
An Educational Programming Environment for

Novices

M. Satratzemi1, V. Dagdilelis2, G. Evangelidis1, and V. Efopoulos1

1 Department of Applied Informatics
2 Department of Educational and Social Policy

University of Macedonia, Egnatia 156, GR-54006, GREECE

Abstract. In this paper we present an integrated educational programming en-
vironment, called X-Compiler, designed to introduce students to programming.
This environment is based on a simple programming language (and a corre-
sponding minimal assembly language) called X. The design and development
of X-Compiler was based on the research findings regarding the problems met
by novice programmers and the results of empirical studies that discover and
study the mistakes they make on a regular basis. We first review the various
categories of programming environments already developed to aid the teaching
of programming to novices and we present the design principles we used for X-
Compiler. Then, we describe our system in detail. X-Compiler offers interesting
didactic features. Users get detailed feedback on the errors encountered during
compilation, and are always aware of everything that happens during program
execution (by seeing the correspondence between source and assembly code, the
intermediate values of the machine registers, the system generated temporary
variables, their own variables, and the contents of the output window). More-
over, users can alter the produced assembly code and then execute it. We offer
a great number of detailed and explanatory messages to guide novice program-
mers when debugging their programs and help them write better programs.

1 Introduction

A great number of educational programming environments designed to support the
teaching of programming to novices have been proposed and developed during the
past years. These environments are based on the findings of the research community
on the difficulties novice programmers encounter and empirical studies on the most
common and persistent errors novices make. These programming environments can be
categorized as follows:

Microworlds - Programming Mini-languages. The basic idea behind mi-
croworlds and mini-languages [4] is the use of a simple programming language to
support the early stages of programming learning. The majority of programming mi-
croworlds integrates an environment based on a real life analogy and an actor that
“lives” in this environment. A representative of this category is mini-language Karel
the Robot [13] and its associated programming environment Karel Genie.

Compilers with advanced error-reporting capabilities. Many researchers
support that the frustration experienced by many students when introduced to pro-
gramming is attributed more to the programming environment used and less to the

programming language itself. A representative example of a programming environment
of this category is THETIS [8] that consists of an ANSI C compiler with a user interface
that provides easy to use code development, debugging and visualization tools.

Visual Programming Languages. Researchers that support the use of visual
languages [3] propose that the teaching of programming to novices should be based
on an environment where algorithms can be expressed visually (for example with flow
charts) rather than textually (with the use of a traditional text editor). The first
interesting case of a visual language was BACCII [5].

Program Visualization Systems. Program visualization refers to the visualiza-
tion of the code or the data structures of a program. It can be static (for example,
when using a diagram to demonstrate the operation of a linked list) or dynamic (e.g.,
by highlighting the line of the source code being currently executed). A classic example
of this category is DYNALAB [3].

In this paper we present our own simple programming language called X and its
associated programming environment called X-Compiler that we designed and imple-
mented as part of the pilot project “DELYS”1. We opted for a new environment be-
cause, (a) we wanted to design a programming environment specifically tailored for the
needs of the Greek educational system, and (b) we intended to include features that the
current research reports can benefit novice programmers. In Section 2 we discuss the
principles behind the design of X and X-Compiler. Section 3 presents the specifications
of X and its associated pseudo-assembly language. We show how each statement of X is
translated into assembly code in Section 4. In Section 5 we describe the programming
environment for X, and we conclude with Section 6.

2 Design Principles for X and X-Compiler

Programming environments for novice programmers should primarily be effective tools
for achieving certain didactic goals, and secondarily innovative and state-of-the-art
pieces of software. Our design was based on and influenced by the studies on the
difficulties novice programmers encounter. Below, we list a number of principles [12]
we considered essential while developing the programming environment for X.

Minimalism. The programming language should be as simple as possible. The use
of types should be avoided and variables should not have to be declared before use [11].
Also, the programming environment should not present unnecessary information.

Functional and Syntactic Simplicity. Novice programmers are asked to pro-
gram a mental machine. This is the machine whose nature is determined, or better,
implied by the programming language. It is essential that the mental machine is as
simple as possible, i.e., it should consist of a small number of components that interact
in a well-defined and clear manner [7, 10, 14]. The mental machine should be charac-
terized by (a) functional simplicity, that is, each command should be described by a
simple and small set of machine functions, and (b) syntactic simplicity, that is, the

1 This research was funded by the European Union and the Greek Ministry of Education
as part of the project “EPEAEK: Operational Program for Education and Initial Occupa-
tional Training”, B’ CFS, Pilot Project “ODYSSEIA: Development of Educational Software
Accompanied by Pedagogical and Technological Documentation”.

program BEGIN { statement;}* END.

statement id := expr |
READ id |
WRITE expr |
IF relexpr THEN statement |
WHILE relexpr DO statement |
BEGIN {statement;}* END

id any string consisting of letters, digits and underscore and starting with a letter

expr id | number | expr op expr | (expr)

op +| − | ∗ |/

number any long integer

relexpr expr relop expr

relop > | = | <>

comments anything enclosed in curly brackets

Table 1. Specification of X

syntactic rules of the programming language should be consistent and should not have
special cases and/or exceptions.

Stepped execution and control through visual feedback. Instant feedback
can help novice programmers implement and debug their programs. A graphical debug-
ger is useful even for correct programs: it can help novice programmers understand the
way their programs work. A programming environment should help novice program-
mers test, debug, and execute their programs [6]. It is essential that the programming
environment include a low-level debugger and a code execution tracer together with
data visualization [8, 15]. Commercial programming environments hide the details of
program execution and students tend to conceive program execution as an input/output
process [4] failing to realize the semantics of the programming language.

Extensive debugging and programming environment usage help. The pro-
gramming environment should provide novice programmers with many detailed and
explanatory messages that can guide them when debugging their programs. Error mes-
sages should be expressed in a natural language and the programming environment
should propose ways to correct the errors [15]. Well-designed systems are intuitive and
users do not need a manual to use them. Of course, provision of on-line help or tutorials
[2] is essential and helpful, but these should be minimal and clear.

3 Languages X and pseudo-assembly

We have designed a Pascal-like language, called X. The language supports the assign-
ment, if . . . then, while . . . do, read, write and compound statements. Identifiers and
numbers are integers and all, possibly nested, arithmetic expressions evaluate to in-
tegers. X supports only three relational operators: >,=, and <>. A comment is text
enclosed in curly brackets ({}). Table 1 shows the full specification of X. In Figure 1,
we give the X code for computing the factorial of an integer.

The assembly language used is a pseudo-assembly that runs on a virtual machine
with two registers and includes the basic LOAD, STORE, COMPARE, JUMP, ADD,

{ computing the factorial of an integer x }

begin

read x;

i := 1;

factorial := 1;

while x > i do

begin

i := i + 1;

factorial := factorial * i;

end;

write factorial;

end.

Fig. 1. A sample X program

etc., instructions needed to implement the source language. A detailed description of
the instructions of the pseudo-assembly can be found in Table 2 in the Appendix.

4 Compiling X to pseudo-assembly

Every statement of X is translated into one or more pseudo-assembly statements. In
Table 3 in the Appendix you can see the way each generic X statement is translated
(or compiled). The result of the evaluation of all arithmetic and relational expres-
sions is stored in register 0. Temporary variables may be used during the computa-
tion of expressions. Names of the type cond mid N, while begin N, tempr vrbl N, where
(N=1,2,3,. . .), refer to the N th conditional statement, the N th while statement, and
the N th temporary variable respectively.

In Figure 2 we give the assembly code X-Compiler produces for the sample X
program of Figure 1. We also demonstrate the way each X statement is translated into
its equivalent pseudo-assembly code.

The X-Compiler programming environment has been implemented on the Microsoft
Windows platform using Macromedia Director 7 and the compiler construction tools
LEX and YACC [1].

X-Compiler allows users to edit, debug, and execute their programs. It consists of
five windows (1 - source code, 2 - assembly code, 3 - system registers & temporary
variables, 4 - user variables, 5 - output), and has two modes of operation (novice and
advanced) (see Figure 3). In novice mode, only windows 1 and 5 are active, whereas in
advanced mode all windows are active. Of course, users can activate or deactivate any
window any time.

The provided menu-bar and window-specific toolbars allow the intuitive use of the
programming environment (open, save, and edit source or assembly code, compile,
execute, or step-execute either type of code, arrange windows, get help on the operation
of the programming environment or the X-language).

We took extra care to include a versatile help system both for the programming
environment and X, since the current research reports many problems in this area [8].

begin

01 BLOCK factorial

02 BLOCK x

03 BLOCK i

read x; 04 READ(0)

05 STORE(0,x)

i := 1; 06 LOAD_IMMEDIATE(0,1)

07 STORE(0,i)

factorial := 1; 08 LOAD_IMMEDIATE(0,1)

09 STORE(0,factorial)

while x > i do 10 while_begin_1:

begin 11 LOAD(0,x)

12 LOAD(1,i)

13 COMPARE(0,1,0)

14 JUMP_NEGATIVE(0,while_end_1)

i := i + 1; 15 LOAD(0,i)

16 LOAD_IMMEDIATE(1,1)

17 ADD_R(0,1,0)

18 STORE(0,i)

factorial := factorial * i; 19 LOAD(0,factorial)

20 LOAD(1,i)

21 MUL_R(0,1,0)

22 STORE(0,factorial)

end; 23 JUMP(while_begin_1)

write factorial; 24 while_end_1:

25 LOAD(0,factorial)

26 WRITE(0)

end.

Fig. 2. The correspondence of X and assembly code for computing factorial

We support (a) regular help files for the programming environment (Figure 4), and (b)
an editor sensitive to user double-clicks, i.e., users can double-click keywords, operators
or delimiters to obtain detailed information about them (Figure 5a).

During compilation, syntactic errors in the source code trigger a pop-up window that
contains two drop-down lists, one for the detected errors and one for the warnings issued
by the compiler. Users can choose the list element they desire to get an explanation of
the type of the error or warning. At the same time the appropriate line of the source
code is highlighted (Figure 5b).

Once users succeed in compiling their code they can either execute it or step-execute
it and examine what actually happens during execution. For each source code statement
the corresponding assembly code statement(s) are highlighted and at the same time
the appropriate system registers, temporary variables, and user variables get updated
if necessary (see Figure 6).

Input statements are handled by using a pop-up window that allows users to enter
the desired value for their integer variables (see in the center of Figure 3). The output
window displays the output generated by the WRITE statements of the user programs.

Fig. 3. The X-Compiler programming environment

Fig. 4. The help system of X-Compiler

Fig. 5. (a) On-line help for X statements, (b) Error detection and advice to the programmer

Fig. 6. Step execution of X and pseudo-assembly

An interesting feature of the assembly code window is the ability to edit/alter the
compiler produced assembly code that corresponds to a given source code fragment
and execute it. Since the compiler produces non-optimized assembly code this feature
can allow teachers guide their students in manually optimizing their assembly code.
Alternatively, users can write their assembly programs from scratch.

5 Summary

During project development, students of three Greek high schools tested X-Compiler
and their remarks and suggestions were taken into account. X-Compiler is about to be
used by the Greek Ministry of Education in a number of secondary education schools
and in the entry-level university courses on programming we teach (especially its as-
sembly language features).

Currently, we are in the process of implementing some additions to the software
concerning, (a) a small extension of X to include strings and procedures, and (b) the
creation of a “smart” advisor on the logical errors made by students.

Appendix

instruction explanation

BLOCK v Declare an integer variable or a memory position with name v

LOAD(r, v) store contents of memory location v in register r (r can be 0 or 1)

LOADN(r, n) store number n in register r

STORE(r, v) store contents of register r to memory location v

ADD R(r1, r2, r3) add/subtract/multiply/divide contents of registers r1 and r2
SUB R(r1, r2, r3) and store the result in register r3
MUL R(r1, r2, r3)

DIV R(r1, r2, r3)

COMPARE(r1, r2, r3) compare the contents of registers r1 and r2
and store the result in register r3;
the result is −1 if r1 < r2, 1 if r1 > r2, and 0 if r1 = r2

INC(r) increment the contents of register r

DEC(r) decrement the contents of register r

NEG(r) negate the contents of register r

my label: declare a label with the name my label

JUMP ZERO(r, lb) jump to lb if contents of r = 0

JUMP NEGATIVE(r,lb) jump to lb if contents of r < 0

JUMP POSITIVE(r, lb) jump to lb if contents of r > 0

JUMP(lb) unconditionally jump to lb

READ(r) store user input to register r

WRITE(r) print contents of register r to the output window
Table 2. The pseudo-assembly used in X-Compiler

X statement Equivalent assembly code

write <arithmetic expr> <code for the arithmentic expr>
WRITE(0)

read <id> READ(0)

STORE(0, <id>)

if <relational expr> then <stmt> <code for relational expr>
JUMP cond2(0, cond mid N)

<code for stmt>
cond mid N:

while <relational expr> do <stmt> while begin N:

<code for relational expr>
JUMP cond(0, while end N)

<code for stmt>
JUMP(while begin N)

while end N:

<id> := <arithmetic expr> <code for arithmetic expr>
STORE(0, <id>)

<arithmetic expr1> op3<arithmetic expr2> <code for arithmetic expr2>
STORE(0, tempr vrbl N)

<code for arithmetic expr1>
LOAD(1, tempr vrbl N)

ACTION4(0, 1, 0)

- <arithmetic expr> <code for arithmetic expr>
NEG(0)

(<arithmetic expr>) <code for arithmetic expr>

<id> LOAD(0, <id>)

<number> LOAD IMMEDIATE(0, <number>)

<arithmetic expr1> rel op5<arithmetic expr2> <code for arithmetic expr2>
STORE(0, tempr vrbl N)

<code for arithmetic expr1>
LOAD(1, tempr vrbl N)

COMPARE(0, 1, 0)

Table 3. The pseudo-assembly used in X-Compiler

References

1. A.V. Aho, R. Sethi, and J.D. Ullman, “Compilers: principles, techniques, tools”, Addison-
Wesley, 1988.

2. B. Bell, J. Rieman, and C. Lewis, “Usability Testing of a Graphical Programming System:
Things We Missed in a Programming Walkthrough”. In Proceedings of ACM CHI ’91

Conference on Human Factors in Computing Systems, pp. 7-12, 1991.

2 where JUMP cond is one of JUMP ZERO, JUMP POSITIVE, JUMP NEGATIVE
3 where op is +, -, *, /
4 where ACTION is ADD R, SUB R, MUL R DIV R
5 where relational op is >, <>, =

3. M. Birch, C. Boroni, F. Goosey, S. Patton, D. Poole, C. Pratt, and R. Ross, “DYNALAB:
A Dynamic Computer Science Laboratory Infrastructure Featuring Program Animation”,
ACM SIGSCE Bulletin, pp. 29-33, 1995.

4. P. Brusilovsky et al, “Mini-languages: a way to learn programming principle”, Education

and Information Technologies, 2, 65-83, 1997.
5. B. Calloni and D. Bagert, “Iconic Programming in BACCII vs. Textual Programming:

which is a better learning environment?”, ACM, SIGSCE ’94, Phoenix AZ, pp. 188-192,
1994.

6. C. DiGiano, R. Baecker, and A. Marcus, “Software visualization for Debugging”, Com-

munications of the ACM, Vol. 40, No. 4, pp. 44-54, 1997.
7. B. Du Boulay, T. O’Shea, and J. Monk, “The Black Box Inside the Glass Box: Presenting

Computing Concepts to Novices”, Studying The Novice Programmer, E. Soloway and
J. Sprohrer (Eds.), Lawrence Erlbaum Associates, pp. 431-446, 1989.

8. S.N. Freund and E.S. Roberts, “THETIS: An ANSI C programming environment designed
for introductory use”, ACM SIGSCE ’96, Philadelphia, PA, USA, pp. 300-304, 1996.

9. MacGNOME Project, Computer Science Department, Carnegie Mellon University, Pitts-
burgh, PA 15213.

10. P. Mendelsohn, T.R.G. Green, and P. Brna, “Programming Languages in Education: The
Search for an Easy Start”, Psychology of Programming, J. Hoc, T. Green, R. Samurcay,
and D. Gilmore (Eds.), Academic Press, 175-200, 1990.

11. P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution of Novice Programming
Environments: the Structure Editors of Carnegie Mellon University”, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA 15213-3890, 1996.

12. J.F. Pane and B.A. Myers, “Usability Issues in the Design of Novice Programming Sys-
tems”, Technical Report CMU-CS-96-132, School of Computer Science, Carnegie Mellon
University, 1996.

13. R.E. Pattis, J. Roberts, and M. Stehlik, “Karel - The Robot, A Gentle Introduction to
the Art of Programming”, 2nd edn., New York, Wiley, 1995.

14. M. Ruckert and R. Halpern, “Educational C”, ACM SIGSCE Bulletin, pp. 6-9, 1993.
15. T. Schorsch, “CAP: An Automated self-assessment to tool to check Pascal programs for

syntax, logic and style errors”, ACM SIGCSE ’95, pp.168-172, 1995.

