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Abstract - In this paper, we discuss the application of 

Principal Component Analysis (PCA), for the purpose of 

determining a similarity/distance measure among 

multivariate time series. We review several PCA-based 

measures that have been proposed by researchers from 

diverse scientific fields and we extend the well-known 

statistic in the Statistical Process Control community, SPE, 

in order to define a novel distance measure. We conducted 

experiments on four datasets, which have been used 

extensively in the literature, and we provide the results of 

their performance with respect to classification accuracy. 

Experiments indicate that there is no measure that can be 

clearly considered as the most appropriate one for any 

dataset, and that the newly proposed measure is a promising 

option for similarity search. 
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1 Introduction 

Technological advances in automated monitoring 
systems and sensor devises have facilitated the generation of 
huge amounts of data in the form of time series. A time series 
is a collection of observations made sequentially through 
time. At each time point one or more measurements may be 
monitored corresponding to one or more attributes under 
consideration. The resulting time series is called univariate or 
multivariate respectively. Multivariate time series appear 
frequently in several diverse applications. Examples include 
human motion capture [1], geographical information systems 
[2], statistical process monitoring [3], or   intelligent 
surveillance systems [4]. The need for analyzing efficiently 
this volume of information led to the adjustment of data 
mining techniques in order to incorporate the temporal nature 
of data.  At the core of these techniques lies the concept of 
similarity since most of them require searching for similar 
patterns. For instance, it is of interest to form clusters of 
objects that move similarly by analyzing data from 
surveillance systems or classify current operating conditions 
in a manufacturing process into one of several operational 
states. In the field of computer graphics, an animator needs to 
search efficiently a motion database for similar motions to a 
desired one [5]. 

There is a vast literature in univariate time series 
similarity search, mainly focused on the interrelated issues of 

representation [6], distance/similarity measure [7] and 
indexing [8]. However, the case of multivariate time series 
has not been extensively explored with respect to these 
issues. In this case, the similarity is sought among objects 
that consist of p-dimensional time series, that is, there are p 
attributes of consideration measured sequentially through 
time. Most of the papers concentrate on indexing 
multidimensional time series and provide an appropriate 
representation scheme and/or a similarity measure.  In 
addition to that, most of the research interest lays on 
trajectories, which usually consist of 2 or 3 dimensional time 
series. The authors of [9] and [10] suggest similarity 
measures based on the Longest Common Subsequence 
(LCSS) model, whereas a modified version of the Edit 
Distance for real-valued series is provided in [11]. Vlachos et 
al. [12] propose an indexing framework that supports 
multiple similarity/distance functions, without the need to 
rebuild the index. Several researchers approach similarity 
search by applying a measure and/or an indexing method on 
transformed data. Kahveci et al. [13] propose to convert a p-
dimensional time series of length n to a univariate time series 
of length np by concatenation, and then apply a 
representation scheme for the purpose of dimensionality 
reduction. On the other hand, Lee et al. [14] propose a 
scheme for searching a database, which, in the pre-processing 
phase includes the representation (e.g. DFT) of each one of 
the p time series separately. Cai & Ng [15] approximate and 
index multidimensional time series with Chebyshev 
polynomials and prove the Lower Bounding Lemma for this 
representation. That is, that the true distance between two 
time series is lower-bounded by the distance in the space of 
Chebyshev coefficients. In the previous three papers, the 
Euclidean distance is applied as a distance measure. Finally, 
Bakalov et al. [16] extend the Symbolic Aggregate 

Approximation (SAX) [6] and the corresponding distance 
measure for multivariate time series.   

In this paper, we investigate the application of Principal 

Component Analysis (PCA) on multivariate time series for 
the purpose of defining a similarity/distance measure. PCA is 
a well-known statistical approach that can be used to reduce 
the dimensionality of a multivariate dataset by condensing a 
large number of interrelated variables into a smaller set of 
variates, while retaining as much as possible of the variation 
present in the original dataset [17]. We review several PCA-
based similarity/distance measures that have been proposed 
in the literature from many diverse fields. Moreover, we 
extend the well-known statistic in the Statistical Process 
Control (SPC) community SPE or Q, in order to provide a 



  

distance measure that has never been tested in the context of 
similarity search. Experiments were performed on four 
datasets that have been extensively utilized in the literature. 
PCA-based similarity search is more complicated and usually 
requires expensive computations, however, it may improve 
similarity search providing at the same time useful 
information for post hoc analysis.  

In Section II, we briefly provide the background on 
PCA and we discuss its implications in similarity search. 
Section III discusses PCA-based similarity/distance measures 
proposed from diverse fields and introduces a distance 
measure based on statistical process control theory. In 
Section IV, we describe the datasets, the methods and the 
results of the conducted experiments. Finally, conclusions 
and future work is presented in Section V.   

2 PCA-Based Similarity Search 

2.1 Background on PCA 

Principal Component Analysis is applied on a 
multivariate dataset, which can be represented as a matrix 
Xn×p. In case of time series, n represents their length (number 
of time instances), whereas p is the number of variables being 
measured (number of time series).  Each row of X can be 
considered as a point in p-dimensional space. The objective 
of PCA is to determine a new set of orthogonal and 
uncorrelated composite variates Y(j), which are called 
principal components: 

ppjjjj XaXaXaY +++= ...)( 2211   (1) 

where j = 1, 2, …, p. Xi denotes the ith variable. The 
coefficients aij are called component weights. Each principal 
component is a linear combination of the original variables 
and it is derived in such a manner that its successive 
component will account for a smaller portion of variation in 
X. Therefore, the first principal component accounts for the 
largest portion of variance, the second one account for the 
largest portion of the remaining variance subject to being 
orthogonal to the first one and so on.  Hopefully, the first (k) 
components will retain most of the variation present in all of 
the original variables (p). Thus, an essential dimensionality 
reduction may be achieved by projecting the original data on 
the new k-dimensional space, as long as, k << p.  

The derivation of the new axes (components) is based 
on Σ, where Σ denotes the covariance matrix of X. 
Alternatively, this derivation could be based on the 
correlation matrix, which is equivalent to perform PCA on 
standardized variables (i.e. variables with mean equal to zero 
and standard deviation equal to one). Each eigenvector of Σ 
provides the component weights aij of the Y(j) component, 
while the corresponding eigenvalue, denoted λj, provides the 
variance of this component.  

Intuitively, PCA transforms a dataset X by rotating the 
original axes of a p-dimensional space and deriving a new set 
of axes (components), as in Fig. 1. The component weights 
represent the angles between the original and the new axes. In 
particular, the component weight aij is the cosine of the angle 
between the ith original axis and the jth component [18]. The 
values of Y(j) calculated from equation (1) provide the 

coordinates of the original data in the new space. 
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Fig. 1. A multivariate time series consisting of two variables 
(X1 and X2) and ten time instances. Dots represent the time 
instances, while solid lines represent the principal 
components that have been derived by PCA. A 
dimensionality reduction can be achieved, if only the first 
component Y(1) is retained and data is projected on it. 

Conclusively, the application of PCA on a multivariate 
dataset Xn×p results in two matrices, in particular the matrix 
of component weights Ap×p and the matrix of variances Λp×1. 
In addition to that, the matrix of the new coordinates Yn×p of 
the original data can be calculated from A, since Y = X· A. 

2.2 Implications of PCA in Similarity Search 

PCA is applied for dimensionality reduction, and thus it 
can be considered as a representation scheme. Consequently, 
data is transformed into a new space and similarity should be 
based on at least one of the produced matrices, mentioned in 
the previous paragraph, Ap×p, Λp×1, and Yn×p. The central 
concept is that, if two multivariate time series are similar, 
their PCA representation will be similar, that is, the produced 
matrices will be close enough. Searching similarity based on 
Ap×p, means to compare the angles of principal components 
derived from two multivariate time series, whereas searching 
based solely on Yn×p is useless, since these values are 
coordinates in different spaces. The matrix Λp×1 contains 
information about the shape of the time series and it may be 
used in conjunction with Ap×p for further distinguishing 
power. However, this matter needs to be considered on the 
specific characteristics of each application. 

Regarding data volume, PCA representation may 
achieve essential data reduction, as long as, the number of 
time instances n is much greater than the number of variables 
p. Note that a dataset Xn×p is represented by the matrices Ap×p 
and Λp×1. Moreover, a further data reduction can be achieved, 
if only k components are retained, where k << p. There are 
several criteria for determining the number of components to 
retain, such as the scree graph or the cumulative percentage 
of total variation [17].  According to the latter criterion, one 
could select that value for k, for which the first k components 
retain more than 90% of the total variation present in the 
original data. 

Another implication of PCA-based similarity search is 
that two multivariate time series with equal number of 
variables but different lengths can be compared directly, 
since the dimensions of the produced matrices A and Λ are 
independent of the lengths (p×p and p×1 respectively). 



  

Another issue that needs to be clarified is the existence 
of various types of distortions in original data and how these 
are handled through PCA representation. More specifically, 
there are four major distortions that ought to be considered, 
namely, offset translation, amplitude scaling, time warping 
and noise. Offset translation refers to the case where there are 
differences in the values of two time series, while the general 
shape remains similar. PCA representation automatically 
takes this fact into consideration, since it is based on 
covariances, which are not affected by the magnitude of the 
values. This is a potential disadvantage of PCA, if similarity 
search is to be based also on the magnitude of the values. 
Amplitude scaling refers to the case where there are 
differences in the scaling of the values of two time series, 
while the general shape remains similar. In this case, PCA 
representation can be based on the correlations among 
variables, instead of the covariances. This is an alternative 
way of deriving the principal components, which produce 
slightly different results, but not essentially different in the 
context of dimensionality reduction. Time warping distortion 
may appear globally or locally. In the case of global time 
warping (i.e. two multivariate time series evolve in different 
rates), PCA representation is expected to be similar, since the  
shorter time series can be considered as a systematic random 
sample of the longer one, resulting to similar covariance 
matrix. Intuitively, the existence of local time warping 
distortions may be captured by the covariances of the 
corresponding variables. Yang & Shahabi [19] provide 
empirical evidence that PCA addresses the time warping 
distortion. The distortion of noise is intrinsically handled by 
PCA, since the discarded principal components account 
mainly for variations due to noise. 

The final implication of applying PCA is that the 
temporal nature of data is not taken into account while 
deriving the principal components, since this procedure is 
based on the covariances among variables.  

3 PCA-based Measures 

3.1 A Review on PCA-based Measures 

There are several PCA-based measures that have been 
proposed in order to compare two objects, which are in the 
form of multivariate time series. The main idea is to derive 
the principal components for each one and then to compare 
the produced matrices.   

Suppose that we have two multivariate time series 
denoted Xn×p and Yn×p. Applying PCA on each one results in 
the matrices of component weights AX and AY, and variances 
ΛX and ΛY respectively. All the following measures assume 
that the number of variables p is the same for all series. This 
is a rational assumption, since these series are usually 
generated by the same process within a specific application.  

One of the earliest measures has been proposed by 
Krzanowski [20]. This measure (2) is applicable to time 
series, although originally it was not applied on such type of 
data. The proposed approach is to retain k principal 
components (k << p) and compare the angles between all the 
combinations of the first k components of the two objects. 
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where θij is the angle between the ith principal component of 
X and the jth principal component of Y. 

Johannesmeyer [21] modified the previous measure by 
weighting the angles with the corresponding variances as in 
(3). 

1

λλθλλ

λ

11 1

2λ

≤ ≤

⋅⋅⋅= ∑∑∑
== =

PCA

k

i
YiXi

k

i

k

j
ijYjXiPCA

S

S

� 0

,/)cos(
 (3) 

Singhal & Seborg [22] extend the previous measure by 
incorporating an extra term in (3), which expresses the 
distance between the original values of the two objects. This 
distance factor (Sdist) can be particularly useful in case the 
two objects have similar principal components but the values 
of their variables are essentially different. In order to find the 
distance between the two objects, it is required to set one of 
them as the reference dataset. Then, the Mahalanobis 
distance of a dataset from the reference is computed as in (4). 
Y is assumed to be the reference dataset. 
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x and y are vectors that contain the mean values of the 

variables that consist the datasets X and Y, whereas, 
1−

Σ
*

Y is 

the pseudo-inverse of  the covariance matrix of Y. 
Assuming Gaussian distribution, the authors propose as 

a distance factor the probability that the distance is at least Φ 
units (5). 
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Note that, although Sdist represents distance between two 
objects, it is a similarity measure. As the distance Φ 
increases, the corresponding probability decreases. 

Finally, the proposed measure (6) is the weighted 
summation of two similarity measures.   
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Yang & Shahabi [19] propose a similarity measure, 
Eros, which is based on the acute angles between the 
corresponding components from two objects X and Y (7). 
Contrary to the previous measures, all components are 
retained from each object and their variances form a weight 
vector w. More specifically, the variances obtained from all 
the objects in a database are aggregated into one weight 
vector, which is updated when objects are inserted or 



  

removed from the database.  Finally, the authors provide 
lower and upper bounds for this measure. 
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Otey & Parthasarathy [23] define a distance measure in 
terms of three dissimilarity functions that take into account 
the differences among the original values, the angles between 
the corresponding components and the difference in 
variances. For the first term, authors propose to use either the 
Euclidean (8) or the Mahalanobis distance (9). 
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where µΧ and µY are the vectors that contain the mean values 
of the variables that consist the datasets X and Y, whereas 
ΣXY is the covariance matrix of the combination of datasets X 
and Y. 

The second term is defined as the summation of the 
acute angles between the corresponding components, given 
that all components are retained (10).   
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The third term accounts for the differences in the 
distributions of the variance over the derived components. 
Consider the random variable VX having the probability mass 
function 
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P(VX = i) represents the proportion of the variance in the 
direction of the ith principal component.  

The difference between the distributions VX and VY is 
defined as the symmetric relative entropy (11). 
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The proposed distance measure can be defined in the 
following two forms:   

vrd DDDD ⋅⋅=Π     (12) 

vvrrdd DDDD ⋅+⋅+⋅+=Σ ββββ0 .   (13) 

Otey & Parthasarathy refer to (12) as their basic 
formulation, and to (13) as a more flexible form that allows 
the terms to be weighted differently according to the needs of 
a given application.  

Li & Prabhakaran [24] propose a similarity measure for 
recognizing distinct motion patterns in motion streams in real 
time. This measure, which is called k Weighted Angular 
Similarity (kWAS), can be obtained by applying singular 
value decomposition on the transformed datasets, XTX and 
YTY, and retaining the first k components. kWAS is based on 
the acute angles between the corresponding components 
weighted by the corresponding eigenvalues (14).  
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where σi and λi are the ith eigenvalues corresponding to ith 
eigenvectors ui and vi of the matrices  XTX and YTY.  

When the original datasets are mean centered, the above 
procedure is equivalent to applying PCA on the original data. 
The eigenvectors ui and vi are the corresponding principal 
components, while the eigenvalue-based weight in (14) is 
equal to the one obtained, if σi and λi are replaced by the 
variances of the corresponding components. The absolute 
value implies that the cosine of the acute angles is computed. 

In the context of Statistical Process Control, Kano et al. 
[25] propose a distance measure for the purpose of 
monitoring process and identifying deviations from normal 
operating conditions. This measure is based on the Karhunen-
Loeve expansion, which is mathematically equivalent to 
PCA. However, it involves applying eigenvalue 
decomposition twice during its calculation, which is the most 
computationally expensive part. At this stage of our research, 
we decided not to include it in our experiments.  

3.2 The Proposed Measure 

In this paper, we propose a distance measure that is 
based on a well-known statistic in multivariate Statistical 
Process Control (SPC), namely the Squared Prediction Error 
(SPE) or Q statistic [26]. The calculation of SPE requires 
applying PCA on a dataset X and retaining the first k 
principal components. In SPC, this dataset may represent a 
time period of normal operating conditions of a process. 
When values that correspond to a new time instance arrive, 
they are projected on the plane derived by PCA, in order to 
obtain their new coordinates as in (15). 

Ayt ⋅=      (15) 

where Ap×k is the matrix of principal components, t1×k and 
y1×p are vectors, which consist of the projected and the 
original values respectively. 

 In order to obtain the error that this projection 
introduces to the new values, we calculate the predicted 
values of y (16). 

T
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Then, the SPE statistic is defined as in (17). It 
represents the squared perpendicular distance of a new 
observation (the values of a new time instance) from the 
plane. A high value of SPE means that the projection model 



  

is not valid for that observation.  
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In our case, the objective is to compare two datasets 
Xn×p and Ym×p for the purpose of similarity search. We 
propose to apply PCA on X and calculate SPE for each time 
instance of Y. The summation of these values can be used as 
a distance measure between X and Y (18). 
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For all previously discussed measures, we can apply 
PCA on objects and store the component weight and variance 
matrices offline. Then, we compare a query object with any 
one in the database by computing a similarity/distance 
measure. The advantage of SPEdist is that PCA, which is the 
most computationally expensive task, is not applied on this 
query object.  

A similar approach can be found in the work of Barbic 
et al. [27], who propose a technique for the purpose of 
segmenting motion capture data into distinct motions. 
However, the authors utilize the squared error of the 
projected values and not the predicted values, as we propose 
in our work. Moreover, they focus on an application that 
involves one multivariate time series, which should be 
segmented.  

4 Experiments 

4.1 Datasets 

The experiments have been conducted on three real-
world datasets and one synthetically created dataset, which 
have been used extensively in the literature. 

The first dataset relates to Australian Sign Language 
(AUSLAN), which contains sensor data gathered from 22 
sensors placed on the hands (gloves) of a native AUSLAN 
speaker. There are 95 distinct signs, each one performed 27 
times. In total, there are 2 565 signs in the dataset. More 
technical information can be found in [28].  

The second dataset, HUMAN GAIT, involves the task 
of identifying a person at a distance. Data are captured using 
a Vicon 3D motion capture system, which generates 66 
values at each time instance. 15 persons participated in this 
experiment and were required to walk in 3 sessions, at 4 
different speeds, 3 times for each speed. In total, there are 
540 walk sequences. More technical information can be 
found in [29].  

The third dataset relates to EEG data that arises from a 
large study to examine EEG correlates of genetic 
predisposition to alcoholism. It contains measurements from 
64 electrodes placed on the scalp and sampled at 256 Hz 
(3.9-msec epoch) for 1 second. There are three versions of 
this dataset, the small, the large and the full, according to the 
volume of the original data included [30]. We utilized the 
large dataset, which contains data for 10 alcoholic and 10 
control subjects. Each subject was exposed to 3 different 

stimuli, 10 times for each one. In total, there are 600 EEG’s. 
Finally, the transient classification benchmark 

(TRACE) is a synthetic dataset designed to simulate 
instrumentation failures in a nuclear power plant [31].  There 
are 4 process variables, which generate 16 different operating 
states, according to their co-evolvement through time. There 
is an additional variable, which initially takes on the value of 
0, until the start of the transient occurs and its value changes 
to 1. We retain only that part of data, where the transient is 
present. For each state, there are 100 examples. In total, there 
are 1600 examples.  

4.2 Method & Measures 

In order to compare the performance of the proposed 
similarity/distance measures, we perform one-nearest 
neighbor classification and evaluate it by means of 
classification error rate. 

We use 9-fold cross validation for the datasets 
AUSLAN and HUMAN GAIT taking into account all the 
characteristics of the experiments, while creating the subsets. 
The observed differences in the error rates among the various 
methods were statistically tested. Due to the small number of 
subsets and to the violation of normality assumption in some 
cases, Wilcoxon Signed-Rank tests were performed at 5% 
significance level. For the EEG and TRACE dataset, we use 
the train and test datasets provided by the authors.  

The similarity measures that were tested on our 
experiments are SimPCA (2), SλPCA (3), Eros (7), DΠ (12), 
kWAS (14), and SPEdist (18).  

SF (6) and DΣ (13) are not included in these 
experiments due to the fact that they involve tuning 
parameters for each dataset. 

     In order to calculate the DΠ (12), we use the 
definition and the corresponding conventions of the relative 
entropy H as in [32], since it is not provided by authors.   
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x
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Regarding Eros (7), the weight vector w was computed 
by averaging the variances of each component across the 
objects of the training dataset and normalizing them so that 
Σwi = 1, for i = 1, 2… p. The authors propose alternative 
ways of computing the weight vector, which have not been 
tested here. 

All other measures require determining the number of 
components k to be retained. We have conducted 
classification for consecutive values of k, until the 
improvement in classification rate was not practically 
significant. For the maximum value of k that has been used, 
at least 95% of the total variation is retained for all objects in 
all datasets except from the EEG. In this case, at least 80% of 
the total variation is retained for all objects, however, the 
classification rate does not improve significantly for values of 
k greater than 12.  

 For comparison reasons, we also included in the 
experiments the Euclidean distance. Since this measure 
requires datasets of equal number of time instances, we 
decided to apply linear interpolation on the original datasets 
and set the length of the time series equal to the 
corresponding mean length (Table 1). The transformed 



  

datasets were utilized only when Euclidean distance was 
selected for the classification task.  

Principal Component Analysis is performed on the 
covariance matrices. For comparison reasons, the similarity 
measures DΠ (12), kWAS (14), and SPEdist (18) were 
computed on the mean centered values.  

All the necessary codes and experiments were 
developed in MATLAB, whereas the statistical analysis was 
performed in SPSS.  

TABLE 1. DESCRIPTION OF DATASETS 

Dataset 
# of 

variables 
mean 
length 

# of 
objects 

# of 
classes 

AUSLAN 22 57 2565 95 
HUMAN 

GAIT 
66 133 540 15 

EEG 64 256 600 2 
TRACE 4 250 1200 16 

4.3 Results 

The classification rates are presented in the form of 
percentages in Table 2. Although we have run the 
experiments (when required) for various values of k (the 
number of principal components retained), we present only 
the best classification accuracies. Moreover, these values of k 
should not be considered as the best ones, since slightly 
different ones may result in practically comparable 
performances.  

 
TABLE 2. CLASSIFICATION ERROR RATES (%) 

    Dataset 
Measure 

ASL 
HUMAN 

GAIT 
EEG TRACE 

Euclidean 13.8 6.3 30.2 3.9 
SimPCA  (1) 12.0 (4)   1.3  (12)   0.3 (1) 50.3 
SλPCA   (4) 11.5 (3) 18.5  (10) 16.5 (3) 31.4 
Eros 9.7 3.7 14.8 21.4 
kWAS (4)   9.4 (5)   3.5 (12) 26.2 (3) 32.9 
DΠ  83.8 40.6 - 19.75 
SPEdist (4)   8.0 (4)   3.5 (8)   2.0 (2) 48.3 

Numbers in parentheses indicate the number of principal 
components retained. Lack of number indicates measures that 
exploit all components. 

First, we will compare similarity/distance measures with 
respect to each dataset separately. For AUSLAN dataset, it 
seems that SPEdist produces at least similar results to Eros 
and kWAS. Statistically testing their differences across the 
specific subests, SPEdist produces better results than all 
(p<0.05). The low performance of DΠ suggests that a 
different form of the proposed ones in [23] should be 
investigated, with respect to this dataset. Regarding the 
HUMAN GAIT dataset, SimPCA, Eros, kWAS and SPEdist 
seems to provide the best results.  Statistically testing their 
differences across the specific subests, SimPCA produces 
better results than all, whereas the performance of Eros, 
kWAS and SPEdist is statistically similar (p>0.05). For EEG 
dataset, SimPCA and SPEdist seems to provide considerably 
better results than other measures, with classification error 
rates of 0.3% and 2% respectively, when the next best 
performing measure, Eros, presents a classification error rate 

of 14.8%. Finally, for the TRACE dataset, which consist of 
only 4 variables, Euclidean distance, a non-PCA-based 
measure, performs essentially better than all measures with 
3.9% classification error rate. The next best performing 
measures are DΠ and Eros with classification error rates of 
19.75% and 21.4% respectively.  

5 Conclusion – Future work 

In this paper, we discussed the application of Principal 
Component Analysis (PCA) on multivariate time series 
datasets for the purpose of similarity search. More 
specifically, there were three main contributions. First, we 
reviewed several PCA-based similarity/distance measures 
that have recently proposed from diverse fields, not 
necessarily within data mining context. Second, we proposed 
a distance measure, which does not require for the query 
object to be PCA-represented. This measure seems to be 
promising with respect to classification accuracy. Third, we 
provided comparative results from experiments performed on 
four widely utilized datasets by applying several of the 
proposed measures.  

Future work will be focused on conducting extensive 
experiments on more datasets. In addition to that, we will 
continue review PCA-based similarity/distance measures, 
since this technique attracts the attention from several diverse 
fields. Principal Component Analysis has not been 
extensively explored in the context of similarity search in 
multivariate time series and hence, it has the potential to offer 
more in the Data Mining field. 
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