
Dealing with noisy data
in the context of k-NN Classification

Stefanos Ougiaroglou
stoug@uom.gr

Georgios Evangelidis
gevan@uom.gr

Department of Applied Informatics
School of Information Sciences, University of Macedonia

156 Egnatia St, GR-54006 Thessaloniki, Greece

ABSTRACT
Like many other classifiers, k-NN classifier is noise-sensitive.
Its accuracy highly depends on the quality of the train-
ing data. Noise and mislabeled data, as well as outliers
and overlaps between data regions of different classes, lead
to less accurate classification. This problem can be dealt
with by adopting either a large k value or by pre-processing
the training set with an editing algorithm. The first strat-
egy involves trial-and-error attempts to tune the value of k,
while the second strategy constitutes a time-consuming pre-
processing step. This paper discusses and compares these
two strategies and reveals their advantages and drawbacks.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

Keywords
k-NN classification, editing, noisy data

1. INTRODUCTION
Classification is an important data mining task that has

attracted the attention of both academia and industry. Clas-
sification algorithms (or classifiers) attempt to assign new
items to a set of predefined classes on the basis of some
training data, i.e., a set of already classified items. Classi-
fiers can be either eager or lazy (or instance-based). While
all classifiers aim for accurate predictions, they differ on how
they work. An eager classifier pre-processes the training set
and builds a model that is then used to classify new items.
Lazy classifiers do not build any model, but instead, they
classify new items by examining the available training data.
Essential role for the efficiency and the effectiveness of all
classifiers plays the size and the “quality” of the training set.
Here, we focus on the effectiveness and on the “quality” of
the training set.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BCI ’15 September 2-4, 2015, Craiova, Romania
c⃝ 2015 ACM. ISBN 978-1-4503-3335-1/15/09. . . $15.00

DOI: 10.475/123 4

k-Nearest Neighbours (k-NN) classifier [1] is an exten-
sively used lazy classifier. It is simple and easy to implement
and can be exploited in many domains. Also, it is analyti-
cally tractable and, for k = 1 and unlimited items, the error
rate is asymptotically never worse than twice the minimum
possible, which is the Bayes rate [1]. k-NN classifier uses
the training set whenever a new item has to be classified.
It classifies an item x by searching in the training set and
retrieving the k nearest items (neighbours) to x according to
a distance metric. Then, x is classified to the most common
class among the classes of its k nearest neighbours. This
class is determined via nearest neighbours voting.

Like many other classifiers, k-NN classifier is noise sen-
sitive. Accuracy depends on the “quality” of the training
set. Noise and mislabeled data, as well as overlaps between
data areas of different classes, affect accuracy. This problem
can be dealt with by adopting one of the following strategies:
(i) application of an editing algorithm that pre-processes the
training set in order to remove the irrelevant items, or, (ii)
usage of a large k value that extends the examined neigh-
bourhood and, thus, can smooth out the impact of noise.

This paper attempts to evaluate the advantages and draw-
backs of the two strategies. The contribution is an experi-
mental study that compares the strategies and reveals the
strategy that should be adopted in certain circumstances.

The rest of the paper is organized as follows. Section 2
shows how a large value for k renders k-NN classifier noise-
tolerant. Section 3 concerns editing. Section 4 presents the
experimental study that compares the strategies. Finally,
Section 5 concludes the paper.

2. NOISE AND THE VALUE OF K
The accuracy achieved by k-NN classifier depends on the

selection of the value of k. The value of k that achieves
the highest accuracy depends on the dataset used. Its de-
termination implies tuning via trial-and-error pre-processing
tasks. Although the determination of k can not follow any
rule and the “best” k may be different for different datasets,
usually, larger k values are appropriate for datasets with
noise since they examine larger neighbourhoods. However,
large k values fail to clearly define the boundaries between
distinct classes. Small k values render the classifier more
noise sensitive. Thus, in cases of training sets that contain
noise, classification may be less accurate. In other words,
the value of k defines the size of the examined neighbour-
hood. Practically, the larger the number of neighbours, the
lower the impact of noisy data in determining the correct



class label for a new item.
In cases of training sets with high level of noise, the deter-

mination of the value of k that achieves the highest accuracy
is a difficult task that involves costly and time-consuming
trial-and-error pre-processing. Certainly, the higher the level
of noise in the training set is, the larger value for k is re-
quired, and thus, the more trial-and-error procedures are
needed. We note that even the best k value may not be op-
timal. This happens because k-NN classifier uses a unique
k value for all new items. Different k values may be op-
timal for different data areas. Consequently, heuristics for
dynamic determination of k [6] can be adopted.

3. NOISE REMOVAL THROUGH EDITING
Editing aims to improve accuracy by improving the qual-

ity of the training set. To achieve this, editing algorithms try
to remove noise, outliers and mislabeled items and smooth
the decision boundaries between classes. Ideally, an editing
task pre-processes the training set and builds an edited set
without overlaps between the classes. Then, k-NN classi-
fier searches for nearest neighbours in the edited set. Cer-
tainly, the k value of a k-NN classifier that uses an edited
set (instead of the original training set) should also be tuned
through a trial-end-error procedure. However, one expects
that this procedure will be less time consuming since the
data will be noise-free and a relatively small value for k will
achieve the best possible classification accuracy.
Several editing algorithms have been proposed and can

be found in the literature. Here, we present Wilson’s Edited
Nearest Neighbor (ENN) rule [12] that is the reference edit-
ing algorithm and constitutes the base of all other editing
algorithms. In addition, ENN-rule is the algorithm that we
used in our experimentation (see Section 4).
Algorithm 1 presents ENN-rule. Initially, the edited set

(ES) is set to be equal to the training set (TS) (line 1). For
each item x of TS, ENN-rule searches in TS and retrieves
its k nearest neighbours (line 3). If x is misclassified by the
majority vote of these neighbours, it is removed from ES
(lines 4–7). ENN-rule considers misclassified items to be
noise and, thus, they are removed. ENN-rule must compute
all distances between the training items.

Algorithm 1 ENN-rule

Input: TS, k
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: NNs← find the k nearest to x neighbors in TS−{x}
4: majorClass← find the most common class of NNs
5: if xclass ̸= majorClass then
6: ES ← ES − {x}
7: end if
8: end for
9: return ES

Like k-NN classifier, ENN-rule uses the k parameter. Its
determination is an issue that should also be addressed. [13,
3] consider k = 3 to be a typical setting. This is adopted in
many papers (e.g. [7]). However, in some cases, researchers
determine the value of k that achieves the best performance
through trial-and-error (e.g., [11]). In [12], the impact of k
is discussed in detail. Moreover, in [4], a large number of

k values are evaluated. It turns out that the best k value
depends on the dataset at hand and should be determined
by considering the item distribution.

All other editing algorithms either extends or is based on
the idea of ENN-rule. For instance, All-kNN [10] is a vari-
ation of ENN-rule that iteratively executes ENN-rule with
different k values. Multiedit [2] divides the training set into
random subsets. Then, it applies ENN-rule over each item
of each one subset but searching for the one nearest neigh-
bours in another subset. Repeated ENN (RENN) rule [10]
is quite similar to All-kNN. RENN-rule iteratively applies
ENN-rule until each item’s majority of k nearest items have
the same class. EENProb and ENNth [11] retrieve the k
nearest neighbors and, then, perform editing based on prob-
ability estimations. In [4], another variation of ENN-rule is
presented, where an item enters the edited set, only if all
its k nearest items have the same class with it (distance ties
increase the value of k). Sanchez et al. presented two edit-
ing procedures that use geometric information provided by
proximity graphs [9]. k-NCN editing and its iterative ver-
sion [7] are variations of ENN-rule that use the k nearest cen-
troid neighbourhood classifier [8]. EHC [5] does not based
on ENN-rule. It adopts a clustering procedure that finds
homogeneous clusters and removes thes single item clusters.

4. EXPERIMENTATION

4.1 Experimental setup
The two strategies were compared using eight datasets

distributed by the KEEL repository1 and summarized in
Table 1. Apart from the original versions of the datasets,
we built and used new versions of them by artificially adding
noise. For the datasets that include more than two classes
(LR, PD, LS and YS), we used four versions, each with a
different level of noise: 0%, 10%, 30%, 50%. The first ver-
sion corresponds to the original dataset and the rest are its
artificially built versions. The noise was added by setting
the class of the 10% or 30% or 50% of the training items
to a randomly chosen different class label. The other four
datasets (MGT, PH, BN and PM) have only two classes.
Therefore, they cannot afford high level of noise (the addi-
tion of noise strengthens the opposite class). Thus, we did
not build versions with 50% of noise.

For editing purposes we used ENN-rule [12]. Based on [13,
3], the value of k of ENN-rule was set to be 3. For each ver-
sion of each dataset, ENN-rule pre-processed the training
set and built an edited set. Then, k-NN classifier used the
edited set in order to classify new items. The comparison of
the two strategies was implemented by executing k-NN clas-
sifier over the training set and the edited set and varying the
value of k (in most cases from 1 to 50). All implementations
were coded in C. We used the Euclidean distance as the dis-
tance metric. Also, we adopted a five-fold cross validation
schema.

4.2 Comparison of the two strategies
Figure 1 presents the results. It presents eight diagrams.

Each one corresponds to a dataset. The Y-axis measures
the accuracy achieved while the X-axis indicates the cor-
responding value of k. Each diagram includes two curves
for each version of the dataset. The black curve represents

1http://sci2s.ugr.es/keel/datasets.php



Table 1: Datasets description

dataset Size Attr. Classes

Letter Recognition (LR) 20000 16 26
Magic G. Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Phoneme (PH) 5404 5 2
Banana (BN) 5300 2 2
Yeast (YS) 1484 8 10
Pima (PM) 768 8 2

the measurements corresponding to the k-NN classifier that
uses the original training set (TS) (without noise removal),
while the grey curve represents measurements correspond-
ing to the edited set (ES). A notation like “ES-10%” means
that the specific curve corresponds to the edited set built by
the version with 10% noise. By examining the diagrams, we
make the following observations:
(i) Almost in all cases, the k-NN classifier that uses the

original training set can achieve higher accuracy than the
one that uses the edited set. This is not true only in the
cases of MGT, BN and PH with 30% extra noise. But, for
MGT and BN, it is evident that the k-NN classifier that uses
the original training set with an even larger value for k can
eventually achieve higher accuracy than the one that uses
the edited set. This does not seem to be achieved in the
case of PH where the strategy of editing is clearly prefer-
able. Therefore, we can conclude that if the major goal
is to achieve the highest possible accuracy, editing should
be avoided. Instead, an extensive trial-and-error procedure
should be used on the training set to tune the value of k.
(ii) A k-NN classifier that follows the application of an

editing algorithm avoids costly and time-consuming trial-
and-error procedures. Figure 1 shows that the best possible
accuracy is achieved with a relatively small value for k (i.e.,
k < 10). This is not true only in the case of the PM dataset
with 30% extra noise where a larger value for k should be
adopted. Therefore, we can conclude that when one wants
to avoid lengthy trial-and-error procedures, one should use
an editing algorithm as a pre-processing step.
(iii) For noise-free datasets, like LR, LS and PD, k = 1

should be adopted. A larger value for k may harm accuracy.
(iv) Finally, all diagrams confirm that the higher the level

of noise, the larger the value of k that should be adopted.

5. CONCLUSIONS
We compared two strategies for dealing with noisy data

in the context of k-NN classification. The first uses an edit-
ing algorithm. The second one tries to avoid the impact of
noise by adopting a large value for k. Our experimentation
illustrated that when the major goal is the highest possible
accuracy one should adopt the latter approach. However,
this implies costly trial-and-error procedures for tuning the
large value for k. On the other hand, one can avoid the
trial-and-error procedures by adopting an editing algorithm
and achieving slightly lower accuracy.
An interesting direction for future work would be the de-

velopment of a non-parametric adaptive classification model
that, for each new item, automatically uses the appropriate
number of nearest neighbours depending on the “quality” of
the data region that surrounds the new item.

6. REFERENCES
[1] T. Cover and P. Hart. Nearest neighbor pattern

classification. IEEE Trans. Inf. Theor., 13(1):21–27,
Sept. 2006.

[2] P. A. Devijver and J. Kittler. On the edited nearest
neighbor rule. In Proceedings of the Fifth International
Conference on Pattern Recognition. The Institute of
Electrical and Electronics Engineers, 1980.

[3] M. Garćıa-Borroto, Y. Villuendas-Rey, J. A.
Carrasco-Ochoa, and J. F. Mart́ınez-Trinidad. Using
maximum similarity graphs to edit nearest neighbor
classifiers. In Proceedings of the 14th Iberoamerican
Conference on Pattern Recognition: Progress in
Pattern Recognition, Image Analysis, Computer
Vision, and Applications, CIARP ’09, pages 489–496,
Berlin, Heidelberg, 2009. Springer-Verlag.

[4] K. Hattori and M. Takahashi. A new edited k-nearest
neighbor rule in the pattern classification problem.
Pattern Recognition, 33(3):521 – 528, 2000.

[5] S. Ougiaroglou and G. Evangelidis. EHC:
Non-parametric editing by finding homogeneous
clusters. In C. Beierle and C. Meghini, editors,
Foundations of Information and Knowledge Systems,
volume 8367 of Lecture Notes in Computer Science,
pages 290–304. Springer, 2014.

[6] S. Ougiaroglou, A. Nanopoulos, A. N. Papadopoulos,
Y. Manolopoulos, and T. Welzer-Druzovec. Adaptive
k-nearest-neighbor classification using a dynamic
number of nearest neighbors. In Proceedings of the
11th East European conference on Advances in
databases and information systems, ADBIS’07, pages
66–82, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo,
and J. Badenas. Analysis of new techniques to obtain
quality training sets. Pattern Recogn. Lett.,
24(7):1015–1022, Apr. 2003.

[8] J. Sánchez, F. Pla, and F. Ferri. On the use of
neighbourhood-based non-parametric classifiers.
Pattern Recognition Letters, 18(1113):1179 – 1186,
1997.

[9] J. Sánchez, F. Pla, and F. Ferri. Prototype selection
for the nearest neighbour rule through proximity
graphs. Pattern Recognition Letters, 18(6):507 – 513,
1997.

[10] I. Tomek. An experiment with the edited
nearest-neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, 6:448–452, 1976.

[11] F. Vázquez, J. S. Sánchez, and F. Pla. A stochastic
approach to wilson’s editing algorithm. In Proceedings
of the Second Iberian conference on Pattern
Recognition and Image Analysis - Volume Part II,
IbPRIA’05, pages 35–42, Berlin, Heidelberg, 2005.
Springer-Verlag.

[12] D. L. Wilson. Asymptotic properties of nearest
neighbor rules using edited data. IEEE trans. on
systems, man, and cybernetics, 2(3):408–421, July
1972.

[13] D. R. Wilson and T. R. Martinez. Reduction
techniques for instance-basedlearning algorithms.
Mach. Learn., 38(3):257–286, Mar. 2000.



(a) LR (Accuracy and k value) (b) MGT (Accuracy and k value)

(c) PD (Accuracy and k value) (d) LS (Accuracy and k value)

(e) PH (Accuracy and k value) (f) BN (Accuracy and k value)

(g) YS (Accuracy and k value) (h) PM (Accuracy and k value)

Figure 1: Experimental results


