
FIFTH HELLENIC-EUROPEAN CONF. ON COMPUTER MATHEMATICS AND ITS APPLICATIONS 1

Abstract-- Commercially available robotic construction kits
become more and more accessible to the modern classroom, as
regards their financial cost. Their application in a wide
educational framework gradually acquires a more realistic base.
Many researchers have already considered the demanding task
of the programming of such robotic kits. As a result, a great
number of programming tools have already appeared.
Concentrating on the LEGO Mindstorms product, we attempt
to identify and present the available approaches. Our main
interest, however, is their potential educational exploitation.
This comparative presentation leads us to useful results, in
order to identify the appropriate programming tool for a given
course curriculum.

Index Terms-- Robotic Construction Kits, Programming
Environments

I. INTRODUCTION

URING
the last decade a great number of "robotic

construction kits" appeared in the scientific and industrial
field [7]. These simple robotic constructions aim to become a
learning aid for various educational topics, including
mathematics, physics, computer science, engineering etc [4].
These products include small motors, sensors, wheels, rods,
belts and tires, equipping the student with all he needs in
order to construct a simple robot.

This approach follows the principles, introduced by Jean
Piaget [10], as revised by Seymour Papert [9]. The center of
the whole educational process is the active membership of the
student, who is expected to broaden his knowledge through
the means of construction, management and guidance of
artificial objects. Practical experience plays a central role,
giving the students the ability to engage in the development
of a new idea, through a direct and immediate manner.
Unfortunately, when this engagement is virtual,
over-simplification tends to appear, due to the abstraction
followed during the training phase. This phenomenon leads
to a problematic understanding of the world as the robot itself
is realizing it. The main cause of such cases is the fact that
many topics are taught in un-realistic and abstract ways.
Students tend to become acquainted in such methods of
learning, and generalize this way of thinking [5].

One of the most attractive and at the same time popular
approach is the one offered be the LEGO company, under the
name Mindstorms. This robotic construction kit has been

All authors are with the University of Macedonia, Thessaloniki, Greece.
E-mail: {kaskalis,dagdil,gevan,kmarg}@uom.gr

specially developed, so as to allow the construction of fully
autonomous robots, since all the processing power is
included in the implemented machine [6]. The "heart" of
LEGO Mindstorms is the element, known as RCX, which
contains a simple, programmable micro-controller (Hitachi
H8). Moreover, it integrates a speaker, an LCD screen, three
sensors (input ports), three actuators (output ports) and an
infrared port, utilized for communication reasons and
program downloading (www.legomindstorms.com).

II.EDUCATIONALLY ORIENTED LEGO MINDSTORMS
PROGRAMMING

Of course, the LEGO Mindstorms are basically a
commercial product, oriented towards a variety of uses:
everything from simple house entertainment to "best
construction idea" contests. Being in the market for over
three years, they have already attracted the attention of a large
number of buyers. People from all ages prefer this product in
order to experiment with a self-complete, flexible and
inexpensive robotic kit.

The first need of the LEGO Mindstorms user is, therefore,
a simple, yet powerful, method for the programming of their
"smart" part, the RCX brick. As one would expect, the
manufacturing company itself supports their product with
various programming tools. However, a dilemma soon arises:
how user-friendly this programming environment should be?
It is not hard to realize that full flexibility and power control
is generally opposed to user friendliness, especially if the
consumers target group covers practically all ages. The
LEGO company faced this problem, equipping their product
with two types of programming tools: one simple and
comprehensible and one advanced and demanding, as regards
prior knowledge of programming principles. We will further
discuss these tools in the next section.

Moreover, the growing popularity of the product led many
researchers and programmers to develop a great number of
programming environments and methods. Tools varying
from high level, graphical user interface programs to low
level, machine language interpreters already exist. Of course,
flexibility and in-depth control follows an opposite direction
from user friendliness and intuitive comprehension.

These programming environments constitute very
interesting proposals and what is more important about them
is that they can be found and downloaded from the Internet.
We located no less than 12 different proposals, including the

Implementing Applications on Small Robots
for Educational Purposes: Programming the

LEGO Mindstorms
Theodore H. Kaskalis, Vasilios Dagdilelis, Georgios Evangelidis, and Konstantinos G. Margaritis

D



FIFTH HELLENIC-EUROPEAN CONF. ON COMPUTER MATHEMATICS AND ITS APPLICATIONS 2

tools from LEGO itself: official SDK, ROBOLAB, Visual
Basic, C++, Smalltalk, Logo, C (NQC), QBasic, TCL, Brick
Programmer, Forth and Java. We, therefore, understand that a
comparative presentation of these programming
environments exhibits particular interest.

We will mainly turn our attention to the identification of
the advantages and disadvantages in an educational
framework [8]. Those characteristics which make a certain
programming language or environment more accessible and
comprehensible to a group of students, will be mainly
stressed. At the same time, the issues of flexibility and
in-depth control will also be taken under consideration.

III.PRESENTATION OF THE PROGRAMMING ENVIRONMENTS

The following presentation assumes an order of a loose
decreasing level of user friendliness. We will also group
some tools, according to certain common characteristics that
they possess. Furthermore, we provide the respective Internet
addresses, where one can find the actual programs under
consideration, along with further details and support.

A.
Official Software Development Kit (RCX Code):

http://mindstorms.lego.com
This is the official software development environment,

provided by LEGO, which also comes with the Mindstorms
product itself. Being very friendly and intuitive to users of all
ages, it does not require prior knowledge of any kind of
programming principles or languages. The user is only
assumed to have a basic familiarization with a computer, to
develop his first "thinking" robots. Programs are actually
constructed by putting together certain graphical elements or
blocks. The idea behind this approach is directly connected
with the physical construction of the robot itself: LEGO
bricks are assembled in order to build it. This approach
becomes even more attractive to students of small ages,
because the visual feeling and the functionality of the
environment remain very close to that of a child's toy.

 
Fig. 1 Official SDK (RCX Code)

As regards users of higher ages, this tool covers all the
basic needs for people who just want to do simple
experiments and have not used any other programming
language before. The official SDK can be indeed an excellent

starting point towards certain programming notions'
understanding. Fig. 1 presents the graphical user interface of
the respective environment.

On the other hand, this proposal appears to be quite
restrictive, when one demands sophisticated programming
techniques and full control over his robot. The level of
flexibility remains low and the potential to create advanced
programs is often narrowed. One of the most serious
problems is the lack of variable support, which accordingly
prohibits the development of serious control over the
construct. Moreover, an attempt to create "large" paradigms
quickly leads to complex visual structures, which discourage
the analysis and comprehension of a program in an
educational framework.

B.
ROBOLAB: http://www.lego.com/dacta/robolab

The previous proposal was developed by LEGO to support
the Mindstorms product in an integrated retail pack. At the
same time, a more "enriched" version was developed. This
version was implemented with an orientation towards school
labs. It contains a greater number of building blocks (bricks)
and RCX elements [11]. Just as before, the ROBOLAB tool
respects the "graphical programming environment"
philosophy. Through icons and objects the user mainly
follows a drag-and-drop concept, in order to build his
paradigms. Students learn to think logically, like a computer,
as they program a series of events (or commands) for the
RCX to perform.

The programming capabilities are divided up into two
sections to accommodate the widespread needs of students.
Pilot, the basic elementary section, and Inventor, the more
advanced section, both use icons to represent commands or
structures. In the Pilot section, the number and order of icon
options is restricted to ensure the success of the user. This
section requires very little reading, making it easy to use in
the primary grades. It uses common images like traffic lights,
arrows, and watches to allow first time users to construct
elementary programs intuitively and quickly. To meet the
needs of the middle and upper grades as well as other
ambitious programmers is the Inventor section, which offers
a new level of flexibility and power, coupled with a slightly
different but still graphical interface. Similar to the Pilot
section, there are 4 levels that gradually add complexity.
Comparing the RCX Code with ROBOLAB, we can say that
the former may be somewhat easier to use, especially by
younger children, while the latter is probably more powerful
from a programming standpoint. RCX Code has an interface
that feels something like a computer game; ROBOLAB is
built on top of National Instruments' LabView, a visual
programming environment for process engineering controls,
and is more complex visually. Fig. 2 presents the two main
sections of ROBOLAB.

C.
Visual Basic: http://www.legomindstorms.com/sdk –

http://emhain.wit.ie/~p98ac25

As already mentioned, the LEGO company also
considered the cases of programmers, already familiar with
"classic" programming languages, willing to take full
advantage of the RCX capabilities. The solution offered



FIFTH HELLENIC-EUROPEAN CONF. ON COMPUTER MATHEMATICS AND ITS APPLICATIONS 3

follows the concept of Active-X objects, in order to allow the
development of high level programs through commercially
available programming environments. Microsoft Windows'
Active-X technology allows programmers to build
self-contained programs, that function as plug-ins in all kinds
of applications. This solution, although easy to use, it implies
the prior installation of commercially available programs (e.g.
MS Visual Basic). We consider this fact as a disadvantage in
an educational framework, since most of the presented
solutions come at no charge.

Fig. 2 ROBOLAB Pilot and Inventor

The way it works is the following. An interface is offered,
which permits a program to control the RCX brick, through
certain communication controls. The main file is named
Spirit.ocx and after its installation, the operating system
"acknowledges" its existence to all available applications. It
offers a specific set of procedures (methods) you can call,
certain variables (properties) you can set and so on. All these
are actually embedded in a syntactically "classic" Basic (or
Visual Basic) program, allowing a much better hardware
control through software structures. If students feel already
comfortable with certain programming principles (or, even

better, Basic syntax), this tool proves to be very powerful in a
potential autonomous robotic construct. Assuming that a
school can anticipate the additional cost for the purchase of a
commercial programming environment, further benefits arise.
Sophisticated tracing and debugging tools become available
to programmers. This fact permits the development of highly
complex projects and paradigms.

D.
C++: http://www.geocities.com/SiliconValley/Hills/

8306/Lego/mindprog.html
In the same context, as the previous approach, we identify

the ability to program the RCX brick, using C++. The
drawback of the additional cost, discussed earlier, is balanced
by the ability to use a powerful, popular, object-oriented
programming language. The Spirit.ocx object appears as a
class, under the name CSpirit and it can be attached to the
main project. A rich set of programming and control
components becomes available, helping the user to develop
his programs. We should note, however, that the learning
curve of this proposal is indeed quite steep. In many cases it
can go beyond the needs of a certain robotic control
curriculum. This problem characterizes all the tools utilizing
the LEGO Active-X object approach.

Fig. 3 Bot-Kit Environment

E. Smalltalk (Bot-Kit): http://www.object-arts.com/
Bower/Bot-Kit
This environment combines the Spirit.ocx object with the

commercially available programming language Dolphin
Smalltalk. All the comments made so far, also hold for this
case, with the only difference located at the type of the used
language. In a framework, where Smalltalk is supported, it
can prove to be a useful solution. Bot-Kit is capable of
controlling a robot in one of two modes. In Immediate mode
the computer directly controls the robot by sending signals
across the infrared link and receiving back information from
the robot's sensor inputs. The robot can be manipulated by
typing commands directly or by writing a Smalltalk program
to perform the appropriate tasks. In Retained mode a
Smalltalk program can be downloaded to the RCX brick so
that the robot is able to operate independently of the PC. Fig.
3 presents the Bot-Kit environment.



FIFTH HELLENIC-EUROPEAN CONF. ON COMPUTER MATHEMATICS AND ITS APPLICATIONS 4

F. Logo (BrainStorm):
http://www.netway.com/~rmaynard

BrainStorm constitutes a very interesting programming
environment, based on the Spirit.ocx object and supported by
the freely available implementation of UCBLogo. It does not
require any additional commercial programming tool and it
implements a classic "introductory" programming language.
Logo has been successfully integrated in a number of
curricula and has established a wide user support in the
educational community. Through this tool, Logo can now be
utilized to direct and program robotic kits. This idea is
somewhat inherent in the famous Logo turtle notion, and it
comes quite natural to students of younger ages.

G.
C (NQC): http://www.enteract.com/~dbaum/nqc

The NQC (Not Quite C) programming environment [2]
introduces one of the most interesting independent proposals,
as regards the control of RCX. It has already acquainted
extensive user support with new versions and updates
appearing at a constant pace. In general, it is a very active
project, offered for free, and has attracted the attention of
many researchers and hobbyists. The core programming
language is very close to the traditional C, utilizing the LEGO
firmware, but bypassing the Spirit.ocx object.

The extensive support of variables, counters, arrays and
subroutines allows the development of powerful control
programs. Moreover, the user can have direct control over the
RCX, up to a level low enough to install new versions of
firmware. Of course the prior knowledge of basic
programming in C, can become a problem at introductory
levels. Moreover, NQC must live within the constraints of the
standard LEGO firmware. For example, since the firmware
does not provide floating-point support, NQC cannot provide
it either.

Fig. 4 RCX Command Center IDE for NQC

NQC was created as a command-line tool, but certain users
have created Integrated Development Environments (IDEs)
for it. Basically, they provide a nice user interface on top of
the standard NQC compiler. They also add features such as
remote control of the RCX, syntax highlighting, etc. In
general they provide a friendlier way to write NQC programs.
One such IDE is the RCX Command Center, presented in Fig.
4. WinNQC and Visual NQC 2001 are two other graphical

user interface environments.

H.
QBasic: http://www.phesk.demon.co.uk/lego

Turning our attention again to the Basic programming
language, we identify an independent proposal, attempting to
utilize the freely available (bundled with MS-DOS) QBasic.
Although the project is still in early stages, its objective
exhibits interesting aspects. The LEGO technology itself is
"not so hardware demanding", as regards the platform where
the program implementation takes place. Since many school
computer labs do not have state-of-the-art machines, this
feature can come in handy in certain situations. It proves that
modern operating systems are not actually necessary and the
RCX can be effectively programmed through low-end
machines (MS-DOS or Windows 3.1 based). As a result, the
LEGO Mindstorms technology can reach even more
laboratories, raising the need for expensive hardware
upgrades.

I.
TCL: http://www.autobahn.org/~peterp/rcx

Moving on to scripting languages, we identify a solution
permitting the RCX brick to be programmed through the TCL
language. Aim of the researchers, developing the project, is a
visual programming environment through the "natural
extension" of TCL, TK. For the time being, an interpreter has
been realized and it allows the control of the RCX with
commands of the respective language. From an educational
point of view, interest can be found only in situations where
the TCL is supported in similar teaching subjects, a fact that
is indeed not so common today.

J.
Brick Programmer:

http://www.umbra.demon.co.uk/gbp.html

Returning to visual programming environments we
identify the Brick Programmer tool. Although its
development is not so active, compared to other existing
projects, it offers a very flexible framework. We could say
that it is mainly directed to students of higher ages, providing
more general access to variables stored inside the RCX than
the simple counters in the Mindstorms system. The
programming model supported is that provided by the RCX
byte code interpreter and includes direct access to its tasks
and routines, while supporting simple symbolic debugging
facilities. The events (sensor watchers) found in Mindstorms
can be programmed with greater generality, using tasks
containing loops and conditions based on sensor values. The
user can easily create advanced programs, without going into
complex visual structures. The Brick Programmer visual
environment appears in Fig. 5.

K. Forth (pbForth): http://www.hempeldesigngroup.com/
lego/pbFORTH
Our last two presented environments share the common

characteristic of the RCX firmware replacement. The
standard firmware from LEGO is by default loaded into the
RCX brick. This works very well for most of the applications,
users are likely to build. There are certain situations, however,



FIFTH HELLENIC-EUROPEAN CONF. ON COMPUTER MATHEMATICS AND ITS APPLICATIONS 5

when one needs advanced control over the RCX. The ability
to use more variables, to log thousands of sensor readings and
to do sophisticated control algorithms require a more
powerful environment.

Fig. 5 Brick Programmer

The pbForth tool can be thought of as an interactive
scripting language, integrating Forth. Once the firmware is
loaded into the brick, the user can either type pbForth
programs or send them as ASCII files using a standard
terminal emulator. This is a quite powerful concept since one
can literally try his code out and debug it in real time. The
brick compiles the code directly. These advanced features, in
accordance with the utilization of a sophisticated and
well-supported language, can prove valuable tools in courses
where serious robotic construction development takes place.

L. Java (TinyVM): http://tinyvm.sourceforge.net – (leJOS):
http://lejos.sourceforge.net

The cases of TinyVM and leJOS constitute parts of an
ambitious program aiming to substitute the LEGO firmware,
so as to have native Java support. Their main difference is the
final firmware footprint, loaded in the RCX. TinyVM
occupies a space of 10KΒ

, offering some really impressive features, including:
preemptive threads, exceptions, synchronization, arrays
(including multidimensional ones), recursion, access to RCX
buttons, an emulation tool and well documented Application
Programming Interfaces (APIs).

The leJOS proposal, on the other hand, aims to higher
levels of completeness and performance, occupying 17KB of
RAM. It further supports floating-point operations,
mathematical functions (e.g. sin, cos, tan, atan, log), string
constants, multi-program downloading and more enriched
APIs.

Indeed this project appears to take advantage of the full
technological features of the RCX hardware. Having Java as
the core programming language, it can constitute advanced
robotic curricula, aiming at students of higher ages. In a
framework of object oriented programming, it can be directly
utilized and it exhibits increased user support. In addition, a
visual environment exists, enhancing user friendliness and
permitting easier control.

IV. CONCLUDING REMARKS

The LEGO Mindstorms' programming environments that
were presented allow us to reach certain conclusions, as
regards the integration of the product in educational curricula.
First, we can make a classification of the available tools,
according to the ages of students they can be oriented to. In
an ascending order of student ages we propose the following
list: official SDK, ROBOLAB, Brick Programmer, C (NQC)
and Java.

This classification can be modified, according to other
supported subjects. The solutions of C and Java can be
replaced by Logo, Visual Basic or C++. The cases of
Smalltalk and Forth, although competitive, they seem to be
somewhat "far-fetched" for the current educational state of
computer related subjects. Finally, the QBasic proposal can
prove to be valuable in low-end school labs, where computer
hardware poses difficulties.

We can safely state that the research and educational
community seems to actively support robotic construction
kits. We can now take more and more advantage of the
educational features of LEGO Mindstorms. The low cost of
contemporary hardware and software can make robotic kits
reach almost every related school laboratory, permitting the
hands-on experimentation of students with programmable,
constructed machines.

REFERENCES

[1] D. Baum, R. Zurcher, Definitive Guide to LEGO Mindstorms
(Technology in Action), Apress, 1999.

[2] D. Baum (ed.), M. Gasperi, R. Hempel, L. Villa, Extreme Mindstorms:
an Advanced Guide to LEGO Mindstorms, Apress, 2000.

[3] I. Harel, S. Papert, Constructionism, Ablex Publ. Corp., 1991.
[4] Y. Kafai, M. Resnick, Constructionism in Practice: Designing,

Thinking, and Learning in a Digital World, Lawrence Erlbaum, 1996.
[5] H.H. Lund, "AI in Children's Play With LEGO Robots", Artificial

Intelligence and Computer Games, D. Dobson & K. Forbus (eds.), TR
SS-99-02, AAAI Press, pp. 60-63, 1999.

[6] F.G. Martin, Circuits to Control: Learning Engineering by Designing
LEGO Robots, Ph.D. Thesis, MIT, 1994.

[7] O. Miglino, H.H. Lund, M. Cardaci, "Robotics as an Educational Tool",
J. of Interactive Learning Research, vol. 10, no. 1, pp. 25-48, 1999.

[8] S. Papert, Mindstorms: Children, Computers and Powerful Ideas, NY:
Basic Books, 1980.

[9] S. Papert, Constructionism: A New Opportunity for Elementary
Science Education, A MIT Proposal to the National Science
Foundation, 1986.

[10] J. Piaget, B. Inhelder, La Psychologie de l' Enfant, PUF, 1966.
[11] M. Portsmore, "ROBOLAB: Intuitive Robotic Programming Software

to Support Life Long Learning", APPLE Learning Technology Review,
pp. 26-39, Spring/Summer 1999.


	I.INTRODUCTION
	II.EDUCATIONALLY ORIENTED LEGO MINDSTORMS PROGRAMMING
	III.PRESENTATION OF THE PROGRAMMING ENVIRONMENTS
	A.
Official Software Development Kit (RCX Code): ht
	B.
ROBOLAB: http://www.lego.com/dacta/robolab
	C.
Visual Basic: http://www.legomindstorms.com/sdk 
	D.
C++: http://www.geocities.com/SiliconValley/Hill
	E.Smalltalk (Bot-Kit): http://www.object-arts.com/B
	F.Logo (BrainStorm): http://www.netway.com/~rmaynard
	G.
C (NQC): http://www.enteract.com/~dbaum/nqc
	H.
QBasic: http://www.phesk.demon.co.uk/lego
	I.
TCL: http://www.autobahn.org/~peterp/rcx
	J.
Brick Programmer: http://www.umbra.demon.co.uk/g
	K.Forth (pbForth): http://www.hempeldesigngroup.com/
	L.Java (TinyVM): http://tinyvm.sourceforge.net – (le

	IV.CONCLUDING REMARKS
	REFERENCES

