
The Universal Author Identifier System
(UAI_Sys)

Dimitris A. Dervos1, Nikolaos Samaras2, Georgios Evangelidis2, Jaakko P. Hyvärinen 3,
Ypatios Asmanidis1

1 Information Technology Dept., ATEI, P.O. BOX 141, 57400 Sindos, Greece,
Tel: +30.2310791295, Email: {dad,ypasm}@it.teithe.gr

2 Dept. Appl. Informatics, Un. of Macedonia, P.O. BOX 1591, 54006 Thessaloniki,
Greece, Tel:+30.2310891844, Email: {samaras,gevan}@uom.gr

3 Dept. of Computer Science and Information Systems, Un. of Jyväskylä, Finland,
Tel: +358.142601211, Email: japahyva@cc.jyu.fi

Abstract

One common problem in the scientific research literature is that each one author
cannot easily be identified uniquely. The problem arises when there are authors
with identical names, authors who have changed their name(s) in the course of
time, and authors whose names appear in alternative versions (for example:
Jaakko Hyvärinen, and J. P. Hyvärinen) across the publications they have (co-)
authored. The issue becomes more of a problem when data analysis utilizing
author names is to be conducted, for example: in citation analysis.
In this paper we introduce the Universal Author Identifier system, codenamed
UAI_Sys. The system is web based and publicly available, enabling each one
author to register/update his/her own metadata, plus acquire a unique identifier
(UAI code), ensuring name disambiguation. As soon as UAI_Sys becomes
accepted and enjoys worldwide use, selected author metadata will become
globally available to all interested parties. Care is taken so that UAI_Sys
comprises more than just a database for storing and handling author identifiers.
Provision is taken for the system to incorporate web services facilitating
communication with third party applications, thus expanding the possibilities for
web based co-functionality. Last but not least, the system supports role-based
access and management (i.e. different user roles for authors, librarians,
publishers, and administrators) for efficient and effective information
dissemination and management, promoting research and collaboration.
UAI_Sys is being designed/developed along the lines of the Cascading Citations
Analysis Project (C-CAP) which is co-funded by the Alexander Technology
Educational Institute (ATEI), and the University of Macedonia (UoM).

 Research conducted along the lines of the Cascading Citation Analysis Project (C-CAP, http://www.ccapnet.org),
funded by the Research Committees of ATEI, and the University of Macedonia, Thessaloniki, Greece.

1. Introduction

Today, developments like the evolving scholarly communication environment, the
open access movement, and the globalization in academia and research advance
with a rapid pace. As a result, more intense becomes the need for an improved
scheme that quantifies the contribution research publications, authors, and scientific
collection make in promoting science and technology. The current practice
considers the number of citations received by each one research publication, and
utilizes this information in the calculation of the journal impact factor metric [8, 9].

In the Cascading Citations Analysis Project (C-CAP), a somewhat different
approach is taken: instead of refining the analysis at high level, an attempt is made
to increase the granularity of the citation indexing paradigm at the data preparation
stage, so that the information extraction phase that follows targets a richer data
corpus. In this respect, citations are considered to target (article, author), rather
than just article entities, plus it is not only the direct citations received that account
for the calculation of the target’s popularity measure, but also the citations received
indirectly, by considering a finite number of levels in the corresponding citation
graph [3,4]. In this respect, each one (co-)author of a research publication need be
uniquely identifiable.

Research article authors are usually rated in accordance with the number of
citations received by the articles they have (co-) authored, as well as on the basis of
the citing article’s host publication impact factor (journal, conference proceedings,
book, etc.). In this respect, authors need be uniquely identified not just for the
purpose of determining self-citations in the citation graph. Author popularity ranks
calculated this way are then taken to comprise a critical parameter when it comes to
making decisions on tenure, promotion, funding, and so on [26]. This is common
practice, despite all the warnings issued with regard to the disadvantages of relying
upon impact factor alone for journal evaluation [10].

Attempts have been made to uniquely identify each one author in citation
databases, restricted in their scope to the citation dataset in question [11,28]. In
direct relation is the fact that even the best automatic author name disambiguation
system is bound to not be 100% foolproof [12], in any case: it is bound to fail when it
comes to having to differentiate between homonyms [1]. In this respect, in C-CAP a
strategic decision has been taken to face the challenge of developing a citation
dataset supplier neutral Universal Author Identifier System (UAI_Sys).

2. System Overview

UAI_Sys is a Java based web application allowing each one author to
register/update his/her own metadata content and request a unique identifier that
s/he is going to retain and make use of for life. Apart from obtaining his/her unique
author identifier (codenamed: UAI code), the author specifies the subset of his/her
personal (meta)data that s/he wishes to become globally available to all interested
parties. The system supports the industrial standard interface for other applications
to connect to and co-function with, over the Internet.

2.1 Functional Requirements

When an author registers him/herself with UAI_sys, the system utilizes a
timestamp-based random number generator facility to create an all-numeric, sixteen
digit string, the UAI code, that will uniquely identify the author in question. The latter
uses his/her UAI code as a username to login to UAI_Sys.

To prevent misuse in the form of numerous UAI registration requests originating
from a single source fraudulent application, UAI_Sys comes bundled with a
watermark protection facility. During the registration procedure, an image is
generated involving a random mix of numeric and alphabetic characters. The user is
required to type in the characters s/he is presented with for the system to proceed
with the new author registration process. Upon completion of the latter, an email
message is automatically compiled and sent to the just registered author, including
his/her unique UAI code, plus a password required for accessing UAI_Sys. During
the new author registration process, the user is prompted to also enter a ‘secret
phrase’, plus his/her private response to it. The scheme comprises an alternative
way of logging on to UAI_Sys in case the user forgets his/her password in the
future. The password as well as the ‘secret phrase’/response combination are user
maintained and updatable entries during the regular UAI_Sys logon session(s).

Once registered with UAI_Sys, each one author is able to enter/update his/her own
metadata. Every instance of the latter is updatable, except from the UAI string, of
course. Trivial cases of author metadata that may be updated comprise, for
example, the ‘postal address’, ‘email address’ fields. More involved cases involve,
for example, the updating of the author’s last name, or the insertion of author name
aliases, i.e. different versions of the author’s (name, middle name(s), surname)
combination, all referring to the same individual.

UAI_Sys provides support for three types of user roles: a) the administrator who has
full access/control over the system, b) the operator who can register new authors in
cases where the latter either cannot access the Internet, or choose to have another
authority (the library, for example) to act on their behalf, and c) the individual author
who has access to and feels comfortable with the technology involved, utilizing it in
order to keep his/her UAI_Sys entry up-to-date.

Libraries are expected to play a key role in UAI_Sys, for one reason: the system
enjoying world-wide applicability, problematic cases calling for person to person
communication between the central UAI_Sys management team and the end users
are bound to arise. Such problems may only be dealt with by implementing
decentralization, in the form of the local libraries acting as authorized UAI_Sys
agents. This way, authors who seek for assistance in using/accessing the system
will find a helping hand in their own language. For example, one may consider the
most unlikely (however: possible) case whereby a UAI_Sys user has lost/forgotten
his/her login password, and does not remember the response registered to
comprise a valid one to the secret phrase associated with his/her UAI_Sys account.
Also, it so happens that the email address registered with the UAI_Sys account is
no longer valid, meaning that it is meaningless for the author in question to tag the ‘ I
have forgotten my password’ radio button in order to have the system assign a new
(automatically generated password) that is subsequently sent to the (obsolete)
email address already registered with the author’s UAI_Sys entry. The situation

calls for a person-to-person communication session, whereby the author will supply
the necessary evidence that s/he is indeed the individual claimed to be. The
communication will most likely be carried out in the author’s own language, at the
local library. The latter, provided that they act as an authorized UAI_Sys agent, will
then make use of their privileged access to the system, initiate the procedure that
generates a new password for the user in question, plus update the corresponding
UAI_sys entry with the author’s new email address where the just assigned (new)
password is (automatically) emailed to.

It is important that UAI_Sys maintains a complete/detailed log of all update
operations, with sufficient data to trace application critical moments whereby a
UAI_Sys account updates the corresponding own data content, or that of another
account’s (say, in the case of privileged transactions initiated by accounts operated
by libraries authorized to act as UAI_Sys agents to the application).

Last but not least, UAI_Sys need be searchable, both by the public user as well as
by the registered one. The metadata fields and their content that are accessed by
the former next to the latter may differ, at each one author’s own discretion. In all
cases, UAI_Sys is to associate every individual author with links to the
corresponding own works that have been published electronically, available from
dispersed resources across the Internet. For the latter to become possible, UAI_Sys
needs to be coupled to the corresponding e-journals, institutional repositories [2,7],
etc., and the author-user to be authorised to access their (full-text) content.

2.2 Non Functional Requirements

In parallel to supporting the functionality outlined in Section 2.1 above, the UAI_Sys
application needs to also opt for and support/implement a number of (critical) non
functional requirements, for example:

 Be secure in user authentication, plus in implementing user authorization
policies.

 Be flexible and easy to upgrade, extend and maintain.

 Be durable, ensuring the integrity and the restoration of its content over soft-
and hard- system crashes.

3. Pilot Implementation: Technology and Tools

As it is mentioned in Section 2 above, the UAI_Sys pilot implementation is a Java
based web application that runs on top of an application server. The Java platform
has been chosen for system implementation since it comprises the de facto world-
wide standard for developing open source web-based applications, utilizing a large
number of available tools and technologies. UAI_Sys is a Java2 Enterprise Edition
(J2EE) application that utilizes open source Java tools and technologies provided
by the JBoss community [19].

The application runs on the top of a JBoss 4.0.4 application server [17]. The latter is
coupled to the PostgreSQL 8.1.2 object-relational database management system
[27]. The UAI_Sys application has been developed using the JBoss SEAM [18], a

new application development framework for the Java Enterprise Edition 5 (Java EE
5) Platform, unifying the component models of Java Server Faces (JSF), and
Enterprise Java Beans 3.0 (EJB 3.0) [22]. JSF comprises a User Interface (UI)
framework for Java web applications [24], and EJB 3.0 is an extension to the
Enterprise Java Beans that brings simplification and new functionality to the earlier
EJB Application Programming Interfaces (APIs) [6].

The first version of the pilot implementation allows the client application to test-drive
each one component of the proposed solution to ensure that the latter fulfils the set
requirements specification. In the course of the pilot implementation phase new
requirements emerge which are subsequently incorporated into the model under
development. Figure 1 presents the UML diagram [30] of the data model for the
pilot application, utilizing EJB 3.0 entity beans as persistent and plain old java
objects (POJOs). JBoss implements EJB 3.0 persistency by means of the Hibernate
3 persistence engine [13]. It is noted that methods and attributes are not
represented in Figure 1. The latter presents only classes corresponding to EJB 3.0
entity beans.

Figure 1: The pilot UAI_Sys data model

The Eclipse 3.1 Integrated Development Environment (IDE) [5] is used for
application source code generation, utilizing the JBoss IDE plug-in [20]. Unit tests
are created and run by using the JUnit [25] unit testing framework. To implement
the three types of user roles (administrator, operator, and author), the Java
Authentication and Authorization Service (JAAS) is used, namely a set of APIs that
enable services to authenticate and enforce user access control [14]. Sensitive
information like user passwords are channeled through an SSL tunnel, ensuring the
safety of transactions during system operation over the Internet. Application
packaging and deployment are done with the Apache Ant build tool [29].

3.1 Web Service Support

The World Wide Web Consortium (W3C, [33]) who manage the evolution of the
SOAP protocol [31] and the Web Service Description Language (WSDL)
specifications [32], define the concept of the Web service as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standard.

The UAI_Sys application implements support for Web service interface(s), via the
JBossWS web service implementation [21]. The latter comprises a standard
implementation of J2EE compliant web services (WS4EE, [16]), also supporting
Web Service Metadata (JSR-182, [15]) and EJB3 Stateless Session endpoints [23].
This leads to a more comprehensible and time saving development process than,
say, XML descriptors based web service coding (WS4EE). In the case of a class
needing to provide a web service interface, all which is required is for the
@WebService and @WebMethod annotations to be included and the Web service
is generated automatically at application deployment time.

3.2 Lessons Learned and Experience Gained

To meet the UAI_Sys requirements, the core of the pilot application was developed
by utilizing the J2EE and JAVA EE 5 technologies. In order to simplify system
development, and facilitate (stepwise) test driven application code
generation/writing, EJB 3.0 has been found to comprise a successful strategic
decision choice: the focus was on writing POJOs using annotations, rather than on
coding complex EJB APIs. The JBoss SEAM platform has also been found to
comprise a winner; nowadays it is hard for one to consider developing Java web
applications without it. Although the UAI_Sys application does not involve complex
workflows or user interaction sessions, both comprising cases where SEAM
demonstrates its strength, it has been still possible to obtain the feeling of SEAM’s
eliminating the need for normal JSF-relating glue code, as well as of its concept of
bijection [18].

4. Conlcusion

In this paper we report on the pilot version of the Universal Author Identifier system,
codenamed UAI_Sys. The system is web based and is meant to be publicly
available, enabling each one author to register/update his/her own metadata, plus
acquire a unique identifier (UAI code), ensuring name disambiguation. As soon as
UAI_Sys becomes accepted and enjoys worldwide use, selected author metadata
will become globally available to all interested parties. Care is taken so that
UAI_Sys comprises more than just a database for storing and handling author
identifiers. Provision is taken for the system to incorporate web services in order to
provide communication facilities to third party applications expanding the

possibilities for web based co-functionality. Beginning with the pilot version of
UAI_Sys, the system supports role-based access and management (i.e. different
roles for authors, librarians, publishers, and administrators) in a way that it
facilitates efficient and effective information dissemination and management,
promoting research and collaboration.

Acknowledgements

The authors are grateful to Richard Hartley and Anita Coleman, members of the C-CAP
Extended Advisory Board Committee, for their generous assistance and active
participation in UAI_Sys relating discussions, carried out either during live sessions as
well as over the Internet. Special thanks are due to ISI-Thomson Scientific
(http://www.isinet.com/) for making their citation database available to C-CAP.

References

1. Braun, T. (2003). The reliability of total citation rankings. J. Chem. Inf. Comput.
Sci (43), p.45-46.

2. CDSware (2006). Retrieved 15.05.2006: http://cdsware.cern.ch/
3. Dervos, D.A. and Kalkanis, T. (2005). cc-IFF: A Cascading Citations Impact

Factor Framework for the Automatic Ranking of Research Publications.
Proceedings of the 3rd IEEE International Workshop on Intelligent Data
Acquisition and Advanced Computer Systems: Technology and Applications
(IDAACS), p. 668-673, Sofia, Bulgaria, 5-7 September, 2005. Postprint version
from DLIST, retrieved 15.05.2006: http://dlist.sir.arizona.edu/1105/

4. Dervos, D.A., Samaras N., Evangelidis G., and Folias T. (2006). A New
Framework for the Citation Indexing Paradigm. Proceedings of the Annual
Meeting of the American Society for Information Science and Technology
(ASIS&T), Austin, Texas, November 2006: to appear

5. Eclipse (2006): Eclipse Integrated Developing Environment. Retrieved
5.05.2006: http://www.eclipse.org/

6. EJB 3.0 Expert Group (2006): JSR 220: Enterprise JavaBeansTM Version 3.0.
Retrieved 15.05.2006:
http://jcp.org/aboutJava/communityprocess/pfd/jsr220/index.htm

7. Fedora (2006). Retrieved 15.05.2006: http://www.fedora.info/
8. Garfield, E. and Sher, I.H. (1963). New factors in the evaluation of scientific

literature through citation indexing. American Documentation 14(3): 195-201.
9. Garfield, E. (1972). Citation Analysis as a tool in journal evaluation. Science

178: 471-479.
10. Garfield E., (1994). The Impact Factor. Retrieved 15.05.2006:

http://scientofic.thomson.com/knowtrend/essays/journalcitationreports
/impactfactor/

11. Giles C.L., Bollacker K., Lawrence S. (1998). CiteSeer: An Automatic Citation
Indexing System, Digital Libraries 98-The Third ACM Conference on Digital
Libraries Proceedings, p. 89-98

12. Han, H. Giles, L. Zha, H. Li, C. and Tsioutsiouliklis K. (2004). Two supervised
learning approaches for name disambiguation in author citations, Proceedings
of the 4th ACM/IEEE-CS joint conference on Digital libraries, p. 296-305,
2004.

13. Hibernate (2006): Hibernate. Retrieved 15.05.2006: http://www.hibernate.org/
14. Java Authentication and Authorization Service, JAAS (2006). Retrieved

15.05.2006: http://java.sun.com/products/jaas/
15. Java Community Process (2006): JSR 181: Web Services Metadata for the

JavaTM Platform. Retrieved 15.05.2006: http://www.jcp.org/en/jsr/detail?
id=181

16. Java Community Process (2006): JSR 921: Implementing Enterprise Web
Services 1.1. Retrieved 15.05.2006: http://www.jcp.org/en/jsr/detail?id=921

17. JBoss (2006): JBoss application server. Retrieved 15.05.2006:
http://labs.jboss.com/portal/index.html?ctrl:id=page.default.info&project=
jbossas

18. JBoss (2006): JBoss SEAM, Retrieved 15.05.2006:
http://www.jboss.com/products/seam/

19. JBoss (2006): JBoss. Retrieved 15.05.2006: http://www.jboss.org
20. JBoss (2006): JBossIDE. Retrieved 15.05.2006:

http://www.jboss.org/products/jbosside
21. JBoss (2006): JBossWS. Retrieved 15.05.2006:

http://labs.jboss.com/portal/index.html?
ctrl:id=page.default.info&project=jbossws

22. JBoss (2006): SEAM - Contextual Components A Framework for Java EE 5
Version: 1.0.CR2. Retrieved 15.05.2006:
http://docs.jboss.com/seam/reference/en/pdf/seam_reference.pdf

23. JBoss (2006): Supported Web Service Stacks. Retrieved 16.05.2006:
http://wiki.jboss.org/wiki/Wiki.jsp?page=WebServiceStacks

24. JSR-127 expert group (2004): JavaServer™ Faces Specification Version 1.1.
Retrieved 15.05.2006: http://java.sun.com/j2ee/javaserverfaces/download.html

25. JUnit org (2006): JUnit unit testing tool. Retrieved 15.05.2006:
http://www.junit.org/index.htm

26. Kleijnen J.P.C. and Van Groenendaal, W. (2000). Measuring the quality of
publications: new methodology and case study. Information Processing and
Management 36: 551-570.

27. PostgreSQL (2006): PostgreSQL database. Retrieved 15.05.2006:
http://www.postgresql.org//

28. SCOPUS (2006). Retrieved 15.05.2006: http://www.info.scopus.com
29. The apache ant project (2006): Ant build tool. Retrieved 15.05.2006:

http://ant.apache.org/
30. Unified Modelling Language (UML) Documentation. Object Management

Group (2005). Retrieved 31-05-06 :
http://www.omg.org/cgi-bin/doc?formal/05-07-04

31. World Wide Web Consortium (2006): SOAP-protocol specifications. Retrieved
15.05.2006: http://www.w3.org/TR/soap/

32. World Wide Web Consortium (2006): Web Services Description Language
specifications. Retrieved 15.05.2006: http://www.w3.org/TR/wsdl

33. World Wide Web Consortium (2006): World Wide Web Consortium (W3C)
Home page. Retrieved 15.05.2006: http://www.w3.org/

	1. Introduction
	2. System Overview
	2.1 Functional Requirements
	2.2 Non Functional Requirements

	3. Pilot Implementation: Technology and Tools
	3.1 Web Service Support
	3.2 Lessons Learned and Experience Gained

	4. Conlcusion

