
DEVELOPING AND DEPLOYING DYNAMIC APPLICATIONS
An Architectural Prototype

Georgios Voulalas, Georgios Evangelidis
Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki, Greece

voulalas@uom.gr, gevan@uom.gr

Keywords: Model-driven Development, Dynamic Applications, Reflection, Runtime Compilation, Java Platform

Abstract: In our previous research we have presented a framework for the development and deployment of web-based
applications. This paper elaborates on the core components (functional and data) that implement the generic,
reusable functionality. Code segments of the components are presented, along with a short sample
application. In addition, we introduce some changes that are mainly driven by usability and performance
improvements, and are in adherence with the principal rules of the framework’s operation. Those changes
enable us to extend the applicability of the framework to other families of applications, apart from web-
based business applications.

1 INTRODUCTION

In (Voulalas & Evangelidis, 2007 and Voulalas &
Evangelidis, 2008) we introduced an extension of
the Model Driven Architecture (Kleppe, Warmer &
Bast, 2003) that additionally to coping with the
problems of productivity, documentation,
maintenance, portability and interoperability, aims to
manage efficiently the continuously evolving
requirements (Miller & Mukerji, 2001) of web-
based business applications and to ensure
consistency between the produced code and the
preceding design models.

The framework is structured on the basis of a
universal database schema (meta-model).
Development is supported by modelling tools that
elicit functional specifications from users and
transform them into formal definitions, and by data
structures that are utilized for the storage of the
definitions. Deployment is supported by generic
components that are dynamically configured at
run-time according to the functional specifications
provided during development, and by application-
independent data structures (part of the meta-model)
that hold all application-specific data. No code
(SQL, Java, C++, JSP, etc.) is generated. We can
deal with business logic changes at deployment
time without recompiling and redeploying the
application, since changes are translated in
modifications to the underlying data instances.

Consistency between the final application and the
modelled specifications is ensured.

The framework supports the operation of
different applications and application versions
within a single installation. Thus, we can anytime
refer to a previous version of an application and
examine old data in its real context by retrieving the
corresponding data instances, without the need of
maintaining multiple installations.

During our research, performance and usability
issues motivated us to differentiate the way some of
the goals are achieved. In particular, instead of
utilizing exclusively generic components for the
provision of the functional behaviour of an
application, we decided to use a mix of generic
modules and application-specific modules.
Application-specific modules will be retrieved from
the database and compiled at run-time (Biesack,
2007) in order for the application to be dynamically
created. This change improves the performance of
the generated application since the extensive
utilization of reflection requires increased
computational resources (Sun Microsystems, 2008).
Additionally, the developer has more means to
implement sophisticated mechanisms that could not
be incorporated into a pre-built generic component.
Last but not least, this shift enables us to easily
extend the applicability of the framework to other
families of applications, apart from web-based
business applications.

This paper aims to present an application
scenario (Section 2) that will indicate the way the
developer interacts with the development
environment, and verify the feasibility of the
proposed solution though an architectural prototype
(Sections 3 and 4). The last section concludes the
paper and identifies our future steps.

2 APPLICATION SCENARIO

Suppose that we have to develop a real estate portal,
through which agents will be able to post property
ads and potential buyers / renters to search for
properties. Three types of properties ads are
identified: residencies, business properties, and
development land. A property can be available for
sale or rent, or for both sale and rent.

In order to verify the feasibility of our proposal,
we have developed two versions of the portal. In
both versions, Java Platform™ Standard Edition 6 is
the underlying platform. The first version was
developed as a typical application with its own
database schema (residing in MySQL) and
functional components that were developed from
scratch through an Integrated Development
Environment (IntelliJ IDEA). For the development
of the second version, we followed the steps that are
described below. No database schema was created,
since that version utilizes the generic database
schema that is presented in Section 3 (and which
also resides in our MySQL Server). Application-
specific code was written through IntelliJ IDEA.
� Identify the business entities that participate in the

domain model, e.g. Property, Residency, Business
Property, Development Land and Realtor. Create a
new Class for each one. Look-up structures should
be also modelled as Classes (e.g. Transaction
Type: sale or rent).

� Identify the properties of each business entity, e.g.
size of Property, construction year of Residency.
Create a new Attribute for each property and
associate it with the proper Class. Properties that
refer to other Classes should be also modelled as
Attributes.

� Identify many-to-many relationships between
Classes, e.g. Property – Transaction Type and
create a new Association for each one.

� Model properties that are carried by the
Associations, e.g. sale cost. Create a new Attribute
for each property and associate it with the proper
Association.

� Identify the operations that are implemented by
each class, e.g. insert operation that creates a new

property. For each method create a Method and
link it to the proper Class.

� Identify the parameters that should be passed in
order for an operation to be invoked, e.g. size,
construction year. For each parameter create an
Argument and link to the proper Method.

In the final prototype those steps could be
supported by a forms-based wizard.

The system stores the information provided by
the user in the predefined database structures (see
Figure 1, Region A). Note that no new structures are
created and no existing structures are modified.
Interaction with the database is limited to data
insertion. Then, the system generates code skeletons
for each Class. In Java SE the code skeletons
include attributes, setters and getters for each
attribute, default constructor, signatures for the
methods and static declarations that link the Class to
the database records created in the previous step.

Now, it is the user’s turn to implement the
methods. The coding process is strictly restricted to
implementing the methods that have been already
defined, or defining new private methods that are
visible only within the scope of the specific class.
The code that is written is stored in the database (see
Figure 1, Region A, column body of the Methods
table). In the final prototype, the user instead of
writing code, he will provide functional
specifications in an upper level (e.g. with the use of
a designer) that will be transformed to code. Both
functional specifications and generated code will be
stored in the database, along with the definition of
Classes, Attributes, Methods, etc. Consistency
between the functional specifications and the
generated code will be ensured by preventing the
user from writing directly to the database.

Until now, we have covered the implementation
of the Application tier. The Database tier is generic
for all applications. The user does not write SQL
code. Instead, he uses generic methods that
materialize and dematerialize the objects. For the
User Interface, we propose that the developer should
be able to freely and creatively implement it.

3 DATABASE MODEL

In Figure 1, we present the database model upon
which the development and deployment platform is
built. The model is abstractly divided into two parts:
� The first part (Region A) holds the functional

specifications of the modelled application. It
includes the following entities: Classes, Attributes,

Methods, Arguments, Associations and Imported
Classes. The Applications table enables the
operation of multiples applications within a single
installation.

� The second part (Region B) holds the application
data that are generated during application
execution and includes the following entities:
Objects, AssocitionInstances and AttributeValues.

4 ARCHITECTURAL
PROTOTYPE

In order to verify the feasibility of the framework
we have implemented a method that posts a new
property ad. The method is implemented by the
Property class and has the following signature:

public int insert(Integer realtorID, …,
Hashtable transactionTypes);

In the following sub-sections we present
segments of code derived from the two versions of
the real estate portal. For space saving and
simplicity reasons, we omit error handling and
code details that are not important for the reader.

4.1 Invoking a method from the User
Interface

In the first version of the real estate portal the
insert method is invoked as follows:

Property p = new Property();
// tt is a hash table with supported
// transaction types (sale, rent)
p.insert(new Integer(2), …, tt);

In this second version, method invocation includes:
� Specifying the method that is to be executed

by providing its name, the name of the class
it implements it and the package of the class.

� Creating an array of objects that includes the
arguments that will be used.

� Invoking the execute method of the _Method
class (generic class).

String cls = "Property";
String pckg = "application.entities";
String mthd = = "insert";
Object[] args = {new Integer(2), …, tt};
_Method.execute(cls, pckg, mthd, args);

4.2 Executing the Method

The signature of the execute method that controls
the execution of a method is the following:

public static void execute (String
className, String packageName, String
methodName, Object[] arguments)

Figure 1: The Database Model.

Using the first two arguments the class is

identified and retrieved from the database. As a
second step, the classes that are imported by the
class are fetched (Region A of the database model,
table ImportedClasses). Then, the method and its
arguments (name and type for each one) are
retrieved. The next step is to compile all involved
classes. Finally, the method is invoked:

// load the class that implements the
// method that should be invoked
File classesMap = new File("c:/classes");
URL[] urls = new URL[]
 {classesMap.toURI().toURL()};
URLClassLoader ucl;
ucl = new URLClassLoader(urls);
Class _class;
_class = ucl.loadClass(pckg + "."+ cls);
// create an array of Class objects that
// identify the method's formal parameter
// types (based on the types retrieved
// from the db)
Class[] paramTypes;
paramTypes = new Class[argms.size()];
for (int i = 0; i < argms.size(); i++) {
 arg = (_Argument)argms.elementAt(i);
 paramTypes[i] = Class.forName
 (arg.getType());
} // end of for statement
// invoke the method
_class.getDeclaredMethod(mthd, paramTypes)
 .invoke (_class.newInstance(), argms);

4.3 Inside the Method

The code of the method that inserts a new
property ad is mainly the same for both versions of
the real estate portal. Differences are found in the
interaction with the database. In the second
version, for each Class two private methods are
automatically generated. Those methods cover the
materialization and the dematerialization of the
objects using the database structures that belong to
Region B of the Database Model.

5 CONCLUSIONS & FURTHER
RESEARCH

Our approach enables the dynamic configuration of
every aspect of the application in the business-
logic tier, in contrast to other efforts (e.g. Pinto,
Jimenez, & Fuentes, 2005) that are restricted to
common services (e.g. authentication, message
filtering). Additionally, having a single database
meta-model that supports the operation of all
applications and their versions, we are able to

dynamically handle any change in the database
tier. Similar efforts (e.g. Dmitriev, 2001) enable
only simple changes such as field renaming.

Future research efforts will focus on:
� Implementing a policy that deals with active

classes (i.e. classes that are used by active
threads) that need to be dynamically recompiled
in order to reflect changes.

� Implementing a forms-based wizard that will
support the first steps of the application scenario
presented in Section 2.

� Extending Region A of the Database Model in
order to hold functional specifications that can be
forward-engineered to code and develop a code
generation tool.

� Applying data versioning techniques in the
Database Model in order to be able to
dynamically (i.e. on runtime) recall past data and
previous versions of the applications.

REFERENCES

Biesack, D., 2007. Create dynamic applications with
javax.tools, http://www.ibm.com/developerworks/
java/library/j-jcomp/index.html

Dmitriev, M., 2001. Towards Flexible and Safe
Technology for Runtime Evolution of Java
Language Applications. In Workshop on
Engineering Complex ObjectOriented Systems for
Evolution, October 2001.

Kleppe, A., Warmer, S., Bast, W., 2003. MDA
Explained. The Model Driven Architecture: Practice
and Promise, ch. 1. Addison-Wesley, Reading.

Miller, J., Mukerji, J., 2001. Model Driven Architecture
– A Technical Perspective, http://www.omg.org/ cgi-
bin/doc?ormsc/2001-07-01

Pinto, M., Jimenez, D., Fuentes, L., 2005. A Dynamic
Component and Aspect Oriented Platform, The
Computer Journal.

Pinto, M., Jimenez, D., Fuentes, L., 2005. Developing
Dynamic and Adaptable Applications with CAM /
DAOP: A Virtual Office Application, In GPCE
2005. Springer-Verlag, LNCS 3676, pp. 438–441,
2005.

Sun Microsystems, 2008. The Reflection API,
http://java.sun.com/docs/books/tutorial/reflect/index.
html

Voulalas, G., Evangelidis, G., 2007. A framework for
the development and deployment of evolving
applications: The Domain Model, ICSOFT 2007

Voulalas, G., Evangelidis, G., 2008. Introducing a
Change-Resistant Framework for the Development
and Deployment of Evolving Applications, ICSOFT
2006, CCIS 10, pp. 293–306, 2008

