 2001.

Kleppe, A., Warmer, S., Bast, W., 2003VDA
Explained. The Model Driven Architecture: Practice
and Promisgech. 1. Addison-Wesley, Reading.

Miller, J., Mukerji, J., 2001Model Driven Architecture
— A Technical Perspectiyhttp://www.omg.org/ cgi-
bin/doc?ormsc/2001-07-01

Pinto, M., Jimenez, D., Fuentes, L., 20@5Dynamic
Component and Aspect Oriented Platforifihe
Computer Journal.

Pinto, M., Jimenez, D., Fuentes, L., 2005. Develgpi
Dynamic and Adaptable Applications with CAM /
DAOP: A Virtual Office Application, In GPCE
2005. Springer-Verlag, LNCS 3676, pp. 438—441,
2005.

Sun Microsystems, 2008.The Reflection ARI
http://java.sun.com/docs/books/tutorial/reflectérd
html

Voulalas, G., Evangelidis, G., 2007. A framework fo
the development and deployment of evolving
applications: The Domain Model, ICSOFT 2007

Voulalas, G., Evangelidis, G., 2008. Introducing a
Change-Resistant Framework for the Development
and Deployment of Evolving Applications, ICSOFT
2006, CCIS 10, pp. 293-306, 2008

