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Tight Lower Bound for Matrix Transposition

on the Reon�gurable Mesh

T. H. Kaskalis, V. Dagdilelis, G. Evangelidis, K. G. Margaritis

Abstrat|The problem of matrix transposition is known

to be solved in O(n) time steps on a mesh onneted proes-

sor array enhaned by reon�gurable buses. This paper ex-

plores the absolute minimum, within these limits, that an

be ahieved on a Reon�gurable Mesh. Assuming an (n � n)

matrix, we investigate the optimum time required to alu-

late its transposed respetive. We onlude in a tight lower

bound, whih re�nes those referred in the literature.

Keywords| Reon�gurable Mesh, Parallel Matrix Trans-

pose.

I. Introdution

A

LTHOUGH reent development of VLSI tehnology

paved the way towards parallel mahines, featuring

large number of proessors, pratie indiates that this in-

rease in raw omputational power does not always trans-

late into inreased performane of the same order of magni-

tude. Among the massively parallel arhitetures, themesh

has been suessfully applied to a number of domains, the

foremost being image proessing, omputer vision, pattern

reognition, digital and omputational geometry [1℄, [8℄,

[13℄, [25℄, [26℄, [28℄. Its regular struture and simple in-

teronnetion topology makes the mesh partiularly well

suited for VLSI implementation, with several models built

over the years. Examples inlude the ILLIAC IV, the CM-

2, the MPP and the MasPar [3℄, [10℄, [11℄, [12℄.

In ases, where most of the omputations are loal to

eah proessing element (PE), or involve only regular pat-

tern or nearest neighbor ommuniation, the mesh emerges

as one of the natural hoies. However, if omputations in-

volve data items spread over proessing elements far apart,

the mesh arhiteture beomes less attrative, beause of

its large omputational diameter, i.e. the maximum of the

minimum distane between any two proessors in the net-

work.

To remedy this situation, several researhers have pro-

posed to augment the mesh arhiteture with high-speed

buses that allow fast ommuniation between proessors

loated in di�erent areas of the mesh. A ommon feature

of these bus strutures is that the ommuniation patterns

among proessor elements annot be modi�ed during the

exeution of the algorithm. In an attempt to alleviate this

problem and further enhane the apabilities of the mesh,

researhers onsider adding reon�gurable features to par-

allel omputers.

The reon�gurable mesh arhiteture [2℄, [27℄, [15℄, [34℄

onsists of proessing elements arranged in a grid. The

PEs are onneted to a grid shaped reon�gurable bus and
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eah PE has loally ontrollable bus swithes, allowing the

broadast bus to be divided into subbuses.

This model of omputation atually aptures the funda-

mental properties of the CHiP omputer [38℄, mesh on-

neted omputers augmented with broadast buses [33℄,

the bus automaton [36℄, the polymorphi-torus network

[22℄ and the orterie network in the latest version of the

Content Addressable Array Parallel Proessor (CAAPP)

[41℄. Suh an arhiteture has been realized using Field

Programmable Gate Arrays (FPGAs) [40℄. The reon�g-

urable mesh ombines two desirable features of massively

parallel arhitetures: onstant diameter and a dynamial

reon�gurable bus system.

These features are exploited here, in order to solve the

fundamental problem of matrix transposition in optimal

time omplexity, on the aforementioned arhiteture. A

great number of linear algebra problems, inluding ongru-

ene transformations, equations systems solving, matrix in-

version e.t.. [9℄, have already made the problem of matrix

transposition a key matter in the proess of eÆient prob-

lem solving.

In that ontext, we will proeed by briey introduing

the reon�gurable mesh arhiteture, followed by a simple

and immediate mapping of the matrix transposition algo-

rithm. Subsequently, we will present our step by step ap-

proah towards the best possible time omplexity, for the

problem. This disussion leads us to a de�nite minimum,

as regards the time requirements for the transposition of

matries. This paper onludes with a omparison of our

approah as regards previously reported results.

II. The Reonfigurable Mesh Model

The n�n reon�gurable mesh onsists of an n�n array

of proessing elements onneted to a grid-shaped reon�g-

urable broadast bus. A 3�3 reon�gurable mesh is shown

in Fig. 1.a. Eah PE has loally ontrollable bus swithes.

Internal onnetions among the four ports (North, South,

East, West) of a PE an be on�gured during the exeution

of algorithms.

There are 15 possible onnetion patterns, appearing in

Fig. 1.b. The on�guration is spei�ed by grouping to-

gether ports, whih have been shorted. Thus, if a PE's

ports are all eletrially isolated, its on�guration is de-

noted fN,S,E,Wg. Similarly, if the North and South ports

are shorted and so do the East and West ports, then the

on�guration is denoted fNS,EWg.

A single time step on a reon�gurable mesh is omposed

of the following four phases:

� Phase 1: Change the on�guration of a reon�gurable

bus system by onneting or disonneting its own ports
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Fig. 1. A 3 � 3 Reon�gurable Mesh and the Possible Connetion

Con�gurations

with buses internally.

� Phase 2: Send data to eah port. When more than

one proessor attempts to send data along the same bus,

a ollision ours and the data being transmitted will be

disarded by all proessors onneted to the bus.

� Phase 3: Reeive data from eah port. Some or all

proessors onneted to the bus read the data sent in phase

2.

� Phase 4: A onstant-time loal omputation is done by

eah proessor.

We, therefore, understand that if PE (1,1) of Fig. 1.a has

to send a data item to PE (3,3), whih, respetively, has

to send another data item to PE (2,1), the phases are as

follows. First, a bus onnetion sheme, similar to that of

Fig. 1.a, has to be established (Phase 1). Then, the PEs

(1,1) and (3,3) write their data items to their South and

West ports, respetively (Phase 2). Proessing Elements

(3,3) and (2,1) read data from their North and South ports,

respetively (Phase 3) and a possible loal omputation

takes plae, whih may involve the newly arrived data items

(Phase 4). The ports, atually writing or reading data,

during this example, are denoted blak in Fig. 1.a.

Other than the buses and swithes, the reon�gurable

mesh is similar to the standard 2-dimensional mesh in that

it has �(n

2

) area, under the assumption that PEs, swithes

and a link between adjaent PEs oupy unit area in the

word model of VLSI. Moreover, we assume that the size of

the loal storage in eah PE is O(1) words, where eah word

is O(log

2

n

2

), whih is also the bit value broadast. Finally,

we assume that the onnetions in the edges of the mesh

wrap around to their respetive row and olumn elements,

forming an overall torus sheme. We should note that the

reon�gurable mesh algorithms, presented in this paper an

be simulated in the MRN [29℄ and LRN [4℄ models without

slowdown. These models aept the �rst 10 possible on-

netion shemes of Fig. 1.b (one-to-one port onnetion)

and in this paper we only employ onnetion patterns of

this kind.

Many di�erent algorithms have been developed for the

reon�gurable mesh parallel arhiteture. For example, a

number of researhers, inluding Reisis [35℄, have proposed

onstant time reon�gurable mesh algorithms to ompute

the geometry problem of onvex hull of a set of points in the

plane. Olariu et al. [31℄, [32℄ have proposed a number of

onstant-time algorithms for geometry problems involving

onvex polygons and a number of low-level omputer vision

problems. ElGindy and Wetherall propose a Voronoi dia-

gram algorithm. Chao et al. [6℄, in their work, have solved

the multiple searh problem on the reon�gurable mesh.

Jang et al. [14℄, [16℄ have proposed onstant time solutions

to the problems of omputing all nearest neighbors of a set

of points in the plane, omputing the maximal elements

in 3-d, and 2-dominane ounting. Jenq and Sahni [17℄

have omputed the Hough-transform on the reon�gurable

mesh and Kim and Park [21℄ presented eÆient list ranking

algorithms, on the respetive model.

Its low wiring ost and regular struture make the re-

on�gurable mesh suitable for VLSI implementation. In

addition, it is not hard to see that the reon�gurable mesh

an be used as a universal hip apable of simulating any

equivalent area arhiteture without loss of time. It is

worth mentioning that at least three VLSI implementa-

tions have demonstrated the feasibility and bene�ts of the

reon�gurable mesh: These are the YUPPIE hip [23℄, the

GCN hip [39℄ and the PPA hip [24℄. These implemen-

tations suggested that the broadast delay, although not

onstant, is very small. For example, only 16 mahine y-

les are required to broadast on a 10

6

-proessors YUP-

PIE. The GCN has further shortened the broadast delay

by adopting preharged iruits. Moreover, it has been

shown that the broadast delay an be redued even fur-

ther if the reon�gurable bus system is implemented using

optial �bers as the underlying global bus system and us-

ing eletrially ontrolled diretional oupler swithes for

onneting or disonneting two �bers [37℄.

III. Parallel Matrix Transposition on Meshes

An n� n matrix A is given, for example (n = 3):

A =

2

4

a

11

a

12

a

13

a

21

a

22

a

23

a

31

a

32

a

33

3

5

The transpose of matrix A, denoted A

T

, is produed by

hanging the rows of A with its orresponding olumns:

A

T

=

2

4

a

11

a

21

a

31

a

12

a

22

a

32

a

13

a

23

a

33

3

5

The elements of A an be data objets of any type. Thus,

a

ij

an be an integer, a real, a harater and so on.

The following ode omputes the transpose of an n � n

matrix, sequentially:

Proedure Transpose (A[n� n℄)

for i = 1 to n� 1 do

for j = i+ 1 to n do

swap(a

ij

,a

ji

)

end for

end for

The algorithm transposes A in plae, whih means that it

returns A

T

in the same memory loations previously o-

upied by A. Assuming that one time step is needed for
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every element exhange, then the above sequential algo-

rithm takes (n

2

� n)=2 time steps to be ompleted.

Many researhers have onsidered solving the problem

using di�erent parallel arhitetures. O'Leary [30℄ imple-

mented an algorithm for transposing an n � n matrix in

3n�1 time steps using a rather simple systoli array of n�n

swithing proessors and n�n bit bu�ers. The matrix en-

ters the systoli array by rows and exits by diagonals (the

reverse proess also exists), rather than being preloaded

and transposed in plae. The proessor elements have no

memory apabilities and at as simple swithes, whih on-

trol the ow of data at eah time step, where the bu�ers

at as delays for the synhronization of the transposition

proess. The idea of using the swithing proessor elements

give the ability to reon�gure the ommuniation network

of this systoli proessor array during program exeution

by shifting the data from rows to olumns and vie versa.

In [18℄ Johnsson desribed a matrix transpose algorithm

on an n�n grid in 2n�1 steps of diret neighbor ommuni-

ations, by shifting suessively superdiagonals in the dire-

tion of dereasing olumn indies and then in the diretion

of inreasing row indies. Symmetrially, subdiagonals are

shifted �rst in the diretion of dereasing row indies and

then in the diretion of inreasing olumn indies.

Calvin and Trystram [5℄, have presented algorithms for

the matrix transpose problem on distributed memory par-

allel mahines. With the use of Johnsson's algorithm,

Calvin and Trystram have shown that the transposition

problem of an n�n matrix on a square mesh of proessors

takes n � 1 steps for the simple ase and (n � 1)=2 for a

torus network.

The most reent results on 2-D mesh matrix transposi-

tion were presented by Ding et al. [7℄ and Kaufmann et al.

[20℄. In the �rst paper, the authors present a lower bound

for the time steps required to transpose an n � n matrix

on a mesh of the same size:

n

2

=4 + xn� x(x + 1)

n+ 2x

where x =

p

2n

2

� 2n� n

2

(1)

We should note that this number is atually doubled, sine

one time step is onsidered to ontain a whole swap opera-

tion. If we onsider the four phases, presented in the previ-

ous setion, we understand that a swap operation atually

demands two time steps. Ding et al. utilize the Reursive

Exhange Algorithm (REA) in their approah [7℄ and in-

trodue a number of algorithms, the best of whih is away

from optimal by about 5%. Kaufmann et al. [20℄ re�ne

these results, proposing a more balaned sheme, whih

ahieves the lower bound of time steps, presented in (1).

In the onlusions setion of this paper we will return in

the disussion of these papers, omparing them with our

approah.

Finally, Kao et al. [19℄ applied several algorithms on

the CRAP arhiteture (ross-bridge reon�gurable array

of proessors), inluding the transpose and untranspose op-

erations. In their paper they show that on a 3-D reon�g-

urable mesh of size n� n�m, a matrix of size n�m an

be transposed in O(1) steps.

IV. Tight Lower Bound of Time Steps

Consider an n�n reon�gurable mesh with wraparound

onnetions (torus), ontaining the elements on an n � n

matrix A. At �rst, eah Proessing Element (PE) (i; j)

ontains the respetive matrix element a

ij

. At the end of

the operation the (i; j) PE should ontain a

ji

, implement-

ing the transpose operation.

Conentrating on the part of the mesh above the main

diagonal, we �nd n � 1 super-diagonals U

1

; U

2

; : : : ; U

n�1

ontaining n � 1; n � 2; : : : ; 1 elements, respetively. We

de�ne the ombined diagonals as:

C

U

1

= fU

1

; U

n�1

g ; C

U

2

= fU

2

; U

n�2

g ; : : : ;

C

U

bn=2

= fU

bn=2

; U

dn=2e

g (2)

eah of whih ontains n elements, exept the last (C

U

bn=2

),

whih ontains n elements for an odd n or n=2 ele-

ments for an even n. In a similar manner we an de�ne

C

L

1

; C

L

2

; : : : ; C

L

bn=2

, for the part of the mesh below the

main diagonal. We understand that all the elements of a

ombined diagonal have the same distane from the main

diagonal, taking under onsideration the torus sheme of

the arhiteture.

In one time step, all the elements of a ombined diago-

nal an swap plaes utilizing all the available ports of the

elements of the main diagonal. Following a somewhat mod-

i�ed sheme of the Johnsson's algorithm [18℄ we an see in

Fig. 2 the transposition of the elements of C

U

2

and C

L

2

on

an 8 � 8 mesh. Following this simple approah, we an

Fig. 2. An 8 � 8 Reon�gurable Mesh Performing a Simple Trans-

position Step

transpose the matrix in a number of time steps equal to

the number of ombined diagonals, i.e. bn=2.
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On the other hand, we an see that there is a number of

wrap around port links, whih ould be utilized to trans-

pose more matrix elements in eah time step. Denoting

the pair C

U

i

; C

L

i

with C

i

, we an see that during the trans-

position of C

i

, there are n � 2i links in eah side of the

mesh, whih an be further used. We highlight these links

in the upper part of Fig. 2 with two irles, implying the

respetive ones in the lower part.

Fousing again in the upper part, we an aept that for

reasons of symmetry the links of one side (e.g. north side)

of the mesh will be output links, with the input links being

those of the other side (e.g. east side). By that we mean

that data items move out from this upper part of the mesh

through one side, while the respetive items, oming from

the lower part of the mesh, enter through the other side.

It is lear by now that the elements of some ombined

diagonals will travel through the main diagonal, while the

remaining elements will use the rest of the wrap around

links. The question, whih naturally arises, is whih om-

bined diagonals should we selet to send through the main

diagonal, in order to minimize the e�etive time steps? An

intuitive answer leads us to selet those diagonals loser to

the main, in order to alloate as few PE ports as possible.

This will also be proven in the following.

Assume t the number of time steps needed to perform

the matrix transpose operation. In eah of the t steps, the

transposition of the ombined diagonal C

i

takes plae and

we an transpose 2(n� 2i) more matrix elements, through

the \long" paths, bypassing the main diagonal. Let us de-

note i

1

; i

2

; : : : ; i

t

the subsripts of the ombined diagonals

seleted to pass through the main diagonal. Then:

nt+ (n� 2i

1

) + � � �+ (n� 2i

t

) =

n

2

� n

2

) t =

n� 1

4

+

i

1

+ i

2

+ � � �+ i

t

2n

(3)

In order to minimize t, we understand that i

1

= 1 ; i

2

=

2 ; : : : ; i

t

= t. This justi�es our �rst intuitive answer.

Therefore:

(3) ) t =

n� 1

4

+

t(t+ 1)

2n

) t

2

� (2n� 1)t+

n

2

� n

2

= 0 (4)

whih, for a minimum t, leads us to:

t =

2n� 1�

p

2n

2

� 2n+ 1

2

(5)

Equation (5) represents the absolute minimum of the time

steps required to perform the matrix transposition on the

reon�gurable mesh with wrap around links. Moreover,

sine the number of steps is an integer, the orret way to

express (5) is:

t =

&

2n� 1�

p

2n

2

� 2n+ 1

2

'

(6)

The fat that (5) is the tight lower bound of the operation

an also be proved through the following argument. In eah

step of the operation we would require that all the avail-

able PE ports are utilized in the best possible manner. This

means that the ommuniating PEs use the minimum num-

ber of hops to exhange their data items and all the avail-

able ports are being used. Through the above mentioned

sheme, every pair of PEs, whih ommuniate through the

main diagonal, utilize 4i port-pairs, where i is the subsript

of the ombined diagonal they belong to (see also Fig. 2).

Moreover, every pair of PEs whih ommuniate, bypass-

ing the main diagonal, utilize the onstant number of 2n

port-pairs. Summing up these port-pairs, being utilized in

step i of the proess, we obtain: 4in + (n � 2i)2n = 2n

2

,

whih is atually the total number of port-pairs available

in an n� n reon�gurable mesh.

This last argument also justi�es our approah of seleting

this method of ombined diagonals. We wish to utilize

the most possible (the target is all) port links available

in the network, in every time step. Moreover, we wish to

follow suh alloation shemes that the PE ommuniation

follows the minimum possible number of intermediate hops.

The ommuniation through the main diagonal relates the

number of hops with the distane of the PEs from it. On

the other hand, the ommuniation through the rest of the

wrap around links (bypassing the main diagonal) assumes

a onstant minimum of hops, whih is not related to the

position of the PEs in the mesh. We, therefore, understand

that the hoie of the \ombined diagonals" sheme (same

distane from main diagonal), in aordane with those

diagonals loser to the main, omes naturally.

TABLE I

Matrix Dimensions Related to Time Steps

Matrix Time

Dimension Steps

3 , 4 1

5 , 6 , 7 2

8 , 9 , 10 3

11 , 12 , 13 , 14 4

15 , 16 , 17 5

18 , 19 , 20 , 21 6

22 , 23 , 24 7

25 , 26 , 27 8

.

.

.

.

.

.

Matrix Time

Dimension Steps

4 1

21 6

120 35

697 204

4060 1189

23661 6930

137904 40391

803761 235416

.

.

.

.

.

.

(a) (b)

Moving forward, we an onstrut a table whih an il-

lustrate the minimum number of steps required to perform

the matrix transposition operation, for inreasing dimen-

sion values n. Table I.a an be read as follows: for a given

matrix dimension n, the transposition operation annot be

performed in less than t time steps. It is interesting to see

if there are ertain values of n, for whih (5) and (6) pro-

due the same result. In a situation like that, we expet the

tight lower bound of (5) to be ahieved exatly and every
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port of the mesh to be utilized in every e�etive time step.

Table I.b lists the values of n for whih the absolute min-

imum of time steps an atually be ahieved in the most

eÆient way.

Conluding this setion, we should onsider the ase

when the dimensions of matrix A do not math those of

the given reon�gurable mesh arhiteture. For anm

1

�m

2

matrix A we alloate a submatrix of the formm

1

=n�m

2

=n

to eah Proessing Element. Denoting m = m

1

m

2

=n

2

the

size of eah submatrix, we understand that every trans-

position step now assumes the exhange of m data values.

Considering only the ommuniation ost and ignoring the

loal omputation ost [7℄, [20℄, the overall time steps are

given by multiplying the results of (5) and (6) with the

fator m.

V. Conlusions and Future Work

We presented the tight lower bound of time steps,

when performing matrix transposition on the reon�g-

urable mesh with wrap around onnetions (torus). The

most reent researh on the matter presented lower bound

results on mesh onneted omputers (not torus-like) [7℄

and proposed eÆient ways in aomplishing these results

[20℄. If we translate this e�ort in our model (two time steps

for the transposition of an element pair) the reported lower

bound an be written as:

t = 2 �

n

2

=4 + xn� x(x+ 1)

n+ 2x

where x =

p

2n

2

� 2n� n

2

(7)

Sine we employ a torus sheme, one would expet to pro-

due a model operating in half the time steps of (7). This

is beause the torus generally halves the diameter of the

mesh and produes algorithms expeted to perform two

times faster on it than on a simple mesh [5℄.

Our approah, however, is quite di�erent than the one

presented in [7℄. We introdue the lower bound of:

t =

2n� 1�

p

2n

2

� 2n+ 1

2

(8)

whih is very lose, but not exatly the half of (7), rather

than slightly less. Our result is atually the ahievable

re�nement of the previously reported lower bound.

Equation (7) does not produe an integer number of time

steps, for any n. As a result, we annot atually \reah"

the lower bound, but rather \stay losely above it". On

the ontrary, as Table I.b presents, (8) produes numbers

that an lead to the realization of the atual lower bound.

For the same value of n, Equation 7 leads to t = 2 � 7 time

steps, exhibiting the di�erene of the two lower bounds.

The natural question, arising from the disussion above,

is whether the lower bound presented an atually be

ahieved on the reon�gurable mesh. The problem beomes

harder, if we fous on the matrix dimensions presented in

Table I.b. For these values of n there is no ommuniation

port left unutilized in any time step and the problems of

data ongestion are likely to appear. There is strong ev-

idene, however, that a systemati alloation sheme an

atually be devised. This task is inluded in our imme-

diate future researh plans, in order to introdue a full,

systemati, algorithmi approah for the problem at hand.
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