
Applying prototype selection and abstraction
algorithms for efficient time-series classification

Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou, Georgios
Evangelidis, and Dimitris A. Dervos

Abstract A widely used time series classification method is the single nearest neigh-
bour. It has been adopted in many time series classification systems because of its
simplicity and effectiveness. However, the efficiency of the classification process
depends on the size of the training set as well as on data dimensionality. Although
many speed-up methods for fast time series classification have been proposed and
are available in the literature, state-of-the-art, non-parametric prototype selection
and abstraction data reduction techniques have not been exploited on time series
data. In this work, we present an experimental study where known prototype selec-
tion and abstraction algorithms are evaluated both on original data and a dimension-
ally reduced representation form of the same data from seven popular time series
datasets. The experimental results demonstrate that prototype selection and abstrac-
tion algorithms, even when applied on dimensionally reduced data, can effectively
reduce the computational cost of the classification process and the storage require-
ments for the training data, and, in some cases, improve classification accuracy.

1 Introduction

Classification methods based on similarity search have been proven to be effective
for time series data analysis. More specifically, the one-Nearest Neighbour (1-NN)
classifier is a widely-used method. It works by assigning to an unclassified time
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series the class label of its most similar training time series. The main drawback
of similarity-based classifiers is that all similarities between an unclassified time
series item and the training time series items must be computed. For large and high
dimensional time series training sets, the high computational cost involved renders
the application of such classifiers prohibitive. Time series classification performance
can be improved through indexing, representation and/or data reduction.

Indexing accelerates classification, but works well only in low dimensionality
spaces. Thus, one must first use a dimensionality reduction technique to acquire a
representation of the original data in lower dimensions. A representation may be
considered as a transformation technique that maps a time series from the original
space to a feature space, retaining the most important features. There have been
several time series representations proposed in the literature, mainly for the purpose
of reducing the intrinsically high dimensionality of time series [12].

The main goal of data reduction is to reduce the computational cost of the k-NN
classifier and the storage requirements of the training set. Data Reduction Tech-
niques (DRTs)1 [31, 14, 20, 30, 33, 18, 16, 7, 21] build a small representative set of
the initial training data. This set is called the condensing set and has the benefits of
low computational cost and storage requirements while keeping the accuracy at high
levels. DRT algorithms may be grouped into two categories: (i) Prototype Selection
(PS) [14], and, (ii) Prototype Abstraction (PA) (or generation) [31]. Both categories
share the same motivation. However, they differ on the way the condensing set is
constructed. PS algorithms select some training items and use them as representa-
tives, whereas, PA algorithms generate new item representatives by summarizing on
similar training items.

Data reduction has recently been exploited for fast time series classification.
More specifically, [8] and [34] propose PS algorithms for speeding-up 1-NN time
series classification. The disadvantage of these methods is that they are parametric.
The user must define the size of the condensing set by trial-and-error.

The present work has been motivated by the following two observations: (a)
to the best of our knowledge, state-of-the-art non-parametric PS and PA algo-
rithms have not been evaluated neither on original time series nor on their re-
duced dimensionality representations, and, (b) PA algorithms that we have pro-
posed (RHC [24, 23], AIB2 [25, 22]) have not been evaluated on time series data.
The contribution of this paper is the experimental evaluation of two PS algorithms,
namely, CNN-rule [17] and IB2 [3, 2], and three PA algorithms, namely, RSP3 [28],
RHC [24] and AIB2 [25, 22]. The algorithms are evaluated both against original
time series datasets and their reduced dimensionality representations.

Our study adopts the Piecewise Aggregate Approximation (PAA) [19, 35] time
series representation method. The goal is to investigate the degree to which clas-
sification accuracy gets affected when applying data reduction on dimensionally
reduced time series. PAA is an effective and very simple dimensionality reduction
technique that segments a time series into h consecutive sections of equal-width and

1 One can claim that dimensionality reduction is also data reduction. However, we consider DRTs
only from the item reduction point of view.
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calculates the corresponding mean for each section. The series of these means is the
new representation of the original data.

The rest of the paper is organized as follows. Section 2 discusses the details of
the five aforementioned DRTs. Section 3 presents the experimental setup and the
results obtained, and Section 4 concludes the paper.

2 Data Reduction Techniques

In this section, we present the five DRTs used in our experimentation. They are
based on a simple idea: data items that do not represent decision boundaries between
classes are useless for the classification process. Therefore, they can be discarded.
The idea is that the k-NN classifier achieves similar accuracy using either the train-
ing set or the condensing set. However, condensing set scanning is more efficient
than training set scanning. Consequently, DRTs try to select or generate a sufficient
number of items that lie in data areas close to decision boundaries. The DRTs we
deal with in this section are non-parametric. They automatically determine the size
of the condensing set based on the level of noise and the number of classes in the
data (the more the classes, the more boundaries exist and, thus, the more items get
selected or generated). Therefore, expensive trial-end-error procedures for parame-
ter tuning are avoided.

2.1 Prototype Selection algorithms

2.1.1 Hart’s Condensing Nearest Neighbour rule (CNN-rule)

CNN-rule [17] is the earliest and the best known PS algorithm. It uses two sets,
CS and T S. Initially, a training item is placed in CS, while all the other training
items are placed in T S. Then, CNN-rule tries to classify the content of T S by using
the 1-Nearest Neighbour (1-NN) classifier on the content of CS. When an item is
misclassified, it is considered to lie in a data area close to decision boundaries.
Thus, it is transferred from T S to CS. The algorithm terminates when there are no
transfers from T S to CS during a complete pass of T S. The final instance of set CS
constitutes the condensing set.

Algorithm 1 presents the pseudo-code of CNN rule: it starts with a training set
T S and returns a condensing set CS. Initially, CS has only a training item (lines 1 and
2). Then, for each training item x∈ T S (line 5), the algorithm retrieves and examines
the class label of its nearest neighbour (line 6). If the class label of x differs from
that of its nearest neighbour (line 7), x is moved to CS (lines 8–9). The repeat-until
loop terminates when there are no more T S items to migrate to CS (lines 4,10,13).

The multiple passes on data ensure that the remaining (discarded) items in T S can
be correctly classified by applying the 1-NN classifier on the condensing set. The
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Algorithm 1 CNN-rule
Input: T S
Output: CS
1: CS←∅
2: pick an item of T S and move it to CS
3: repeat
4: stop← T RUE
5: for each x ∈ T S do
6: NN← Nearest Neighbour of x in CS
7: if NNclass 6= xclass then
8: CS←CS∪{x}
9: T S← T S−{x}

10: stop← FALSE
11: end if
12: end for
13: until stop == T RUE
14: discard T S
15: return CS

algorithm is based on the following simple idea: items that are correctly classified by
1-NN, are considered to lie in a central-class data area and thus, they are ignored.On
the other hand, items that are misclassified, are considered to lie in a close-class-
border data area, and thus, they are placed in the condensing set. The weak point of
the CNN-rule is that the resulting condensing set depends on the ordering by which
training set items are considered. This means that different condensing sets may be
constructed by considering the same training set data in a different order.

There are many other condensing algorithms that either extend the CNN-rule,
or they are based on the same idea. Some of the these algorithms are the Re-
duced Nearest Neighbour (RNN) rule [15], the Selective Nearest Neighbour (SNN)
rule [27], the Modified CNN rule [11], the Generalized CNN rule [10], the Fast
CNN algorithms [4, 5], Tomek’s CNN rule [29], the Patterns with Ordered Projec-
tion (POP) algorithm [26, 1], the recently proposed Template Reduction for k-NN
(TRkNN) [13] and the IB2 algorithm [3, 2].

2.1.2 IB2

IB2 belongs to the well-known family of Instance-Based Learning (IBL) algo-
rithms [3, 2] and is based on the CNN-rule. In effect, IB2 constitutes a simple one
pass variation of the CNN-rule. Algorithm 2 presents IB2 in pseudo-code. Each
training item x ∈ T S is classified using 1-NN classifier on the current CS (line 4).
If x is classified correctly, it is discarded (line 8). Otherwise, x is transferred to CS
(line 6).

Contrary to the CNN-rule, IB2 does not ensure that all discarded items can be
correctly classified by the final version of the condensing set. However, since it is a
one-pass algorithm, it is very fast, i.e., it involves low preprocessing computational
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Algorithm 2 IB2
Input: T S
Output: CS
1: CS←∅
2: an item is chosen at random to migrate from T S to CS
3: for each x ∈ T S do
4: NN← Nearest Neighbour of x in CS
5: if NNclass 6= xclass then
6: CS←CS∪{x}
7: end if
8: T S← T S− x
9: end for

10: return CS

cost. In addition, IB2 builds its condensing set incrementally. New training items
can be taken into consideration after the creation of the condensing set. Therefore,
IB2 is appropriate for dynamic/streaming environments whereby new training items
arrive in an one-by-one fashion. Certainly, IB2 can not deal with data streams with
concept drift [32]. IBL-DS [6] adopts the idea of the family of IBL algorithms and
can deal with such data. It is worth mentioning that, contrary to the CNN-rule and to
many other DRTs, IB2 does not require that all training data reside in main memory.
Therefore, it can be applied in devices whose memory is insufficient for storing all
the training data. Of course, like the CNN-rule, IB2 is a data ordering dependent
algorithm.

2.2 Prototype Abstraction algorithms

2.2.1 Abstraction IB2 (AIB2)

The AIB2 algorithm constitutes a PA variation of IB2. Therefore, it inherits all the
aforementioned properties of IB2. The idea behind AIB2 is quite simple: prototypes
should be at the center of the data area they represent. Therefore, the correctly clas-
sified items are not ignored. In effect, they contribute to the final condensing set by
repositioning their nearest prototype. This is achieved by adopting the concept of
prototype weight. Each prototype is characterized by a weight value. It denotes the
number of items it represents.

Algorithm 3 presents the pseudo code of the algorithm. Initially, the condensing
set (CS) has only one item whose weight is initialized to one (lines 1–3). For each
training item x, AIB2 retrieves from the current CS its nearest prototype nn (line 5).
If x is misclassified, it is placed in CS and its weight is initialized to one (lines 6–8).
Otherwise, the attributes of nn are updated by taking into account its current weight
and the attributes of x. In effect, nn “moves” towards x (lines 10–12). Finally, the
weight of NN is increased by one (line 13) and x is removed (line 15).
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Algorithm 3 AIB2
Input: T S
Output: CS
1: CS←∅
2: move a random item y from T S to CS
3: yweight ← 1
4: for each x ∈ T S do
5: nn← Nearest Neighbour of x in CS
6: if nnclass 6= xclass then
7: xweight ← 1
8: CS←CS∪{x}
9: else

10: for each attribute attr(i) do
11: nnattr(i)←

nnattr(i)×nnweight+xattr(i)
nnweight+1

12: end for
13: nnweight ← nnweight +1
14: end if
15: T S← T S−{x}
16: end for
17: return CS

AIB2 aims at improving the efficiency of IB2 by building a condensing set with
better prototypes than IB2. Each prototype lies close to the center of the data area it
represents. Therefore AIB2 is able to achieve higher classification accuracy. More-
over, the repositioned prototypes reduce the items placed in the final condensing set.
Hence, AIB2 can achieve higher reduction rates and even lower preprocessing cost
than IB2.

2.2.2 RSP3

The RSP3 algorithm belongs to the popular family of Reduction by Space Partition-
ing (RSP) algorithms [28]. This family includes three PA algorithms. All of them
are based on the idea of the early PA algorithm of Chen and Jozwik [9]. Chen and
Jozwik’s Algorithm (CJA) works as follows: First, the most distant items A and B of
the training set that define its diameter are retrieved. Then, the training set is divided
into two subsets, SA and SB. SA includes training items that lie closer to A, whereas,
SB includes training items that lie closer to B. Then, CJA proceeds by selecting
to divide subsets that include items of more than one classes (non-homogeneous
subsets). The subset with the largest diameter is divided first. If all subsets are ho-
mogeneous, CJA divides the largest homogeneous subset. This procedure continues
until the number of subsets becomes equal to a user specified value. In the end,
for each subset S, CJA averages the items in S and creates a mean item that is as-
signed the label of the majority class in S. The created mean items constitute the
final condensing set.
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Certainly, the mean item m of each subset S, is computed by averaging the t
attribute values of items xi, i = 1,2 . . . |S| that belong to S. Therefore, the t average
attributes m.d j of m are estimated as follows:

m.d j =
1
|S| ∑

xi∈S
xi.d j, j = 1,2, . . . ,n

Algorithm 4 lists in pseudo-code a possible implementation of RSP3. It accepts
a training set (T S) and the number of prototypes n that will be generated. The al-
gorithm uses a data structure to store the created subsets. Initially, the entire T S is
stored in S (line 2). Then, the non-homogeneous subset C with the largest diameter
is divided into two subsets (lines 4,8). If all subsets are homogeneous, CJA divides
the homogeneous subset C with the largerst diameter (lines 5–7). Both subsets are
added to S, while C is removed (lines 9–11). The procedure for constructing subsets
continues until n subsets have been created (line 3). The last step is the mean compu-
tation (or prototype generation) for each subset and its inclusion in the condensing
set (CS) (lines 13–18).

Algorithm 4 CJA
Input: T S, n
Output: CS
1: S←∅
2: add(S, T S)
3: for i = 2 to n do
4: C← select the non-homogeneous subset ∈ S with the largest diameter
5: if C ==∅ {All subsets are homogeneous} then
6: C← select the homogeneous subset ∈ S with the largest diameter
7: end if
8: (Sx,Sy)← divide C into two subsets
9: add(S, Sx)

10: add(S, Sy)
11: remove(S, C)
12: end for
13: CS←∅
14: for each subset T ∈ S do
15: r← compute the mean item by averaging the items in T
16: r.label← find the most common class label in T
17: CS←CS∪{r}
18: end for
19: return CS

CJA selects the next subset that will be divided by examining its diameter. The
idea is that a subset with a large diameter probably includes more training items.
Therefore, if this subset is divided first, a higher reduction rate will be achieved. A
desirable property is that CJA builds the same condensing subset regardless of the
ordering of the data in the training set. However, it has two weak points. The first is
that the algorithm is parametric. The user has to specify the number of prototypes.
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This usually involves tuning via a costly trial-end-error procedure. In certain do-
mains, this property may be desirable, since it allows one to control the size of the
condensing subset. However, it prohibits the automatic determination of the size of
the condensing subset in accordance with the nature of the available data. This con-
stitutes a drawback for the algorithm, in general. The second weakness is that the
items that do not belong to the most common class of the subset are not represented
in the condensing set. Since the mean item of each subset is labeled by the most
common class, items that belong to other classes are practically ignored.

RSP1 deals with the second drawback. More specifically, RSP1 computes as
many mean items as the number of different classes in each subset. Therefore, it
averages the items that belong to each class in the subset. Of course, RSP1 builds
larger CSs than CJA. However, it attempts to improve accuracy since it takes into
account all training items.

RSP1 and RSP2 differ on how they select the next subset to be divided. Similar to
CJA, RSP1 uses the subset diameter as the splitting criterion. In contrast, RSP2 uses
as its splitting criterion the highest overlapping degree. This criterion assumes that
items that belong to a specific class lie as close to each other as possible while items
that belong to different classes lie as far as possible. According to [28], it is better
to divide the subset with the highest overlapping degree. The overlapping degree
of a subset is the ratio of the average distance between items belonging to different
classes and the average distance between items that belong to the same class.

RSP3 adopts the concept of homogeneity. A subset is homogeneous when it in-
cludes items of only a specific class. The algorithm continues dividing the created
subsets until all of them become homogeneous. RSP3 can use either the largest
diameter or the highest overlapping degree as spiting criterion. Actually, since all
non-homogeneous subsets are divided, the choice of splitting criterion becomes an
issue of secondary importance.

Algorithm 5 lists the pseudo-code of RSP3. It utilizes a data structure S to hold
the unprocessed subsets. Initially, the whole training set (T S) is an unprocessed
subset and is put in S (line 2). At each repeat-until iteration, RSP3 selects the subset
C with the highest splitting criterion value (line 5) and checks if C is homogeneous
or not. If it is homogeneous, the mean item is computed by averaging the items in
C and is placed in the condensing set (CS) as a prototype (lines 6–9). Otherwise,
C is divided into two subsets D1 and D2 (line 11) in the CJA fashion. These new
subsets are added to S and C is removed from S (lines 12–15). The repeat-until loop
continues until S becomes empty (line 22), i.e., all subsets are homogeneous.

Certainly, RSP3 generates more prototypes for the “close border” data areas and
fewer for the “central” data areas. RSP3 is the only non-parametric algorithm of
the RSP family (CJA included). It is worth mentioning that like CJA, RSP1 and
RSP2, the condensing set built by RSP3 does not depend on the data order in the
training set. The procedure for finding the most distant items in each subset is quite
expensive. Thus, the main drawback of RSP3 is that it usually involves high prepro-
cessing computation cost. In cases of large datasets, this drawback may evan render
its execution prohibitive.



Data reduction for efficient time-series classification 9

Algorithm 5 RSP3
Input: T S
Output: CS
1: S←∅
2: add(S, T S)
3: CS←∅
4: repeat
5: C← select the subset ∈ S with the highest splitting criterion value
6: if C is homogeneous then
7: r← calculate the mean item by averaging the items in C
8: r.label← class of items in C
9: CS←CS∪{r}

10: else
11: (D1,D2)← divide C into two subsets
12: add(S, D1)
13: add(S, D2)
14: remove(S, C)
15: end if
16: until IsEmpty(S)
17: return CS

2.2.3 Reduction through Homogeneous Clusters (RHC)

RHC [24, 23] is also based on the concept of homogeneity. Initially, the whole train-
ing set is considered as a non-homogeneous cluster C. RHC begins by computing a
mean item for each class (class-mean) in C. Then, it applies k-means clustering on
C using the class means as initial means. The clustering procedure builds as many
clusters as the number of classes in C. The aforementioned clustering procedure is
applied recursively on each non-homogeneous cluster. In the end, the means of the
homogeneous clusters are stored in the condensing set as prototypes.

Algorithm 6 lists the pseudo-code of RHC. It utilizes a queue data structure, Q,
to store clusters. Initially, the training data (T S) is considered as an unprocessed
cluster. Therefore, it is placed in Q (line 3). At each one iteration, the algorithm
examines the head C of Q (line 7). Then it checks whether C is a homogeneous
cluster or not. If it is homogeneous (line 8), the mean of C is placed in the con-
densing set (CS) (line 9) and its items are removed. If C is non-homogeneous, the
algorithm computes the class means (M): one class mean for each of the classes in
C (lines 13–16). Then, RHC calls k-means clustering, with parameters C and M.
k-means produces a new set of clusters (clusters) (line 17) that are enqueued into Q
(lines 18–20). The algorithm stops iterating when Q becomes empty (line 22), i.e.,
all clusters are homogeneous.

Like RSP3, RHC builds many prototypes for close-class-border data areas and
fewer for the non-close-class-border data areas. By using the class means as initial
means for the k-means clustering, the algorithm attempts to quickly find homoge-
neous clusters and achieve high reduction rates (the larger the clusters built, the
higher the reduction rates achieved). Moreover, since RHC is based on k-means
clustering, it is very fast and can easily be integrated into much of the existing soft-
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Algorithm 6 RHC
Input: T S
Output: CS
1: Q←∅
2: Enqueue(Q, T S)
3: CS←∅
4: repeat
5: C← Dequeue(Q)
6: if C is homogeneous then
7: r← mean of C
8: CS←CS∪{r}
9: else

10: M←∅
11: for each class L in C do
12: mL← mean of L
13: M←M∪{mL}
14: end for
15: clusters← K-MEANS(C, M)
16: for each cluster C ∈ clusters do
17: Enqueue(Q, C)
18: end for
19: end if
20: until IsEmpty(Queue)
21: return CS

ware. In addition, RHC is independent on the ordering of the data in the training set.
The results of the experimental study in [24, 23] indicate that RHC achieves higher
reduction rates (smaller CSs) and is faster than RSP3 and CNN-rule, while accuracy
remains high.

3 Experimental Study

3.1 Experimental setup

The five DRT algorithms presented were evaluated on seven known time series
datasets distributed by the UCR time-series classification/clustering website2. Ta-
ble 1 summarizes on the datasets used. All datasets are available in a training/testing
form. We merged the training and testing parts and then we randomized the resulting
datasets. No other data transformation was performed. All algorithms were coded
in C and as a similarity measure we used the Euclidean distance.

We report on the experiment we conducted with a certain value for the parameter
of the PAA representation. We applied the PAA representation on time series by
setting the number of dimensions equal to twelve (h=12). Most of the research work

2 http://www.cs.ucr.edu/∼eamonn/time series data/
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Table 1: Time-series datasets description

Time-series dataset Size (time-series) Length (Attr.) Classes
Synthetic Control (SC) 600 60 6

Face All (FA) 2250 131 14
Two-Patterns (TP) 5000 128 4

Yoga (YG) 3300 426 2
Wafer (WF) 7164 152 2

Sweadish Leaf (SL) 1125 128 15
CBF 930 128 3

provides experimental results with values of h ranging from 2 to 20. We found that
lower values of h have a negative effect on classification accuracy, whereas, higher
values produce time series that cannot be efficiently indexed by multi-dimensional
indexing methods. Hence, we decided to use h=12.

All experiments were run twice, once on the original time series and once on
their 12-dimensional representations. We wanted to test how the combination of
data reduction and dimensionality reduction affects the performance of 1-NN clas-
sification.

We evaluated the five DRTs by estimating four measurements, namely, accuracy
(ACC), classification cost (CC), reduction rate (RR), and, preprocessing cost (PC).
Cost measurements were estimated by counting the distance computations multi-
plied by the number of time series attributes (time series length). Of course, RR
and CC measurements relate to each other: the lower the RR, the higher is the CC.
However, CC measurements can express the cost introduced by the dimensional-
ity of data. We report on the average values of these measurements obtained via
five-cross-fold validation.

3.2 Comparisons

Tables 2 and 3 present the experimental measurements. Table 2 presents the results
obtained on the original datasets while table 3 presents the results obtained on the
12-dimensional representations of the datasets we got after applying PAA on them.
Both tables include the measurements obtained by applying the 1-NN classifier on
the non-reduced data (conventional 1-NN). Each table cell includes the four mea-
surements obtained by first applying a DRT on the original or 12-dimensional time
series datasets (preprocessing step) and then by using 1-NN on the resulting con-
densing set (classification step). The cost measurements are in million (M) distance
computations. The PC measurements do not include the small cost overhead intro-
duced by PAA execution.

It is noted that 1-NN classification on the 12-dimensional datasets is very fast. In
most cases, the preprocessing and classification cost are extremely low, while classi-
fication accuracy remains at high, acceptable levels. Therefore, a first conclusion is
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Table 2: Experimental results on original datasets

Dataset
Original dimensionality

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc (%): 91.67 90.17 89.00 98.33 98.67 99.83
CC (M): 3.46 0.67 0.53 1.38 0.09 0.34
RR (%): - 80.50 84.67 60.08 97.29 90.13
PC (M): - 7.77 1.31 16.22 2.39 1.14

FA

Acc (%): 95.07 91.60 91.02 95.46 93.02 92.94
CC (M): 106.11 19.87 18.38 51.65 12.93 16.08
RR (%): - 81.28 82.68 51.32 87.81 84.84
PC (M): - 216.36 48.96 533.70 140.41 43.27

TP

Acc (%): 98.50 94.68 93.60 98.10 93.72 97.06
CC (M): 512.00 85.66 76.83 243.51 55.50 61.88
RR (%): - 83.27 85.00 52.44 89.16 87.92
PC (M): - 1169.75 205.95 2085.42 150.49 177.88

YG

Acc (%): 93.76 91.58 89.55 92.85 90.94 90.49
CC (M): 742.26 138.56 108.92 229.82 93.85 100.26
RR (%): - 81.33 85.33 69.04 87.36 86.49
PC (M): - 1854.74 254.41 4072.30 162.61 240.73

WF

Acc (%): 99.87 99.69 99.62 99.82 99.55 99.65
CC (M): 1248.30 13.59 11.72 26.88 9.37 9.71
RR (%): - 98.91 99.06 97.85 99.25 99.22
PC (M): - 165.88 31.42 7196.75 63.69 25.78

SL

Acc (%): 52.36 49.87 48.18 52.00 52.80 51.56
CC (M): 25.92 15.94 14.80 19.00 12.80 14.65
RR (%): - 38.51 42.89 26.69 50.60 43.49
PC (M): - 112.17 31.39 1537.07 57.01 31.02

CBF

Acc (%): 98.39 98.17 97.63 99.78 98.60 99.68
CC (M): 17.71 1.29 1.15 1.97 0.40 0.59
RR (%): - 92.74 93.49 88.87 97.74 96.67
PC (M): - 15.06 3.50 78.48 7.26 2.01

Avg

Acc (%): 89.94 87.97 86.94 90.91 89.62 90.17
CC (M): 379.40 39.37 33.19 82.03 26.42 29.07
RR (%): - 79.51 81.87 63.76 87.03 84.11
PC (M): - 505.96 82.42 2217.13 83.37 74.55

that one can obtain efficient time series classifiers by combining prototype selection
or abstraction algorithms with time-series dimensionality reduction representations.

It is worth mentioning that the three PA algorithms, RSP3, RHC and AIB2,
achieved higher classification accuracy than the conventional 1-NN. In the case
of SC dataset, accuracy improvement was very high. Almost in all cases, RSP3
achieved the highest accuracy. However, it is the slowest method in terms of both
preprocessing and classification (RSP3 had the lowest reduction rates). The high
PC measurements are attributed to the costly procedure for finding the most distant
items in each created subset (see Subsection 2.2 or [28] for details).

RHC, AIB2 and IB2 had much lower preprocessing cost than the other two meth-
ods. This happened because IB2 and AIB2 are one-pass algorithms and RHC is
based on a version of k-means that is sped-up by the class mean initializations (see
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Table 3: Experimental results on datasets with 12 dimensions

Dataset
12 dimensions

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc (%): 98.50 97.00 95.83 98.83 98.17 98.50
CC (M): 0.69 0.06 0.05 0.12 0.03 0.03
RR (%): - 90.75 93.13 82.96 95.75 95.13
PC (M): - 0.89 0.13 3.45 0.52 0.10

FA

Acc (%): 87.91 83.78 82.31 87.07 84.49 84.36
CC (M): 9.72 2.89 2.53 4.80 2.08 2.22
RR (%): - 70.23 74.01 50.58 78.59 77.21
PC (M): - 30.36 5.95 50.91 13.16 5.30

TP

Acc (%): 97.56 93.52 91.38 96.66 94.34 94.48
CC (M): 48.00 8.22 6.86 20.42 6.69 5.39
RR (%): - 82.89 85.72 57.45 86.06 88.77
PC (M): - 103.86 17.34 196.00 17.63 14.56

YG

Acc (%): 92.36 90.39 88.03 91.03 90.03 89.67
CC (M): 20.91 4.41 3.50 6.71 3.13 3.12
RR (%): - 78.91 83.26 67.90 85.02 85.06
PC (M): - 52.23 8.04 110.56 4.26 7.30

WF

Acc (%): 99.79 99.62 99.51 99.40 99.25 99.50
CC (M): 98.55 1.21 1.01 1.86 1.01 0.99
RR (%): - 98.77 98.97 98.11 98.97 99.00
PC (M): - 15.63 2.57 495.63 4.64 2.44

SL

Acc (%): 52.62 49.07 48.62 51.20 51.20 49.78
CC (M): 2.43 1.54 1.37 1.78 1.32 1.35
RR (%): - 36.76 43.67 26.69 45.69 44.40
PC (M): - 11.33 2.86 56.00 4.99 2.84

CBF

Acc (%): 100.00 99.57 99.35 99.68 99.57 99.46
CC (M): 1.66 0.06 0.06 0.12 0.04 0.04
RR (%): - 96.34 96.56 92.63 97.47 97.55
PC (M): - 0.66 0.19 7.32 0.70 0.14

Avg

Acc (%): 89.82 87.57 86.43 89.12 88.15 87.96
CC (M): 25.99 2.63 2.20 5.12 2.04 1.88
RR (%): - 79.24 82.19 68.05 83.94 83.87
PC (M): - 30.71 5.30 131.44 6.56 4.67

Subsection 2.2 or [24] for details). In addition, RHC builds the smallest CSs. In all
cases, RHC achieved higher reduction rates than the other DRTs. Thus, the corre-
sponding classifiers had the lowest classification costs.

The classification accuracy achieved by RHC was usually higher than IB2 and
CNN-rule and as high as AIB2. In some cases, RHC and AIB2 were more accurate
than RSP3. Considering the above, one may conclude that, since RHC ans AIB2
deal with all comparison criteria, they are efficient speed-up methods for time-series
data. Finally, the experimental results illustrate that AIB2 is an efficient variation of
IB2. In all cases, AIB2 achieves higher performance than IB2.

No DRT can be said to comprise the best speed-up choice. If classification accu-
racy is the most critical criterion, RSP3 may be preferable. On the other hand, if fast
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classification and/or fast construction of the condensing set are more critical than
accuracy, RHC or AIB2 may be a better choice.

4 Conclusions

Efficient time series classification is an open research issue that attracts the interest
of the data mining community. This paper proposes the use of non-parametric state-
of-the-art prototype selection and abstraction algorithms for efficient and effective
time series classification.

The experimental study conducted demonstrates that by combining prototype
selection or abstraction algorithms with dimensionality reduction, one can obtain
accurate and very fast time series classifiers. In addition, the study reveals that pro-
totype abstraction algorithms are preferable to prototype selection algorithms when
applied on time series data. The prototype abstraction algorithms examined in the
study can achieve even higher accuracy than the conventional 1-NN classifier.
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