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Abstract— The problem of matrix transposition is known
to be solved in O(n) time steps on a mesh connected proces-
sor array enhanced by reconfigurable buses. This paper ex-
plores the absolute minimum, within these limits, that can
be achieved on a Reconfigurable Mesh. Assuming an (n X n)
matrix, we investigate the optimum time required to calcu-
late its transposed respective. We conclude in a tight lower
bound, which refines those referred in the literature.

Keywords— Reconfigurable Mesh, Parallel Matrix Trans-
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I. INTRODUCTION

LTHOUGH recent development of VLSI technology

paved the way towards parallel machines, featuring
large number of processors, practice indicates that this in-
crease in raw computational power does not always trans-
late into increased performance of the same order of magni-
tude. Among the massively parallel architectures, the mesh
has been successfully applied to a number of domains, the
foremost being image processing, computer vision, pattern
recognition, digital and computational geometry [1], [8],
[13], [25], [26], [28]. Its regular structure and simple in-
terconnection topology makes the mesh particularly well
suited for VLSI implementation, with several models built
over the years. Examples include the ILLIAC IV, the CM-
2, the MPP and the MasPar [3], [10], [11], [12].

In cases, where most of the computations are local to
each processing element (PE), or involve only regular pat-
tern or nearest neighbor communication, the mesh emerges
as one of the natural choices. However, if computations in-
volve data items spread over processing elements far apart,
the mesh architecture becomes less attractive, because of
its large computational diameter, i.e. the maximum of the
minimum distance between any two processors in the net-
work.

To remedy this situation, several researchers have pro-
posed to augment the mesh architecture with high-speed
buses that allow fast communication between processors
located in different areas of the mesh. A common feature
of these bus structures is that the communication patterns
among processor elements cannot be modified during the
execution of the algorithm. In an attempt to alleviate this
problem and further enhance the capabilities of the mesh,
researchers consider adding reconfigurable features to par-
allel computers.

The reconfigurable mesh architecture [2], [27], [15], [34]
consists of processing elements arranged in a grid. The
PEs are connected to a grid shaped reconfigurable bus and
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each PE has locally controllable bus switches, allowing the
broadcast bus to be divided into subbuses.

This model of computation actually captures the funda-
mental properties of the CHiP computer [38], mesh con-
nected computers augmented with broadcast buses [33],
the bus automaton [36], the polymorphic-torus network
[22] and the corterie network in the latest version of the
Content Addressable Array Parallel Processor (CAAPP)
[41]. Such an architecture has been realized using Field
Programmable Gate Arrays (FPGAs) [40]. The reconfig-
urable mesh combines two desirable features of massively
parallel architectures: constant diameter and a dynamical
reconfigurable bus system.

These features are exploited here, in order to solve the
fundamental problem of matrix transposition in optimal
time complexity, on the aforementioned architecture. A
great number of linear algebra problems, including congru-
ence transformations, equations systems solving, matrix in-
version e.t.c. [9], have already made the problem of matrix
transposition a key matter in the process of efficient prob-
lem solving.

In that context, we will proceed by briefly introducing
the reconfigurable mesh architecture, followed by a simple
and immediate mapping of the matrix transposition algo-
rithm. Subsequently, we will present our step by step ap-
proach towards the best possible time complexity, for the
problem. This discussion leads us to a definite minimum,
as regards the time requirements for the transposition of
matrices. This paper concludes with a comparison of our
approach as regards previously reported results.

II. THE RECONFIGURABLE MESH MODEL

The n x n reconfigurable mesh consists of an n x n array
of processing elements connected to a grid-shaped reconfig-
urable broadcast bus. A 3 x 3 reconfigurable mesh is shown
in Fig. 1.a. Each PE has locally controllable bus switches.
Internal connections among the four ports (North, South,
East, West) of a PE can be configured during the execution
of algorithms.

There are 15 possible connection patterns, appearing in
Fig. 1.b. The configuration is specified by grouping to-
gether ports, which have been shorted. Thus, if a PE’s
ports are all electrically isolated, its configuration is de-
noted {N,S,E,W}. Similarly, if the North and South ports
are shorted and so do the East and West ports, then the
configuration is denoted {NS,EW}.

A single time step on a reconfigurable mesh is composed
of the following four phases:

o Phase 1: Change the configuration of a reconfigurable
bus system by connecting or disconnecting its own ports
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Fig. 1. A 3 x 3 Reconfigurable Mesh and the Possible Connection
Configurations
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with buses internally.

o« Phase 2: Send data to each port. When more than
one processor attempts to send data along the same bus,
a collision occurs and the data being transmitted will be
discarded by all processors connected to the bus.

o Phase 3: Receive data from each port. Some or all
processors connected to the bus read the data sent in phase
2.

o Phase 4: A constant-time local computation is done by
each processor.

We, therefore, understand that if PE (1,1) of Fig. 1.a has
to send a data item to PE (3,3), which, respectively, has
to send another data item to PE (2,1), the phases are as
follows. First, a bus connection scheme, similar to that of
Fig. 1.a, has to be established (Phase 1). Then, the PEs
(1,1) and (3,3) write their data items to their South and
West ports, respectively (Phase 2). Processing Elements
(3,3) and (2,1) read data from their North and South ports,
respectively (Phase 3) and a possible local computation
takes place, which may involve the newly arrived data items
(Phase 4). The ports, actually writing or reading data,
during this example, are denoted black in Fig. 1.a.

Other than the buses and switches, the reconfigurable
mesh is similar to the standard 2-dimensional mesh in that
it has ©(n?) area, under the assumption that PEs, switches
and a link between adjacent PEs occupy unit area in the
word model of VLSI. Moreover, we assume that the size of
the local storage in each PE is O(1) words, where each word
is O(log, n?), which is also the bit value broadcast. Finally,
we assume that the connections in the edges of the mesh
wrap around to their respective row and column elements,
forming an overall torus scheme. We should note that the
reconfigurable mesh algorithms, presented in this paper can
be simulated in the MRN [29] and LRN [4] models without
slowdown. These models accept the first 10 possible con-
nection schemes of Fig. 1.b (one-to-one port connection)
and in this paper we only employ connection patterns of
this kind.

Many different algorithms have been developed for the
reconfigurable mesh parallel architecture. For example, a
number of researchers, including Reisis [35], have proposed
constant time reconfigurable mesh algorithms to compute
the geometry problem of convex hull of a set of points in the
plane. Olariu et al. [31], [32] have proposed a number of

constant-time algorithms for geometry problems involving
convex polygons and a number of low-level computer vision
problems. ElGindy and Wetherall propose a Voronoi dia-
gram algorithm. Chao et al. [6], in their work, have solved
the multiple search problem on the reconfigurable mesh.
Jang et al. [14], [16] have proposed constant time solutions
to the problems of computing all nearest neighbors of a set
of points in the plane, computing the maximal elements
in 3-d, and 2-dominance counting. Jenq and Sahni [17]
have computed the Hough-transform on the reconfigurable
mesh and Kim and Park [21] presented efficient list ranking
algorithms, on the respective model.

Its low wiring cost and regular structure make the re-
configurable mesh suitable for VLSI implementation. In
addition, it is not hard to see that the reconfigurable mesh
can be used as a universal chip capable of simulating any
equivalent area architecture without loss of time. It is
worth mentioning that at least three VLSI implementa-
tions have demonstrated the feasibility and benefits of the
reconfigurable mesh: These are the YUPPIE chip [23], the
GOCN chip [39] and the PPA chip [24]. These implemen-
tations suggested that the broadcast delay, although not
constant, is very small. For example, only 16 machine cy-
cles are required to broadcast on a 108-processors YUP-
PIE. The GCN has further shortened the broadcast delay
by adopting precharged circuits. Moreover, it has been
shown that the broadcast delay can be reduced even fur-
ther if the reconfigurable bus system is implemented using
optical fibers as the underlying global bus system and us-
ing electrically controlled directional coupler switches for
connecting or disconnecting two fibers [37].

III. PARALLEL MATRIX TRANSPOSITION ON MESHES

An n x n matrix A is given, for example (n = 3):

air a2 ais
A= a1 Qa22 a23
azi1 az2 ass

The transpose of matrix A, denoted AT, is produced by
changing the rows of A with its corresponding columns:

{ a11 @21 asa -|

T

At = a12 a22 as2
[ aiz Q23 433 J

The elements of A can be data objects of any type. Thus,
a;; can be an integer, a real, a character and so on.

The following code computes the transpose of an n x n
matrix, sequentially:

Procedure Transpose (A[n x n])
fori=1ton—1do
forj=i+1tondo
swap(aij,a;i)
end for
end for

The algorithm transposes A in place, which means that it
returns A7 in the same memory locations previously oc-
cupied by A. Assuming that one time step is needed for



every element exchange, then the above sequential algo-
rithm takes (n® — n)/2 time steps to be completed.

Many researchers have considered solving the problem
using different parallel architectures. O’Leary [30] imple-
mented an algorithm for transposing an n x n matrix in
3n—1 time steps using a rather simple systolic array of n xn
switching processors and n x n bit buffers. The matrix en-
ters the systolic array by rows and exits by diagonals (the
reverse process also exists), rather than being preloaded
and transposed in place. The processor elements have no
memory capabilities and act as simple switches, which con-
trol the flow of data at each time step, where the buffers
act as delays for the synchronization of the transposition
process. The idea of using the switching processor elements
give the ability to reconfigure the communication network
of this systolic processor array during program execution
by shifting the data from rows to columns and vice versa.

In [18] Johnsson described a matrix transpose algorithm
on an n xn grid in 2n—1 steps of direct neighbor communi-
cations, by shifting successively superdiagonals in the direc-
tion of decreasing column indices and then in the direction
of increasing row indices. Symmetrically, subdiagonals are
shifted first in the direction of decreasing row indices and
then in the direction of increasing column indices.

Calvin and Trystram [5], have presented algorithms for
the matrix transpose problem on distributed memory par-
allel machines. With the use of Johnsson’s algorithm,
Calvin and Trystram have shown that the transposition
problem of an n X n matrix on a square mesh of processors
takes n — 1 steps for the simple case and (n — 1)/2 for a
torus network.

The most recent results on 2-D mesh matrix transposi-
tion were presented by Ding et al. [7] and Kaufmann et al.
[20]. In the first paper, the authors present a lower bound
for the time steps required to transpose an n X n matrix
on a mesh of the same size:

n?/4+axn —x(x + 1) V2n?2 —2n—n
where 1= —————
n+ 2 2

(1)

We should note that this number is actually doubled, since
one time step is considered to contain a whole swap opera-
tion. If we consider the four phases, presented in the previ-
ous section, we understand that a swap operation actually
demands two time steps. Ding et al. utilize the Recursive
Exchange Algorithm (REA) in their approach [7] and in-
troduce a number of algorithms, the best of which is away
from optimal by about 5%. Kaufmann et al. [20] refine
these results, proposing a more balanced scheme, which
achieves the lower bound of time steps, presented in (1).
In the conclusions section of this paper we will return in
the discussion of these papers, comparing them with our
approach.

Finally, Kao et al. [19] applied several algorithms on
the CRAP architecture (cross-bridge reconfigurable array
of processors), including the transpose and untranspose op-
erations. In their paper they show that on a 3-D reconfig-
urable mesh of size n X n x m, a matrix of size n X m can
be transposed in O(1) steps.

IV. TigaT LOWER BouNnD OF TIME STEPS

Consider an n x n reconfigurable mesh with wraparound
connections (torus), containing the elements on an n x n
matrix A. At first, each Processing Element (PE) (i, )
contains the respective matrix element a;;. At the end of
the operation the (7, j) PE should contain aj;, implement-
ing the transpose operation.

Concentrating on the part of the mesh above the main
diagonal, we find n — 1 super-diagonals Uy, Us,...,U,_1
containing n — 1,n — 2,...,1 elements, respectively. We
define the combined diagonals as:

C{]:{UlaUnfl} ) Cg:{U%Uan} ) e

Clayay = WUing2)s Uy} (2)
each of which contains n elements, except the last (C gl /2] ),
which contains n elements for an odd n or n/2 ele-
ments for an even n. In a similar manner we can define
ClL702L7"'>Cfn/2J> for the part of the mesh below the
main diagonal. We understand that all the elements of a
combined diagonal have the same distance from the main
diagonal, taking under consideration the torus scheme of
the architecture.

In one time step, all the elements of a combined diago-
nal can swap places utilizing all the available ports of the
elements of the main diagonal. Following a somewhat mod-
ified scheme of the Johnsson’s algorithm [18] we can see in
Fig. 2 the transposition of the elements of C¥ and C¥ on
an 8 x 8 mesh. Following this simple approach, we can
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Fig. 2. An 8 x 8 Reconfigurable Mesh Performing a Simple Trans-
position Step

transpose the matrix in a number of time steps equal to
the number of combined diagonals, i.e. [n/2].



On the other hand, we can see that there is a number of
wrap around port links, which could be utilized to trans-
pose more matrix elements in each time step. Denoting
the pair CY,CF with C;, we can see that during the trans-
position of C;, there are n — 2i links in each side of the
mesh, which can be further used. We highlight these links
in the upper part of Fig. 2 with two circles, implying the
respective ones in the lower part.

Focusing again in the upper part, we can accept that for
reasons of symmetry the links of one side (e.g. north side)
of the mesh will be output links, with the input links being
those of the other side (e.g. east side). By that we mean
that data items move out from this upper part of the mesh
through one side, while the respective items, coming from
the lower part of the mesh, enter through the other side.

It is clear by now that the elements of some combined
diagonals will travel through the main diagonal, while the
remaining elements will use the rest of the wrap around
links. The question, which naturally arises, is which com-
bined diagonals should we select to send through the main
diagonal, in order to minimize the effective time steps? An
intuitive answer leads us to select those diagonals closer to
the main, in order to allocate as few PE ports as possible.
This will also be proven in the following.

Assume t the number of time steps needed to perform
the matrix transpose operation. In each of the ¢ steps, the
transposition of the combined diagonal C; takes place and
we can transpose 2(n — 2i) more matrix elements, through
the “long” paths, bypassing the main diagonal. Let us de-
note 41,42, ...,% the subscripts of the combined diagonals
selected to pass through the main diagonal. Then:

2

. . n®—n
nt+ (n—2i)+--+(n—2i) = 5
n—1 21+Zz++lt
= t= 3
4 + 2n 3)
In order to minimize ¢, we understand that i1 = 1, is =
2, ..., iy = t. This justifies our first intuitive answer.
Therefore:
n—1 tt+1)
3) = t=
(3) 4 + 2n
2 _
= t2—(2n_1)t+"2”:0 (4)
which, for a minimum ¢, leads us to:
2n —1—+/2n2 -2 1
;= n 2n n+ (5)

Equation (5) represents the absolute minimum of the time
steps required to perform the matrix transposition on the
reconfigurable mesh with wrap around links. Moreover,
since the number of steps is an integer, the correct way to
express (9) is:

. 2n —1—+v2n2 - 2n+1
N 2

(6)

The fact that (5) is the tight lower bound of the operation
can also be proved through the following argument. In each
step of the operation we would require that all the avail-
able PE ports are utilized in the best possible manner. This
means that the communicating PEs use the minimum num-
ber of hops to exchange their data items and all the avail-
able ports are being used. Through the above mentioned
scheme, every pair of PEs, which communicate through the
main diagonal, utilize 4¢ port-pairs, where 7 is the subscript
of the combined diagonal they belong to (see also Fig. 2).
Moreover, every pair of PEs which communicate, bypass-
ing the main diagonal, utilize the constant number of 2n
port-pairs. Summing up these port-pairs, being utilized in
step i of the process, we obtain: 4in + (n — 2i)2n = 2n?,
which is actually the total number of port-pairs available
in an n x n reconfigurable mesh.

This last argument also justifies our approach of selecting
this method of combined diagonals. We wish to utilize
the most possible (the target is all) port links available
in the network, in every time step. Moreover, we wish to
follow such allocation schemes that the PE communication
follows the minimum possible number of intermediate hops.
The communication through the main diagonal relates the
number of hops with the distance of the PEs from it. On
the other hand, the communication through the rest of the
wrap around links (bypassing the main diagonal) assumes
a constant minimum of hops, which is not related to the
position of the PEs in the mesh. We, therefore, understand
that the choice of the “combined diagonals” scheme (same
distance from main diagonal), in accordance with those
diagonals closer to the main, comes naturally.

TABLE I
MATRIX DIMENSIONS RELATED TO TIME STEPS

Matrix Time Matrix Time
Dimension Steps Dimension | Steps
3.4 1 4 1
5,6,7 2 21 6
8,9,10 3 120 35
11,12 ,13, 14 4 697 204
15,16, 17 5 4060 1189
18,19,20, 21 6 23661 6930
22,23,24 7 137904 40391
25,26, 27 8 803761 235416

(a) (b)

Moving forward, we can construct a table which can il-
lustrate the minimum number of steps required to perform
the matrix transposition operation, for increasing dimen-
sion values n. Table I.a can be read as follows: for a given
matrix dimension n, the transposition operation cannot be
performed in less than ¢ time steps. It is interesting to see
if there are certain values of n, for which (5) and (6) pro-
duce the same result. In a situation like that, we expect the
tight lower bound of (5) to be achieved exactly and every



port of the mesh to be utilized in every effective time step.
Table I.b lists the values of n for which the absolute min-
imum of time steps can actually be achieved in the most
efficient way.

Concluding this section, we should consider the case
when the dimensions of matrix A do not match those of
the given reconfigurable mesh architecture. For an mj xms
matrix A we allocate a submatrix of the form m; /n xms/n
to each Processing Element. Denoting m = mimz/n? the
size of each submatrix, we understand that every trans-
position step now assumes the exchange of m data values.
Considering only the communication cost and ignoring the
local computation cost [7], [20], the overall time steps are
given by multiplying the results of (5) and (6) with the
factor m.

V. CONCLUSIONS AND FUTURE WORK

We presented the tight lower bound of time steps,
when performing matrix transposition on the reconfig-
urable mesh with wrap around connections (torus). The
most recent research on the matter presented lower bound
results on mesh connected computers (not torus-like) [7]
and proposed efficient ways in accomplishing these results
[20]. If we translate this effort in our model (two time steps
for the transposition of an element pair) the reported lower
bound can be written as:

n?/4d+zn —z(z +1)
n+ 2x

t=2 where ¢ =

Vv2n2 —2n—n
2
(7)

Since we employ a torus scheme, one would expect to pro-
duce a model operating in half the time steps of (7). This
is because the torus generally halves the diameter of the
mesh and produces algorithms expected to perform two
times faster on it than on a simple mesh [5].

Our approach, however, is quite different than the one
presented in [7]. We introduce the lower bound of:

_2n—1-+v2n2-2n+1

t
2

(8)

which is very close, but not exactly the half of (7), rather
than slightly less. Our result is actually the achievable
refinement of the previously reported lower bound.
Equation (7) does not produce an integer number of time
steps, for any n. As a result, we cannot actually “reach”
the lower bound, but rather “stay closely above it”. On
the contrary, as Table Lb presents, (8) produces numbers
that can lead to the realization of the actual lower bound.
For the same value of n, Equation 7 leads to t = 2- 7 time
steps, exhibiting the difference of the two lower bounds.
The natural question, arising from the discussion above,
is whether the lower bound presented can actually be
achieved on the reconfigurable mesh. The problem becomes
harder, if we focus on the matrix dimensions presented in
Table I.b. For these values of n there is no communication
port left unutilized in any time step and the problems of
data congestion are likely to appear. There is strong ev-
idence, however, that a systematic allocation scheme can

actually be devised. This task is included in our imme-
diate future research plans, in order to introduce a full,
systematic, algorithmic approach for the problem at hand.
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